//===----- CGCoroutine.cpp - Emit LLVM Code for C++ coroutines ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of coroutines. // //===----------------------------------------------------------------------===// #include "CGCleanup.h" #include "CodeGenFunction.h" #include "llvm/ADT/ScopeExit.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtVisitor.h" using namespace clang; using namespace CodeGen; using llvm::Value; using llvm::BasicBlock; namespace { enum class AwaitKind { Init, Normal, Yield, Final }; static constexpr llvm::StringLiteral AwaitKindStr[] = {"init", "await", "yield", "final"}; } struct clang::CodeGen::CGCoroData { // What is the current await expression kind and how many // await/yield expressions were encountered so far. // These are used to generate pretty labels for await expressions in LLVM IR. AwaitKind CurrentAwaitKind = AwaitKind::Init; unsigned AwaitNum = 0; unsigned YieldNum = 0; // How many co_return statements are in the coroutine. Used to decide whether // we need to add co_return; equivalent at the end of the user authored body. unsigned CoreturnCount = 0; // A branch to this block is emitted when coroutine needs to suspend. llvm::BasicBlock *SuspendBB = nullptr; // The promise type's 'unhandled_exception' handler, if it defines one. Stmt *ExceptionHandler = nullptr; // A temporary i1 alloca that stores whether 'await_resume' threw an // exception. If it did, 'true' is stored in this variable, and the coroutine // body must be skipped. If the promise type does not define an exception // handler, this is null. llvm::Value *ResumeEHVar = nullptr; // Stores the jump destination just before the coroutine memory is freed. // This is the destination that every suspend point jumps to for the cleanup // branch. CodeGenFunction::JumpDest CleanupJD; // Stores the jump destination just before the final suspend. The co_return // statements jumps to this point after calling return_xxx promise member. CodeGenFunction::JumpDest FinalJD; // Stores the llvm.coro.id emitted in the function so that we can supply it // as the first argument to coro.begin, coro.alloc and coro.free intrinsics. // Note: llvm.coro.id returns a token that cannot be directly expressed in a // builtin. llvm::CallInst *CoroId = nullptr; // Stores the llvm.coro.begin emitted in the function so that we can replace // all coro.frame intrinsics with direct SSA value of coro.begin that returns // the address of the coroutine frame of the current coroutine. llvm::CallInst *CoroBegin = nullptr; // Stores the last emitted coro.free for the deallocate expressions, we use it // to wrap dealloc code with if(auto mem = coro.free) dealloc(mem). llvm::CallInst *LastCoroFree = nullptr; // If coro.id came from the builtin, remember the expression to give better // diagnostic. If CoroIdExpr is nullptr, the coro.id was created by // EmitCoroutineBody. CallExpr const *CoroIdExpr = nullptr; }; // Defining these here allows to keep CGCoroData private to this file. clang::CodeGen::CodeGenFunction::CGCoroInfo::CGCoroInfo() {} CodeGenFunction::CGCoroInfo::~CGCoroInfo() {} static void createCoroData(CodeGenFunction &CGF, CodeGenFunction::CGCoroInfo &CurCoro, llvm::CallInst *CoroId, CallExpr const *CoroIdExpr = nullptr) { if (CurCoro.Data) { if (CurCoro.Data->CoroIdExpr) CGF.CGM.Error(CoroIdExpr->getBeginLoc(), "only one __builtin_coro_id can be used in a function"); else if (CoroIdExpr) CGF.CGM.Error(CoroIdExpr->getBeginLoc(), "__builtin_coro_id shall not be used in a C++ coroutine"); else llvm_unreachable("EmitCoroutineBodyStatement called twice?"); return; } CurCoro.Data = std::make_unique(); CurCoro.Data->CoroId = CoroId; CurCoro.Data->CoroIdExpr = CoroIdExpr; } // Synthesize a pretty name for a suspend point. static SmallString<32> buildSuspendPrefixStr(CGCoroData &Coro, AwaitKind Kind) { unsigned No = 0; switch (Kind) { case AwaitKind::Init: case AwaitKind::Final: break; case AwaitKind::Normal: No = ++Coro.AwaitNum; break; case AwaitKind::Yield: No = ++Coro.YieldNum; break; } SmallString<32> Prefix(AwaitKindStr[static_cast(Kind)]); if (No > 1) { Twine(No).toVector(Prefix); } return Prefix; } // Check if function can throw based on prototype noexcept, also works for // destructors which are implicitly noexcept but can be marked noexcept(false). static bool FunctionCanThrow(const FunctionDecl *D) { const auto *Proto = D->getType()->getAs(); if (!Proto) { // Function proto is not found, we conservatively assume throwing. return true; } return !isNoexceptExceptionSpec(Proto->getExceptionSpecType()) || Proto->canThrow() != CT_Cannot; } static bool StmtCanThrow(const Stmt *S) { if (const auto *CE = dyn_cast(S)) { const auto *Callee = CE->getDirectCallee(); if (!Callee) // We don't have direct callee. Conservatively assume throwing. return true; if (FunctionCanThrow(Callee)) return true; // Fall through to visit the children. } if (const auto *TE = dyn_cast(S)) { // Special handling of CXXBindTemporaryExpr here as calling of Dtor of the // temporary is not part of `children()` as covered in the fall through. // We need to mark entire statement as throwing if the destructor of the // temporary throws. const auto *Dtor = TE->getTemporary()->getDestructor(); if (FunctionCanThrow(Dtor)) return true; // Fall through to visit the children. } for (const auto *child : S->children()) if (StmtCanThrow(child)) return true; return false; } // Emit suspend expression which roughly looks like: // // auto && x = CommonExpr(); // if (!x.await_ready()) { // llvm_coro_save(); // llvm_coro_await_suspend(&x, frame, wrapper) (*) (**) // llvm_coro_suspend(); (***) // } // x.await_resume(); // // where the result of the entire expression is the result of x.await_resume() // // (*) llvm_coro_await_suspend_{void, bool, handle} is lowered to // wrapper(&x, frame) when it's certain not to interfere with // coroutine transform. await_suspend expression is // asynchronous to the coroutine body and not all analyses // and transformations can handle it correctly at the moment. // // Wrapper function encapsulates x.await_suspend(...) call and looks like: // // auto __await_suspend_wrapper(auto& awaiter, void* frame) { // std::coroutine_handle<> handle(frame); // return awaiter.await_suspend(handle); // } // // (**) If x.await_suspend return type is bool, it allows to veto a suspend: // if (x.await_suspend(...)) // llvm_coro_suspend(); // // (***) llvm_coro_suspend() encodes three possible continuations as // a switch instruction: // // %where-to = call i8 @llvm.coro.suspend(...) // switch i8 %where-to, label %coro.ret [ ; jump to epilogue to suspend // i8 0, label %yield.ready ; go here when resumed // i8 1, label %yield.cleanup ; go here when destroyed // ] // // See llvm's docs/Coroutines.rst for more details. // namespace { struct LValueOrRValue { LValue LV; RValue RV; }; } static LValueOrRValue emitSuspendExpression(CodeGenFunction &CGF, CGCoroData &Coro, CoroutineSuspendExpr const &S, AwaitKind Kind, AggValueSlot aggSlot, bool ignoreResult, bool forLValue) { auto *E = S.getCommonExpr(); auto CommonBinder = CodeGenFunction::OpaqueValueMappingData::bind(CGF, S.getOpaqueValue(), E); auto UnbindCommonOnExit = llvm::make_scope_exit([&] { CommonBinder.unbind(CGF); }); auto Prefix = buildSuspendPrefixStr(Coro, Kind); BasicBlock *ReadyBlock = CGF.createBasicBlock(Prefix + Twine(".ready")); BasicBlock *SuspendBlock = CGF.createBasicBlock(Prefix + Twine(".suspend")); BasicBlock *CleanupBlock = CGF.createBasicBlock(Prefix + Twine(".cleanup")); // If expression is ready, no need to suspend. CGF.EmitBranchOnBoolExpr(S.getReadyExpr(), ReadyBlock, SuspendBlock, 0); // Otherwise, emit suspend logic. CGF.EmitBlock(SuspendBlock); auto &Builder = CGF.Builder; llvm::Function *CoroSave = CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_save); auto *NullPtr = llvm::ConstantPointerNull::get(CGF.CGM.Int8PtrTy); auto *SaveCall = Builder.CreateCall(CoroSave, {NullPtr}); auto SuspendWrapper = CodeGenFunction(CGF.CGM).generateAwaitSuspendWrapper( CGF.CurFn->getName(), Prefix, S); CGF.CurCoro.InSuspendBlock = true; assert(CGF.CurCoro.Data && CGF.CurCoro.Data->CoroBegin && "expected to be called in coroutine context"); SmallVector SuspendIntrinsicCallArgs; SuspendIntrinsicCallArgs.push_back( CGF.getOrCreateOpaqueLValueMapping(S.getOpaqueValue()).getPointer(CGF)); SuspendIntrinsicCallArgs.push_back(CGF.CurCoro.Data->CoroBegin); SuspendIntrinsicCallArgs.push_back(SuspendWrapper); const auto SuspendReturnType = S.getSuspendReturnType(); llvm::Intrinsic::ID AwaitSuspendIID; switch (SuspendReturnType) { case CoroutineSuspendExpr::SuspendReturnType::SuspendVoid: AwaitSuspendIID = llvm::Intrinsic::coro_await_suspend_void; break; case CoroutineSuspendExpr::SuspendReturnType::SuspendBool: AwaitSuspendIID = llvm::Intrinsic::coro_await_suspend_bool; break; case CoroutineSuspendExpr::SuspendReturnType::SuspendHandle: AwaitSuspendIID = llvm::Intrinsic::coro_await_suspend_handle; break; } llvm::Function *AwaitSuspendIntrinsic = CGF.CGM.getIntrinsic(AwaitSuspendIID); // SuspendHandle might throw since it also resumes the returned handle. const bool AwaitSuspendCanThrow = SuspendReturnType == CoroutineSuspendExpr::SuspendReturnType::SuspendHandle || StmtCanThrow(S.getSuspendExpr()); llvm::CallBase *SuspendRet = nullptr; // FIXME: add call attributes? if (AwaitSuspendCanThrow) SuspendRet = CGF.EmitCallOrInvoke(AwaitSuspendIntrinsic, SuspendIntrinsicCallArgs); else SuspendRet = CGF.EmitNounwindRuntimeCall(AwaitSuspendIntrinsic, SuspendIntrinsicCallArgs); assert(SuspendRet); CGF.CurCoro.InSuspendBlock = false; switch (SuspendReturnType) { case CoroutineSuspendExpr::SuspendReturnType::SuspendVoid: assert(SuspendRet->getType()->isVoidTy()); break; case CoroutineSuspendExpr::SuspendReturnType::SuspendBool: { assert(SuspendRet->getType()->isIntegerTy()); // Veto suspension if requested by bool returning await_suspend. BasicBlock *RealSuspendBlock = CGF.createBasicBlock(Prefix + Twine(".suspend.bool")); CGF.Builder.CreateCondBr(SuspendRet, RealSuspendBlock, ReadyBlock); CGF.EmitBlock(RealSuspendBlock); break; } case CoroutineSuspendExpr::SuspendReturnType::SuspendHandle: { assert(SuspendRet->getType()->isVoidTy()); break; } } // Emit the suspend point. const bool IsFinalSuspend = (Kind == AwaitKind::Final); llvm::Function *CoroSuspend = CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_suspend); auto *SuspendResult = Builder.CreateCall( CoroSuspend, {SaveCall, Builder.getInt1(IsFinalSuspend)}); // Create a switch capturing three possible continuations. auto *Switch = Builder.CreateSwitch(SuspendResult, Coro.SuspendBB, 2); Switch->addCase(Builder.getInt8(0), ReadyBlock); Switch->addCase(Builder.getInt8(1), CleanupBlock); // Emit cleanup for this suspend point. CGF.EmitBlock(CleanupBlock); CGF.EmitBranchThroughCleanup(Coro.CleanupJD); // Emit await_resume expression. CGF.EmitBlock(ReadyBlock); // Exception handling requires additional IR. If the 'await_resume' function // is marked as 'noexcept', we avoid generating this additional IR. CXXTryStmt *TryStmt = nullptr; if (Coro.ExceptionHandler && Kind == AwaitKind::Init && StmtCanThrow(S.getResumeExpr())) { Coro.ResumeEHVar = CGF.CreateTempAlloca(Builder.getInt1Ty(), Prefix + Twine("resume.eh")); Builder.CreateFlagStore(true, Coro.ResumeEHVar); auto Loc = S.getResumeExpr()->getExprLoc(); auto *Catch = new (CGF.getContext()) CXXCatchStmt(Loc, /*exDecl=*/nullptr, Coro.ExceptionHandler); auto *TryBody = CompoundStmt::Create(CGF.getContext(), S.getResumeExpr(), FPOptionsOverride(), Loc, Loc); TryStmt = CXXTryStmt::Create(CGF.getContext(), Loc, TryBody, Catch); CGF.EnterCXXTryStmt(*TryStmt); CGF.EmitStmt(TryBody); // We don't use EmitCXXTryStmt here. We need to store to ResumeEHVar that // doesn't exist in the body. Builder.CreateFlagStore(false, Coro.ResumeEHVar); CGF.ExitCXXTryStmt(*TryStmt); LValueOrRValue Res; // We are not supposed to obtain the value from init suspend await_resume(). Res.RV = RValue::getIgnored(); return Res; } LValueOrRValue Res; if (forLValue) Res.LV = CGF.EmitLValue(S.getResumeExpr()); else Res.RV = CGF.EmitAnyExpr(S.getResumeExpr(), aggSlot, ignoreResult); return Res; } RValue CodeGenFunction::EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot, bool ignoreResult) { return emitSuspendExpression(*this, *CurCoro.Data, E, CurCoro.Data->CurrentAwaitKind, aggSlot, ignoreResult, /*forLValue*/false).RV; } RValue CodeGenFunction::EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot, bool ignoreResult) { return emitSuspendExpression(*this, *CurCoro.Data, E, AwaitKind::Yield, aggSlot, ignoreResult, /*forLValue*/false).RV; } void CodeGenFunction::EmitCoreturnStmt(CoreturnStmt const &S) { ++CurCoro.Data->CoreturnCount; const Expr *RV = S.getOperand(); if (RV && RV->getType()->isVoidType() && !isa(RV)) { // Make sure to evaluate the non initlist expression of a co_return // with a void expression for side effects. RunCleanupsScope cleanupScope(*this); EmitIgnoredExpr(RV); } EmitStmt(S.getPromiseCall()); EmitBranchThroughCleanup(CurCoro.Data->FinalJD); } #ifndef NDEBUG static QualType getCoroutineSuspendExprReturnType(const ASTContext &Ctx, const CoroutineSuspendExpr *E) { const auto *RE = E->getResumeExpr(); // Is it possible for RE to be a CXXBindTemporaryExpr wrapping // a MemberCallExpr? assert(isa(RE) && "unexpected suspend expression type"); return cast(RE)->getCallReturnType(Ctx); } #endif llvm::Function * CodeGenFunction::generateAwaitSuspendWrapper(Twine const &CoroName, Twine const &SuspendPointName, CoroutineSuspendExpr const &S) { std::string FuncName = (CoroName + ".__await_suspend_wrapper__" + SuspendPointName).str(); ASTContext &C = getContext(); FunctionArgList args; ImplicitParamDecl AwaiterDecl(C, C.VoidPtrTy, ImplicitParamKind::Other); ImplicitParamDecl FrameDecl(C, C.VoidPtrTy, ImplicitParamKind::Other); QualType ReturnTy = S.getSuspendExpr()->getType(); args.push_back(&AwaiterDecl); args.push_back(&FrameDecl); const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create( LTy, llvm::GlobalValue::PrivateLinkage, FuncName, &CGM.getModule()); Fn->addParamAttr(0, llvm::Attribute::AttrKind::NonNull); Fn->addParamAttr(0, llvm::Attribute::AttrKind::NoUndef); Fn->addParamAttr(1, llvm::Attribute::AttrKind::NoUndef); Fn->setMustProgress(); Fn->addFnAttr(llvm::Attribute::AttrKind::AlwaysInline); StartFunction(GlobalDecl(), ReturnTy, Fn, FI, args); // FIXME: add TBAA metadata to the loads llvm::Value *AwaiterPtr = Builder.CreateLoad(GetAddrOfLocalVar(&AwaiterDecl)); auto AwaiterLValue = MakeNaturalAlignAddrLValue(AwaiterPtr, AwaiterDecl.getType()); CurAwaitSuspendWrapper.FramePtr = Builder.CreateLoad(GetAddrOfLocalVar(&FrameDecl)); auto AwaiterBinder = CodeGenFunction::OpaqueValueMappingData::bind( *this, S.getOpaqueValue(), AwaiterLValue); auto *SuspendRet = EmitScalarExpr(S.getSuspendExpr()); auto UnbindCommonOnExit = llvm::make_scope_exit([&] { AwaiterBinder.unbind(*this); }); if (SuspendRet != nullptr) { Fn->addRetAttr(llvm::Attribute::AttrKind::NoUndef); Builder.CreateStore(SuspendRet, ReturnValue); } CurAwaitSuspendWrapper.FramePtr = nullptr; FinishFunction(); return Fn; } LValue CodeGenFunction::EmitCoawaitLValue(const CoawaitExpr *E) { assert(getCoroutineSuspendExprReturnType(getContext(), E)->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return emitSuspendExpression(*this, *CurCoro.Data, *E, CurCoro.Data->CurrentAwaitKind, AggValueSlot::ignored(), /*ignoreResult*/false, /*forLValue*/true).LV; } LValue CodeGenFunction::EmitCoyieldLValue(const CoyieldExpr *E) { assert(getCoroutineSuspendExprReturnType(getContext(), E)->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return emitSuspendExpression(*this, *CurCoro.Data, *E, AwaitKind::Yield, AggValueSlot::ignored(), /*ignoreResult*/false, /*forLValue*/true).LV; } // Hunts for the parameter reference in the parameter copy/move declaration. namespace { struct GetParamRef : public StmtVisitor { public: DeclRefExpr *Expr = nullptr; GetParamRef() {} void VisitDeclRefExpr(DeclRefExpr *E) { assert(Expr == nullptr && "multilple declref in param move"); Expr = E; } void VisitStmt(Stmt *S) { for (auto *C : S->children()) { if (C) Visit(C); } } }; } // This class replaces references to parameters to their copies by changing // the addresses in CGF.LocalDeclMap and restoring back the original values in // its destructor. namespace { struct ParamReferenceReplacerRAII { CodeGenFunction::DeclMapTy SavedLocals; CodeGenFunction::DeclMapTy& LocalDeclMap; ParamReferenceReplacerRAII(CodeGenFunction::DeclMapTy &LocalDeclMap) : LocalDeclMap(LocalDeclMap) {} void addCopy(DeclStmt const *PM) { // Figure out what param it refers to. assert(PM->isSingleDecl()); VarDecl const*VD = static_cast(PM->getSingleDecl()); Expr const *InitExpr = VD->getInit(); GetParamRef Visitor; Visitor.Visit(const_cast(InitExpr)); assert(Visitor.Expr); DeclRefExpr *DREOrig = Visitor.Expr; auto *PD = DREOrig->getDecl(); auto it = LocalDeclMap.find(PD); assert(it != LocalDeclMap.end() && "parameter is not found"); SavedLocals.insert({ PD, it->second }); auto copyIt = LocalDeclMap.find(VD); assert(copyIt != LocalDeclMap.end() && "parameter copy is not found"); it->second = copyIt->getSecond(); } ~ParamReferenceReplacerRAII() { for (auto&& SavedLocal : SavedLocals) { LocalDeclMap.insert({SavedLocal.first, SavedLocal.second}); } } }; } // For WinEH exception representation backend needs to know what funclet coro.end // belongs to. That information is passed in a funclet bundle. static SmallVector getBundlesForCoroEnd(CodeGenFunction &CGF) { SmallVector BundleList; if (llvm::Instruction *EHPad = CGF.CurrentFuncletPad) BundleList.emplace_back("funclet", EHPad); return BundleList; } namespace { // We will insert coro.end to cut any of the destructors for objects that // do not need to be destroyed once the coroutine is resumed. // See llvm/docs/Coroutines.rst for more details about coro.end. struct CallCoroEnd final : public EHScopeStack::Cleanup { void Emit(CodeGenFunction &CGF, Flags flags) override { auto &CGM = CGF.CGM; auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy); llvm::Function *CoroEndFn = CGM.getIntrinsic(llvm::Intrinsic::coro_end); // See if we have a funclet bundle to associate coro.end with. (WinEH) auto Bundles = getBundlesForCoroEnd(CGF); auto *CoroEnd = CGF.Builder.CreateCall(CoroEndFn, {NullPtr, CGF.Builder.getTrue(), llvm::ConstantTokenNone::get(CoroEndFn->getContext())}, Bundles); if (Bundles.empty()) { // Otherwise, (landingpad model), create a conditional branch that leads // either to a cleanup block or a block with EH resume instruction. auto *ResumeBB = CGF.getEHResumeBlock(/*isCleanup=*/true); auto *CleanupContBB = CGF.createBasicBlock("cleanup.cont"); CGF.Builder.CreateCondBr(CoroEnd, ResumeBB, CleanupContBB); CGF.EmitBlock(CleanupContBB); } } }; } namespace { // Make sure to call coro.delete on scope exit. struct CallCoroDelete final : public EHScopeStack::Cleanup { Stmt *Deallocate; // Emit "if (coro.free(CoroId, CoroBegin)) Deallocate;" // Note: That deallocation will be emitted twice: once for a normal exit and // once for exceptional exit. This usage is safe because Deallocate does not // contain any declarations. The SubStmtBuilder::makeNewAndDeleteExpr() // builds a single call to a deallocation function which is safe to emit // multiple times. void Emit(CodeGenFunction &CGF, Flags) override { // Remember the current point, as we are going to emit deallocation code // first to get to coro.free instruction that is an argument to a delete // call. BasicBlock *SaveInsertBlock = CGF.Builder.GetInsertBlock(); auto *FreeBB = CGF.createBasicBlock("coro.free"); CGF.EmitBlock(FreeBB); CGF.EmitStmt(Deallocate); auto *AfterFreeBB = CGF.createBasicBlock("after.coro.free"); CGF.EmitBlock(AfterFreeBB); // We should have captured coro.free from the emission of deallocate. auto *CoroFree = CGF.CurCoro.Data->LastCoroFree; if (!CoroFree) { CGF.CGM.Error(Deallocate->getBeginLoc(), "Deallocation expressoin does not refer to coro.free"); return; } // Get back to the block we were originally and move coro.free there. auto *InsertPt = SaveInsertBlock->getTerminator(); CoroFree->moveBefore(InsertPt); CGF.Builder.SetInsertPoint(InsertPt); // Add if (auto *mem = coro.free) Deallocate; auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy); auto *Cond = CGF.Builder.CreateICmpNE(CoroFree, NullPtr); CGF.Builder.CreateCondBr(Cond, FreeBB, AfterFreeBB); // No longer need old terminator. InsertPt->eraseFromParent(); CGF.Builder.SetInsertPoint(AfterFreeBB); } explicit CallCoroDelete(Stmt *DeallocStmt) : Deallocate(DeallocStmt) {} }; } namespace { struct GetReturnObjectManager { CodeGenFunction &CGF; CGBuilderTy &Builder; const CoroutineBodyStmt &S; // When true, performs RVO for the return object. bool DirectEmit = false; Address GroActiveFlag; CodeGenFunction::AutoVarEmission GroEmission; GetReturnObjectManager(CodeGenFunction &CGF, const CoroutineBodyStmt &S) : CGF(CGF), Builder(CGF.Builder), S(S), GroActiveFlag(Address::invalid()), GroEmission(CodeGenFunction::AutoVarEmission::invalid()) { // The call to get_­return_­object is sequenced before the call to // initial_­suspend and is invoked at most once, but there are caveats // regarding on whether the prvalue result object may be initialized // directly/eager or delayed, depending on the types involved. // // More info at https://github.com/cplusplus/papers/issues/1414 // // The general cases: // 1. Same type of get_return_object and coroutine return type (direct // emission): // - Constructed in the return slot. // 2. Different types (delayed emission): // - Constructed temporary object prior to initial suspend initialized with // a call to get_return_object() // - When coroutine needs to to return to the caller and needs to construct // return value for the coroutine it is initialized with expiring value of // the temporary obtained above. // // Direct emission for void returning coroutines or GROs. DirectEmit = [&]() { auto *RVI = S.getReturnValueInit(); assert(RVI && "expected RVI"); auto GroType = RVI->getType(); return CGF.getContext().hasSameType(GroType, CGF.FnRetTy); }(); } // The gro variable has to outlive coroutine frame and coroutine promise, but, // it can only be initialized after coroutine promise was created, thus, we // split its emission in two parts. EmitGroAlloca emits an alloca and sets up // cleanups. Later when coroutine promise is available we initialize the gro // and sets the flag that the cleanup is now active. void EmitGroAlloca() { if (DirectEmit) return; auto *GroDeclStmt = dyn_cast_or_null(S.getResultDecl()); if (!GroDeclStmt) { // If get_return_object returns void, no need to do an alloca. return; } auto *GroVarDecl = cast(GroDeclStmt->getSingleDecl()); // Set GRO flag that it is not initialized yet GroActiveFlag = CGF.CreateTempAlloca(Builder.getInt1Ty(), CharUnits::One(), "gro.active"); Builder.CreateStore(Builder.getFalse(), GroActiveFlag); GroEmission = CGF.EmitAutoVarAlloca(*GroVarDecl); auto *GroAlloca = dyn_cast_or_null( GroEmission.getOriginalAllocatedAddress().getPointer()); assert(GroAlloca && "expected alloca to be emitted"); GroAlloca->setMetadata(llvm::LLVMContext::MD_coro_outside_frame, llvm::MDNode::get(CGF.CGM.getLLVMContext(), {})); // Remember the top of EHStack before emitting the cleanup. auto old_top = CGF.EHStack.stable_begin(); CGF.EmitAutoVarCleanups(GroEmission); auto top = CGF.EHStack.stable_begin(); // Make the cleanup conditional on gro.active for (auto b = CGF.EHStack.find(top), e = CGF.EHStack.find(old_top); b != e; b++) { if (auto *Cleanup = dyn_cast(&*b)) { assert(!Cleanup->hasActiveFlag() && "cleanup already has active flag?"); Cleanup->setActiveFlag(GroActiveFlag); Cleanup->setTestFlagInEHCleanup(); Cleanup->setTestFlagInNormalCleanup(); } } } void EmitGroInit() { if (DirectEmit) { // ReturnValue should be valid as long as the coroutine's return type // is not void. The assertion could help us to reduce the check later. assert(CGF.ReturnValue.isValid() == (bool)S.getReturnStmt()); // Now we have the promise, initialize the GRO. // We need to emit `get_return_object` first. According to: // [dcl.fct.def.coroutine]p7 // The call to get_return_­object is sequenced before the call to // initial_suspend and is invoked at most once. // // So we couldn't emit return value when we emit return statment, // otherwise the call to get_return_object wouldn't be in front // of initial_suspend. if (CGF.ReturnValue.isValid()) { CGF.EmitAnyExprToMem(S.getReturnValue(), CGF.ReturnValue, S.getReturnValue()->getType().getQualifiers(), /*IsInit*/ true); } return; } if (!GroActiveFlag.isValid()) { // No Gro variable was allocated. Simply emit the call to // get_return_object. CGF.EmitStmt(S.getResultDecl()); return; } CGF.EmitAutoVarInit(GroEmission); Builder.CreateStore(Builder.getTrue(), GroActiveFlag); } }; } // namespace static void emitBodyAndFallthrough(CodeGenFunction &CGF, const CoroutineBodyStmt &S, Stmt *Body) { CGF.EmitStmt(Body); const bool CanFallthrough = CGF.Builder.GetInsertBlock(); if (CanFallthrough) if (Stmt *OnFallthrough = S.getFallthroughHandler()) CGF.EmitStmt(OnFallthrough); } void CodeGenFunction::EmitCoroutineBody(const CoroutineBodyStmt &S) { auto *NullPtr = llvm::ConstantPointerNull::get(Builder.getPtrTy()); auto &TI = CGM.getContext().getTargetInfo(); unsigned NewAlign = TI.getNewAlign() / TI.getCharWidth(); auto *EntryBB = Builder.GetInsertBlock(); auto *AllocBB = createBasicBlock("coro.alloc"); auto *InitBB = createBasicBlock("coro.init"); auto *FinalBB = createBasicBlock("coro.final"); auto *RetBB = createBasicBlock("coro.ret"); auto *CoroId = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_id), {Builder.getInt32(NewAlign), NullPtr, NullPtr, NullPtr}); createCoroData(*this, CurCoro, CoroId); CurCoro.Data->SuspendBB = RetBB; assert(ShouldEmitLifetimeMarkers && "Must emit lifetime intrinsics for coroutines"); // Backend is allowed to elide memory allocations, to help it, emit // auto mem = coro.alloc() ? 0 : ... allocation code ...; auto *CoroAlloc = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_alloc), {CoroId}); Builder.CreateCondBr(CoroAlloc, AllocBB, InitBB); EmitBlock(AllocBB); auto *AllocateCall = EmitScalarExpr(S.getAllocate()); auto *AllocOrInvokeContBB = Builder.GetInsertBlock(); // Handle allocation failure if 'ReturnStmtOnAllocFailure' was provided. if (auto *RetOnAllocFailure = S.getReturnStmtOnAllocFailure()) { auto *RetOnFailureBB = createBasicBlock("coro.ret.on.failure"); // See if allocation was successful. auto *NullPtr = llvm::ConstantPointerNull::get(Int8PtrTy); auto *Cond = Builder.CreateICmpNE(AllocateCall, NullPtr); // Expect the allocation to be successful. emitCondLikelihoodViaExpectIntrinsic(Cond, Stmt::LH_Likely); Builder.CreateCondBr(Cond, InitBB, RetOnFailureBB); // If not, return OnAllocFailure object. EmitBlock(RetOnFailureBB); EmitStmt(RetOnAllocFailure); } else { Builder.CreateBr(InitBB); } EmitBlock(InitBB); // Pass the result of the allocation to coro.begin. auto *Phi = Builder.CreatePHI(VoidPtrTy, 2); Phi->addIncoming(NullPtr, EntryBB); Phi->addIncoming(AllocateCall, AllocOrInvokeContBB); auto *CoroBegin = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::coro_begin), {CoroId, Phi}); CurCoro.Data->CoroBegin = CoroBegin; GetReturnObjectManager GroManager(*this, S); GroManager.EmitGroAlloca(); CurCoro.Data->CleanupJD = getJumpDestInCurrentScope(RetBB); { CGDebugInfo *DI = getDebugInfo(); ParamReferenceReplacerRAII ParamReplacer(LocalDeclMap); CodeGenFunction::RunCleanupsScope ResumeScope(*this); EHStack.pushCleanup(NormalAndEHCleanup, S.getDeallocate()); // Create mapping between parameters and copy-params for coroutine function. llvm::ArrayRef ParamMoves = S.getParamMoves(); assert( (ParamMoves.size() == 0 || (ParamMoves.size() == FnArgs.size())) && "ParamMoves and FnArgs should be the same size for coroutine function"); if (ParamMoves.size() == FnArgs.size() && DI) for (const auto Pair : llvm::zip(FnArgs, ParamMoves)) DI->getCoroutineParameterMappings().insert( {std::get<0>(Pair), std::get<1>(Pair)}); // Create parameter copies. We do it before creating a promise, since an // evolution of coroutine TS may allow promise constructor to observe // parameter copies. for (auto *PM : S.getParamMoves()) { EmitStmt(PM); ParamReplacer.addCopy(cast(PM)); // TODO: if(CoroParam(...)) need to surround ctor and dtor // for the copy, so that llvm can elide it if the copy is // not needed. } EmitStmt(S.getPromiseDeclStmt()); Address PromiseAddr = GetAddrOfLocalVar(S.getPromiseDecl()); auto *PromiseAddrVoidPtr = new llvm::BitCastInst( PromiseAddr.emitRawPointer(*this), VoidPtrTy, "", CoroId); // Update CoroId to refer to the promise. We could not do it earlier because // promise local variable was not emitted yet. CoroId->setArgOperand(1, PromiseAddrVoidPtr); // Now we have the promise, initialize the GRO GroManager.EmitGroInit(); EHStack.pushCleanup(EHCleanup); CurCoro.Data->CurrentAwaitKind = AwaitKind::Init; CurCoro.Data->ExceptionHandler = S.getExceptionHandler(); EmitStmt(S.getInitSuspendStmt()); CurCoro.Data->FinalJD = getJumpDestInCurrentScope(FinalBB); CurCoro.Data->CurrentAwaitKind = AwaitKind::Normal; if (CurCoro.Data->ExceptionHandler) { // If we generated IR to record whether an exception was thrown from // 'await_resume', then use that IR to determine whether the coroutine // body should be skipped. // If we didn't generate the IR (perhaps because 'await_resume' was marked // as 'noexcept'), then we skip this check. BasicBlock *ContBB = nullptr; if (CurCoro.Data->ResumeEHVar) { BasicBlock *BodyBB = createBasicBlock("coro.resumed.body"); ContBB = createBasicBlock("coro.resumed.cont"); Value *SkipBody = Builder.CreateFlagLoad(CurCoro.Data->ResumeEHVar, "coro.resumed.eh"); Builder.CreateCondBr(SkipBody, ContBB, BodyBB); EmitBlock(BodyBB); } auto Loc = S.getBeginLoc(); CXXCatchStmt Catch(Loc, /*exDecl=*/nullptr, CurCoro.Data->ExceptionHandler); auto *TryStmt = CXXTryStmt::Create(getContext(), Loc, S.getBody(), &Catch); EnterCXXTryStmt(*TryStmt); emitBodyAndFallthrough(*this, S, TryStmt->getTryBlock()); ExitCXXTryStmt(*TryStmt); if (ContBB) EmitBlock(ContBB); } else { emitBodyAndFallthrough(*this, S, S.getBody()); } // See if we need to generate final suspend. const bool CanFallthrough = Builder.GetInsertBlock(); const bool HasCoreturns = CurCoro.Data->CoreturnCount > 0; if (CanFallthrough || HasCoreturns) { EmitBlock(FinalBB); CurCoro.Data->CurrentAwaitKind = AwaitKind::Final; EmitStmt(S.getFinalSuspendStmt()); } else { // We don't need FinalBB. Emit it to make sure the block is deleted. EmitBlock(FinalBB, /*IsFinished=*/true); } } EmitBlock(RetBB); // Emit coro.end before getReturnStmt (and parameter destructors), since // resume and destroy parts of the coroutine should not include them. llvm::Function *CoroEnd = CGM.getIntrinsic(llvm::Intrinsic::coro_end); Builder.CreateCall(CoroEnd, {NullPtr, Builder.getFalse(), llvm::ConstantTokenNone::get(CoroEnd->getContext())}); if (Stmt *Ret = S.getReturnStmt()) { // Since we already emitted the return value above, so we shouldn't // emit it again here. if (GroManager.DirectEmit) cast(Ret)->setRetValue(nullptr); EmitStmt(Ret); } // LLVM require the frontend to mark the coroutine. CurFn->setPresplitCoroutine(); if (CXXRecordDecl *RD = FnRetTy->getAsCXXRecordDecl(); RD && RD->hasAttr()) CurFn->setCoroDestroyOnlyWhenComplete(); } // Emit coroutine intrinsic and patch up arguments of the token type. RValue CodeGenFunction::EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID) { SmallVector Args; switch (IID) { default: break; // The coro.frame builtin is replaced with an SSA value of the coro.begin // intrinsic. case llvm::Intrinsic::coro_frame: { if (CurCoro.Data && CurCoro.Data->CoroBegin) { return RValue::get(CurCoro.Data->CoroBegin); } if (CurAwaitSuspendWrapper.FramePtr) { return RValue::get(CurAwaitSuspendWrapper.FramePtr); } CGM.Error(E->getBeginLoc(), "this builtin expect that __builtin_coro_begin " "has been used earlier in this function"); auto *NullPtr = llvm::ConstantPointerNull::get(Builder.getPtrTy()); return RValue::get(NullPtr); } case llvm::Intrinsic::coro_size: { auto &Context = getContext(); CanQualType SizeTy = Context.getSizeType(); llvm::IntegerType *T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::coro_size, T); return RValue::get(Builder.CreateCall(F)); } case llvm::Intrinsic::coro_align: { auto &Context = getContext(); CanQualType SizeTy = Context.getSizeType(); llvm::IntegerType *T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::coro_align, T); return RValue::get(Builder.CreateCall(F)); } // The following three intrinsics take a token parameter referring to a token // returned by earlier call to @llvm.coro.id. Since we cannot represent it in // builtins, we patch it up here. case llvm::Intrinsic::coro_alloc: case llvm::Intrinsic::coro_begin: case llvm::Intrinsic::coro_free: { if (CurCoro.Data && CurCoro.Data->CoroId) { Args.push_back(CurCoro.Data->CoroId); break; } CGM.Error(E->getBeginLoc(), "this builtin expect that __builtin_coro_id has" " been used earlier in this function"); // Fallthrough to the next case to add TokenNone as the first argument. [[fallthrough]]; } // @llvm.coro.suspend takes a token parameter. Add token 'none' as the first // argument. case llvm::Intrinsic::coro_suspend: Args.push_back(llvm::ConstantTokenNone::get(getLLVMContext())); break; } for (const Expr *Arg : E->arguments()) Args.push_back(EmitScalarExpr(Arg)); // @llvm.coro.end takes a token parameter. Add token 'none' as the last // argument. if (IID == llvm::Intrinsic::coro_end) Args.push_back(llvm::ConstantTokenNone::get(getLLVMContext())); llvm::Function *F = CGM.getIntrinsic(IID); llvm::CallInst *Call = Builder.CreateCall(F, Args); // Note: The following code is to enable to emit coro.id and coro.begin by // hand to experiment with coroutines in C. // If we see @llvm.coro.id remember it in the CoroData. We will update // coro.alloc, coro.begin and coro.free intrinsics to refer to it. if (IID == llvm::Intrinsic::coro_id) { createCoroData(*this, CurCoro, Call, E); } else if (IID == llvm::Intrinsic::coro_begin) { if (CurCoro.Data) CurCoro.Data->CoroBegin = Call; } else if (IID == llvm::Intrinsic::coro_free) { // Remember the last coro_free as we need it to build the conditional // deletion of the coroutine frame. if (CurCoro.Data) CurCoro.Data->LastCoroFree = Call; } return RValue::get(Call); }