//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a SAT solver implementation that can be used by dataflow // analyses. // //===----------------------------------------------------------------------===// #include #include #include "clang/Analysis/FlowSensitive/CNFFormula.h" #include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" namespace clang { namespace dataflow { namespace { class WatchedLiteralsSolverImpl { /// Stores the variable identifier and Atom for atomic booleans in the /// formula. llvm::DenseMap Atomics; /// A boolean formula in conjunctive normal form that the solver will attempt /// to prove satisfiable. The formula will be modified in the process. CNFFormula CNF; /// Maps literals (indices of the vector) to clause identifiers (elements of /// the vector) that watch the respective literals. /// /// For a given clause, its watched literal is always its first literal in /// `Clauses`. This invariant is maintained when watched literals change. std::vector WatchedHead; /// Maps clause identifiers (elements of the vector) to identifiers of other /// clauses that watch the same literals, forming a set of linked lists. /// /// The element at index 0 stands for the identifier of the clause that /// follows the null clause. It is set to 0 and isn't used. Identifiers of /// clauses in the formula start from the element at index 1. std::vector NextWatched; /// The search for a satisfying assignment of the variables in `Formula` will /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` /// (inclusive). The current level is stored in `Level`. At each level the /// solver will assign a value to an unassigned variable. If this leads to a /// consistent partial assignment, `Level` will be incremented. Otherwise, if /// it results in a conflict, the solver will backtrack by decrementing /// `Level` until it reaches the most recent level where a decision was made. size_t Level = 0; /// Maps levels (indices of the vector) to variables (elements of the vector) /// that are assigned values at the respective levels. /// /// The element at index 0 isn't used. Variables start from the element at /// index 1. std::vector LevelVars; /// State of the solver at a particular level. enum class State : uint8_t { /// Indicates that the solver made a decision. Decision = 0, /// Indicates that the solver made a forced move. Forced = 1, }; /// State of the solver at a particular level. It keeps track of previous /// decisions that the solver can refer to when backtracking. /// /// The element at index 0 isn't used. States start from the element at index /// 1. std::vector LevelStates; enum class Assignment : int8_t { Unassigned = -1, AssignedFalse = 0, AssignedTrue = 1 }; /// Maps variables (indices of the vector) to their assignments (elements of /// the vector). /// /// The element at index 0 isn't used. Variable assignments start from the /// element at index 1. std::vector VarAssignments; /// A set of unassigned variables that appear in watched literals in /// `Formula`. The vector is guaranteed to contain unique elements. std::vector ActiveVars; public: explicit WatchedLiteralsSolverImpl( const llvm::ArrayRef &Vals) // `Atomics` needs to be initialized first so that we can use it as an // output argument of `buildCNF()`. : Atomics(), CNF(buildCNF(Vals, Atomics)), LevelVars(CNF.largestVar() + 1), LevelStates(CNF.largestVar() + 1) { assert(!Vals.empty()); // Skip initialization if the formula is known to be contradictory. if (CNF.knownContradictory()) return; // Initialize `NextWatched` and `WatchedHead`. NextWatched.push_back(0); const size_t NumLiterals = 2 * CNF.largestVar() + 1; WatchedHead.resize(NumLiterals + 1, 0); for (ClauseID C = 1; C <= CNF.numClauses(); ++C) { // Designate the first literal as the "watched" literal of the clause. Literal FirstLit = CNF.clauseLiterals(C).front(); NextWatched.push_back(WatchedHead[FirstLit]); WatchedHead[FirstLit] = C; } // Initialize the state at the root level to a decision so that in // `reverseForcedMoves` we don't have to check that `Level >= 0` on each // iteration. LevelStates[0] = State::Decision; // Initialize all variables as unassigned. VarAssignments.resize(CNF.largestVar() + 1, Assignment::Unassigned); // Initialize the active variables. for (Variable Var = CNF.largestVar(); Var != NullVar; --Var) { if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } } // Returns the `Result` and the number of iterations "remaining" from // `MaxIterations` (that is, `MaxIterations` - iterations in this call). std::pair solve(std::int64_t MaxIterations) && { if (CNF.knownContradictory()) { // Short-cut the solving process. We already found out at CNF // construction time that the formula is unsatisfiable. return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations); } size_t I = 0; while (I < ActiveVars.size()) { if (MaxIterations == 0) return std::make_pair(Solver::Result::TimedOut(), 0); --MaxIterations; // Assert that the following invariants hold: // 1. All active variables are unassigned. // 2. All active variables form watched literals. // 3. Unassigned variables that form watched literals are active. // FIXME: Consider replacing these with test cases that fail if the any // of the invariants is broken. That might not be easy due to the // transformations performed by `buildCNF`. assert(activeVarsAreUnassigned()); assert(activeVarsFormWatchedLiterals()); assert(unassignedVarsFormingWatchedLiteralsAreActive()); const Variable ActiveVar = ActiveVars[I]; // Look for unit clauses that contain the active variable. const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar)); const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar)); if (unitPosLit && unitNegLit) { // We found a conflict! // Backtrack and rewind the `Level` until the most recent non-forced // assignment. reverseForcedMoves(); // If the root level is reached, then all possible assignments lead to // a conflict. if (Level == 0) return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations); // Otherwise, take the other branch at the most recent level where a // decision was made. LevelStates[Level] = State::Forced; const Variable Var = LevelVars[Level]; VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue ? Assignment::AssignedFalse : Assignment::AssignedTrue; updateWatchedLiterals(); } else if (unitPosLit || unitNegLit) { // We found a unit clause! The value of its unassigned variable is // forced. ++Level; LevelVars[Level] = ActiveVar; LevelStates[Level] = State::Forced; VarAssignments[ActiveVar] = unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse; // Remove the variable that was just assigned from the set of active // variables. if (I + 1 < ActiveVars.size()) { // Replace the variable that was just assigned with the last active // variable for efficient removal. ActiveVars[I] = ActiveVars.back(); } else { // This was the last active variable. Repeat the process from the // beginning. I = 0; } ActiveVars.pop_back(); updateWatchedLiterals(); } else if (I + 1 == ActiveVars.size()) { // There are no remaining unit clauses in the formula! Make a decision // for one of the active variables at the current level. ++Level; LevelVars[Level] = ActiveVar; LevelStates[Level] = State::Decision; VarAssignments[ActiveVar] = decideAssignment(ActiveVar); // Remove the variable that was just assigned from the set of active // variables. ActiveVars.pop_back(); updateWatchedLiterals(); // This was the last active variable. Repeat the process from the // beginning. I = 0; } else { ++I; } } return std::make_pair(Solver::Result::Satisfiable(buildSolution()), MaxIterations); } private: /// Returns a satisfying truth assignment to the atoms in the boolean formula. llvm::DenseMap buildSolution() { llvm::DenseMap Solution; for (auto &Atomic : Atomics) { // A variable may have a definite true/false assignment, or it may be // unassigned indicating its truth value does not affect the result of // the formula. Unassigned variables are assigned to true as a default. Solution[Atomic.second] = VarAssignments[Atomic.first] == Assignment::AssignedFalse ? Solver::Result::Assignment::AssignedFalse : Solver::Result::Assignment::AssignedTrue; } return Solution; } /// Reverses forced moves until the most recent level where a decision was /// made on the assignment of a variable. void reverseForcedMoves() { for (; LevelStates[Level] == State::Forced; --Level) { const Variable Var = LevelVars[Level]; VarAssignments[Var] = Assignment::Unassigned; // If the variable that we pass through is watched then we add it to the // active variables. if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } } /// Updates watched literals that are affected by a variable assignment. void updateWatchedLiterals() { const Variable Var = LevelVars[Level]; // Update the watched literals of clauses that currently watch the literal // that falsifies `Var`. const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue ? negLit(Var) : posLit(Var); ClauseID FalseLitWatcher = WatchedHead[FalseLit]; WatchedHead[FalseLit] = NullClause; while (FalseLitWatcher != NullClause) { const ClauseID NextFalseLitWatcher = NextWatched[FalseLitWatcher]; // Pick the first non-false literal as the new watched literal. const CNFFormula::Iterator FalseLitWatcherStart = CNF.startOfClause(FalseLitWatcher); CNFFormula::Iterator NewWatchedLitIter = FalseLitWatcherStart.next(); while (isCurrentlyFalse(*NewWatchedLitIter)) ++NewWatchedLitIter; const Literal NewWatchedLit = *NewWatchedLitIter; const Variable NewWatchedLitVar = var(NewWatchedLit); // Swap the old watched literal for the new one in `FalseLitWatcher` to // maintain the invariant that the watched literal is at the beginning of // the clause. *NewWatchedLitIter = FalseLit; *FalseLitWatcherStart = NewWatchedLit; // If the new watched literal isn't watched by any other clause and its // variable isn't assigned we need to add it to the active variables. if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) && VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) ActiveVars.push_back(NewWatchedLitVar); NextWatched[FalseLitWatcher] = WatchedHead[NewWatchedLit]; WatchedHead[NewWatchedLit] = FalseLitWatcher; // Go to the next clause that watches `FalseLit`. FalseLitWatcher = NextFalseLitWatcher; } } /// Returns true if and only if one of the clauses that watch `Lit` is a unit /// clause. bool watchedByUnitClause(Literal Lit) const { for (ClauseID LitWatcher = WatchedHead[Lit]; LitWatcher != NullClause; LitWatcher = NextWatched[LitWatcher]) { llvm::ArrayRef Clause = CNF.clauseLiterals(LitWatcher); // Assert the invariant that the watched literal is always the first one // in the clause. // FIXME: Consider replacing this with a test case that fails if the // invariant is broken by `updateWatchedLiterals`. That might not be easy // due to the transformations performed by `buildCNF`. assert(Clause.front() == Lit); if (isUnit(Clause)) return true; } return false; } /// Returns true if and only if `Clause` is a unit clause. bool isUnit(llvm::ArrayRef Clause) const { return llvm::all_of(Clause.drop_front(), [this](Literal L) { return isCurrentlyFalse(L); }); } /// Returns true if and only if `Lit` evaluates to `false` in the current /// partial assignment. bool isCurrentlyFalse(Literal Lit) const { return static_cast(VarAssignments[var(Lit)]) == static_cast(Lit & 1); } /// Returns true if and only if `Lit` is watched by a clause in `Formula`. bool isWatched(Literal Lit) const { return WatchedHead[Lit] != NullClause; } /// Returns an assignment for an unassigned variable. Assignment decideAssignment(Variable Var) const { return !isWatched(posLit(Var)) || isWatched(negLit(Var)) ? Assignment::AssignedFalse : Assignment::AssignedTrue; } /// Returns a set of all watched literals. llvm::DenseSet watchedLiterals() const { llvm::DenseSet WatchedLiterals; for (Literal Lit = 2; Lit < WatchedHead.size(); Lit++) { if (WatchedHead[Lit] == NullClause) continue; WatchedLiterals.insert(Lit); } return WatchedLiterals; } /// Returns true if and only if all active variables are unassigned. bool activeVarsAreUnassigned() const { return llvm::all_of(ActiveVars, [this](Variable Var) { return VarAssignments[Var] == Assignment::Unassigned; }); } /// Returns true if and only if all active variables form watched literals. bool activeVarsFormWatchedLiterals() const { const llvm::DenseSet WatchedLiterals = watchedLiterals(); return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) { return WatchedLiterals.contains(posLit(Var)) || WatchedLiterals.contains(negLit(Var)); }); } /// Returns true if and only if all unassigned variables that are forming /// watched literals are active. bool unassignedVarsFormingWatchedLiteralsAreActive() const { const llvm::DenseSet ActiveVarsSet(ActiveVars.begin(), ActiveVars.end()); for (Literal Lit : watchedLiterals()) { const Variable Var = var(Lit); if (VarAssignments[Var] != Assignment::Unassigned) continue; if (ActiveVarsSet.contains(Var)) continue; return false; } return true; } }; } // namespace Solver::Result WatchedLiteralsSolver::solve(llvm::ArrayRef Vals) { if (Vals.empty()) return Solver::Result::Satisfiable({{}}); auto [Res, Iterations] = WatchedLiteralsSolverImpl(Vals).solve(MaxIterations); MaxIterations = Iterations; return Res; } } // namespace dataflow } // namespace clang