//===--- ObjCMT.cpp - ObjC Migrate Tool -----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Transforms.h" #include "clang/Analysis/RetainSummaryManager.h" #include "clang/ARCMigrate/ARCMT.h" #include "clang/ARCMigrate/ARCMTActions.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/NSAPI.h" #include "clang/AST/ParentMap.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/Basic/FileManager.h" #include "clang/Edit/Commit.h" #include "clang/Edit/EditedSource.h" #include "clang/Edit/EditsReceiver.h" #include "clang/Edit/Rewriters.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/MultiplexConsumer.h" #include "clang/Lex/PPConditionalDirectiveRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Rewrite/Core/Rewriter.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Path.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/YAMLParser.h" using namespace clang; using namespace arcmt; using namespace ento; namespace { class ObjCMigrateASTConsumer : public ASTConsumer { enum CF_BRIDGING_KIND { CF_BRIDGING_NONE, CF_BRIDGING_ENABLE, CF_BRIDGING_MAY_INCLUDE }; void migrateDecl(Decl *D); void migrateObjCContainerDecl(ASTContext &Ctx, ObjCContainerDecl *D); void migrateProtocolConformance(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl); void CacheObjCNSIntegerTypedefed(const TypedefDecl *TypedefDcl); bool migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl); void migrateAllMethodInstaceType(ASTContext &Ctx, ObjCContainerDecl *CDecl); void migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM); bool migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *OM); void migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM); void migratePropertyNsReturnsInnerPointer(ASTContext &Ctx, ObjCPropertyDecl *P); void migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM, ObjCInstanceTypeFamily OIT_Family = OIT_None); void migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl); void AddCFAnnotations(ASTContext &Ctx, const RetainSummary *RS, const FunctionDecl *FuncDecl, bool ResultAnnotated); void AddCFAnnotations(ASTContext &Ctx, const RetainSummary *RS, const ObjCMethodDecl *MethodDecl, bool ResultAnnotated); void AnnotateImplicitBridging(ASTContext &Ctx); CF_BRIDGING_KIND migrateAddFunctionAnnotation(ASTContext &Ctx, const FunctionDecl *FuncDecl); void migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl); void migrateAddMethodAnnotation(ASTContext &Ctx, const ObjCMethodDecl *MethodDecl); void inferDesignatedInitializers(ASTContext &Ctx, const ObjCImplementationDecl *ImplD); bool InsertFoundation(ASTContext &Ctx, SourceLocation Loc); std::unique_ptr Summaries; public: std::string MigrateDir; unsigned ASTMigrateActions; FileID FileId; const TypedefDecl *NSIntegerTypedefed; const TypedefDecl *NSUIntegerTypedefed; std::unique_ptr NSAPIObj; std::unique_ptr Editor; FileRemapper &Remapper; FileManager &FileMgr; const PPConditionalDirectiveRecord *PPRec; Preprocessor &PP; bool IsOutputFile; bool FoundationIncluded; llvm::SmallPtrSet ObjCProtocolDecls; llvm::SmallVector CFFunctionIBCandidates; llvm::StringSet<> AllowListFilenames; RetainSummaryManager &getSummaryManager(ASTContext &Ctx) { if (!Summaries) Summaries.reset(new RetainSummaryManager(Ctx, /*TrackNSCFObjects=*/true, /*trackOSObjects=*/false)); return *Summaries; } ObjCMigrateASTConsumer(StringRef migrateDir, unsigned astMigrateActions, FileRemapper &remapper, FileManager &fileMgr, const PPConditionalDirectiveRecord *PPRec, Preprocessor &PP, bool isOutputFile, ArrayRef AllowList) : MigrateDir(migrateDir), ASTMigrateActions(astMigrateActions), NSIntegerTypedefed(nullptr), NSUIntegerTypedefed(nullptr), Remapper(remapper), FileMgr(fileMgr), PPRec(PPRec), PP(PP), IsOutputFile(isOutputFile), FoundationIncluded(false) { AllowListFilenames.insert(AllowList.begin(), AllowList.end()); } protected: void Initialize(ASTContext &Context) override { NSAPIObj.reset(new NSAPI(Context)); Editor.reset(new edit::EditedSource(Context.getSourceManager(), Context.getLangOpts(), PPRec)); } bool HandleTopLevelDecl(DeclGroupRef DG) override { for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) migrateDecl(*I); return true; } void HandleInterestingDecl(DeclGroupRef DG) override { // Ignore decls from the PCH. } void HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) override { ObjCMigrateASTConsumer::HandleTopLevelDecl(DG); } void HandleTranslationUnit(ASTContext &Ctx) override; bool canModifyFile(StringRef Path) { if (AllowListFilenames.empty()) return true; return AllowListFilenames.contains(llvm::sys::path::filename(Path)); } bool canModifyFile(OptionalFileEntryRef FE) { if (!FE) return false; return canModifyFile(FE->getName()); } bool canModifyFile(FileID FID) { if (FID.isInvalid()) return false; return canModifyFile(PP.getSourceManager().getFileEntryRefForID(FID)); } bool canModify(const Decl *D) { if (!D) return false; if (const ObjCCategoryImplDecl *CatImpl = dyn_cast(D)) return canModify(CatImpl->getCategoryDecl()); if (const ObjCImplementationDecl *Impl = dyn_cast(D)) return canModify(Impl->getClassInterface()); if (const ObjCMethodDecl *MD = dyn_cast(D)) return canModify(cast(MD->getDeclContext())); FileID FID = PP.getSourceManager().getFileID(D->getLocation()); return canModifyFile(FID); } }; } // end anonymous namespace ObjCMigrateAction::ObjCMigrateAction( std::unique_ptr WrappedAction, StringRef migrateDir, unsigned migrateAction) : WrapperFrontendAction(std::move(WrappedAction)), MigrateDir(migrateDir), ObjCMigAction(migrateAction), CompInst(nullptr) { if (MigrateDir.empty()) MigrateDir = "."; // user current directory if none is given. } std::unique_ptr ObjCMigrateAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { PPConditionalDirectiveRecord * PPRec = new PPConditionalDirectiveRecord(CompInst->getSourceManager()); CI.getPreprocessor().addPPCallbacks(std::unique_ptr(PPRec)); std::vector> Consumers; Consumers.push_back(WrapperFrontendAction::CreateASTConsumer(CI, InFile)); Consumers.push_back(std::make_unique( MigrateDir, ObjCMigAction, Remapper, CompInst->getFileManager(), PPRec, CompInst->getPreprocessor(), false, std::nullopt)); return std::make_unique(std::move(Consumers)); } bool ObjCMigrateAction::BeginInvocation(CompilerInstance &CI) { Remapper.initFromDisk(MigrateDir, CI.getDiagnostics(), /*ignoreIfFilesChanged=*/true); CompInst = &CI; CI.getDiagnostics().setIgnoreAllWarnings(true); return true; } namespace { // FIXME. This duplicates one in RewriteObjCFoundationAPI.cpp bool subscriptOperatorNeedsParens(const Expr *FullExpr) { const Expr* Expr = FullExpr->IgnoreImpCasts(); return !(isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(Expr) || isa(FullExpr) || isa(Expr) || isa(Expr)); } /// - Rewrite message expression for Objective-C setter and getters into /// property-dot syntax. bool rewriteToPropertyDotSyntax(const ObjCMessageExpr *Msg, Preprocessor &PP, const NSAPI &NS, edit::Commit &commit, const ParentMap *PMap) { if (!Msg || Msg->isImplicit() || (Msg->getReceiverKind() != ObjCMessageExpr::Instance && Msg->getReceiverKind() != ObjCMessageExpr::SuperInstance)) return false; if (const Expr *Receiver = Msg->getInstanceReceiver()) if (Receiver->getType()->isObjCBuiltinType()) return false; const ObjCMethodDecl *Method = Msg->getMethodDecl(); if (!Method) return false; if (!Method->isPropertyAccessor()) return false; const ObjCPropertyDecl *Prop = Method->findPropertyDecl(); if (!Prop) return false; SourceRange MsgRange = Msg->getSourceRange(); bool ReceiverIsSuper = (Msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); // for 'super' receiver is nullptr. const Expr *receiver = Msg->getInstanceReceiver(); bool NeedsParen = ReceiverIsSuper ? false : subscriptOperatorNeedsParens(receiver); bool IsGetter = (Msg->getNumArgs() == 0); if (IsGetter) { // Find space location range between receiver expression and getter method. SourceLocation BegLoc = ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getEndLoc(); BegLoc = PP.getLocForEndOfToken(BegLoc); SourceLocation EndLoc = Msg->getSelectorLoc(0); SourceRange SpaceRange(BegLoc, EndLoc); std::string PropertyDotString; // rewrite getter method expression into: receiver.property or // (receiver).property if (NeedsParen) { commit.insertBefore(receiver->getBeginLoc(), "("); PropertyDotString = ")."; } else PropertyDotString = "."; PropertyDotString += Prop->getName(); commit.replace(SpaceRange, PropertyDotString); // remove '[' ']' commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), ""); commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), ""); } else { if (NeedsParen) commit.insertWrap("(", receiver->getSourceRange(), ")"); std::string PropertyDotString = "."; PropertyDotString += Prop->getName(); PropertyDotString += " ="; const Expr*const* Args = Msg->getArgs(); const Expr *RHS = Args[0]; if (!RHS) return false; SourceLocation BegLoc = ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getEndLoc(); BegLoc = PP.getLocForEndOfToken(BegLoc); SourceLocation EndLoc = RHS->getBeginLoc(); EndLoc = EndLoc.getLocWithOffset(-1); const char *colon = PP.getSourceManager().getCharacterData(EndLoc); // Add a space after '=' if there is no space between RHS and '=' if (colon && colon[0] == ':') PropertyDotString += " "; SourceRange Range(BegLoc, EndLoc); commit.replace(Range, PropertyDotString); // remove '[' ']' commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), ""); commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), ""); } return true; } class ObjCMigrator : public RecursiveASTVisitor { ObjCMigrateASTConsumer &Consumer; ParentMap &PMap; public: ObjCMigrator(ObjCMigrateASTConsumer &consumer, ParentMap &PMap) : Consumer(consumer), PMap(PMap) { } bool shouldVisitTemplateInstantiations() const { return false; } bool shouldWalkTypesOfTypeLocs() const { return false; } bool VisitObjCMessageExpr(ObjCMessageExpr *E) { if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Literals) { edit::Commit commit(*Consumer.Editor); edit::rewriteToObjCLiteralSyntax(E, *Consumer.NSAPIObj, commit, &PMap); Consumer.Editor->commit(commit); } if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Subscripting) { edit::Commit commit(*Consumer.Editor); edit::rewriteToObjCSubscriptSyntax(E, *Consumer.NSAPIObj, commit); Consumer.Editor->commit(commit); } if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_PropertyDotSyntax) { edit::Commit commit(*Consumer.Editor); rewriteToPropertyDotSyntax(E, Consumer.PP, *Consumer.NSAPIObj, commit, &PMap); Consumer.Editor->commit(commit); } return true; } bool TraverseObjCMessageExpr(ObjCMessageExpr *E) { // Do depth first; we want to rewrite the subexpressions first so that if // we have to move expressions we will move them already rewritten. for (Stmt *SubStmt : E->children()) if (!TraverseStmt(SubStmt)) return false; return WalkUpFromObjCMessageExpr(E); } }; class BodyMigrator : public RecursiveASTVisitor { ObjCMigrateASTConsumer &Consumer; std::unique_ptr PMap; public: BodyMigrator(ObjCMigrateASTConsumer &consumer) : Consumer(consumer) { } bool shouldVisitTemplateInstantiations() const { return false; } bool shouldWalkTypesOfTypeLocs() const { return false; } bool TraverseStmt(Stmt *S) { PMap.reset(new ParentMap(S)); ObjCMigrator(Consumer, *PMap).TraverseStmt(S); return true; } }; } // end anonymous namespace void ObjCMigrateASTConsumer::migrateDecl(Decl *D) { if (!D) return; if (isa(D)) return; // Wait for the ObjC container declaration. BodyMigrator(*this).TraverseDecl(D); } static void append_attr(std::string &PropertyString, const char *attr, bool &LParenAdded) { if (!LParenAdded) { PropertyString += "("; LParenAdded = true; } else PropertyString += ", "; PropertyString += attr; } static void MigrateBlockOrFunctionPointerTypeVariable(std::string & PropertyString, const std::string& TypeString, const char *name) { const char *argPtr = TypeString.c_str(); int paren = 0; while (*argPtr) { switch (*argPtr) { case '(': PropertyString += *argPtr; paren++; break; case ')': PropertyString += *argPtr; paren--; break; case '^': case '*': PropertyString += (*argPtr); if (paren == 1) { PropertyString += name; name = ""; } break; default: PropertyString += *argPtr; break; } argPtr++; } } static const char *PropertyMemoryAttribute(ASTContext &Context, QualType ArgType) { Qualifiers::ObjCLifetime propertyLifetime = ArgType.getObjCLifetime(); bool RetainableObject = ArgType->isObjCRetainableType(); if (RetainableObject && (propertyLifetime == Qualifiers::OCL_Strong || propertyLifetime == Qualifiers::OCL_None)) { if (const ObjCObjectPointerType *ObjPtrTy = ArgType->getAs()) { ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface(); if (IDecl && IDecl->lookupNestedProtocol(&Context.Idents.get("NSCopying"))) return "copy"; else return "strong"; } else if (ArgType->isBlockPointerType()) return "copy"; } else if (propertyLifetime == Qualifiers::OCL_Weak) // TODO. More precise determination of 'weak' attribute requires // looking into setter's implementation for backing weak ivar. return "weak"; else if (RetainableObject) return ArgType->isBlockPointerType() ? "copy" : "strong"; return nullptr; } static void rewriteToObjCProperty(const ObjCMethodDecl *Getter, const ObjCMethodDecl *Setter, const NSAPI &NS, edit::Commit &commit, unsigned LengthOfPrefix, bool Atomic, bool UseNsIosOnlyMacro, bool AvailabilityArgsMatch) { ASTContext &Context = NS.getASTContext(); bool LParenAdded = false; std::string PropertyString = "@property "; if (UseNsIosOnlyMacro && NS.isMacroDefined("NS_NONATOMIC_IOSONLY")) { PropertyString += "(NS_NONATOMIC_IOSONLY"; LParenAdded = true; } else if (!Atomic) { PropertyString += "(nonatomic"; LParenAdded = true; } std::string PropertyNameString = Getter->getNameAsString(); StringRef PropertyName(PropertyNameString); if (LengthOfPrefix > 0) { if (!LParenAdded) { PropertyString += "(getter="; LParenAdded = true; } else PropertyString += ", getter="; PropertyString += PropertyNameString; } // Property with no setter may be suggested as a 'readonly' property. if (!Setter) append_attr(PropertyString, "readonly", LParenAdded); // Short circuit 'delegate' properties that contain the name "delegate" or // "dataSource", or have exact name "target" to have 'assign' attribute. if (PropertyName == "target" || PropertyName.contains("delegate") || PropertyName.contains("dataSource")) { QualType QT = Getter->getReturnType(); if (!QT->isRealType()) append_attr(PropertyString, "assign", LParenAdded); } else if (!Setter) { QualType ResType = Context.getCanonicalType(Getter->getReturnType()); if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ResType)) append_attr(PropertyString, MemoryManagementAttr, LParenAdded); } else { const ParmVarDecl *argDecl = *Setter->param_begin(); QualType ArgType = Context.getCanonicalType(argDecl->getType()); if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ArgType)) append_attr(PropertyString, MemoryManagementAttr, LParenAdded); } if (LParenAdded) PropertyString += ')'; QualType RT = Getter->getReturnType(); if (!RT->getAs()) { // strip off any ARC lifetime qualifier. QualType CanResultTy = Context.getCanonicalType(RT); if (CanResultTy.getQualifiers().hasObjCLifetime()) { Qualifiers Qs = CanResultTy.getQualifiers(); Qs.removeObjCLifetime(); RT = Context.getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); } } PropertyString += " "; PrintingPolicy SubPolicy(Context.getPrintingPolicy()); SubPolicy.SuppressStrongLifetime = true; SubPolicy.SuppressLifetimeQualifiers = true; std::string TypeString = RT.getAsString(SubPolicy); if (LengthOfPrefix > 0) { // property name must strip off "is" and lower case the first character // after that; e.g. isContinuous will become continuous. StringRef PropertyNameStringRef(PropertyNameString); PropertyNameStringRef = PropertyNameStringRef.drop_front(LengthOfPrefix); PropertyNameString = std::string(PropertyNameStringRef); bool NoLowering = (isUppercase(PropertyNameString[0]) && PropertyNameString.size() > 1 && isUppercase(PropertyNameString[1])); if (!NoLowering) PropertyNameString[0] = toLowercase(PropertyNameString[0]); } if (RT->isBlockPointerType() || RT->isFunctionPointerType()) MigrateBlockOrFunctionPointerTypeVariable(PropertyString, TypeString, PropertyNameString.c_str()); else { char LastChar = TypeString[TypeString.size()-1]; PropertyString += TypeString; if (LastChar != '*') PropertyString += ' '; PropertyString += PropertyNameString; } SourceLocation StartGetterSelectorLoc = Getter->getSelectorStartLoc(); Selector GetterSelector = Getter->getSelector(); SourceLocation EndGetterSelectorLoc = StartGetterSelectorLoc.getLocWithOffset(GetterSelector.getNameForSlot(0).size()); commit.replace(CharSourceRange::getCharRange(Getter->getBeginLoc(), EndGetterSelectorLoc), PropertyString); if (Setter && AvailabilityArgsMatch) { SourceLocation EndLoc = Setter->getDeclaratorEndLoc(); // Get location past ';' EndLoc = EndLoc.getLocWithOffset(1); SourceLocation BeginOfSetterDclLoc = Setter->getBeginLoc(); // FIXME. This assumes that setter decl; is immediately preceded by eoln. // It is trying to remove the setter method decl. line entirely. BeginOfSetterDclLoc = BeginOfSetterDclLoc.getLocWithOffset(-1); commit.remove(SourceRange(BeginOfSetterDclLoc, EndLoc)); } } static bool IsCategoryNameWithDeprecatedSuffix(ObjCContainerDecl *D) { if (ObjCCategoryDecl *CatDecl = dyn_cast(D)) { StringRef Name = CatDecl->getName(); return Name.ends_with("Deprecated"); } return false; } void ObjCMigrateASTConsumer::migrateObjCContainerDecl(ASTContext &Ctx, ObjCContainerDecl *D) { if (D->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(D)) return; for (auto *Method : D->methods()) { if (Method->isDeprecated()) continue; bool PropertyInferred = migrateProperty(Ctx, D, Method); // If a property is inferred, do not attempt to attach NS_RETURNS_INNER_POINTER to // the getter method as it ends up on the property itself which we don't want // to do unless -objcmt-returns-innerpointer-property option is on. if (!PropertyInferred || (ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty)) if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) migrateNsReturnsInnerPointer(Ctx, Method); } if (!(ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty)) return; for (auto *Prop : D->instance_properties()) { if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) && !Prop->isDeprecated()) migratePropertyNsReturnsInnerPointer(Ctx, Prop); } } static bool ClassImplementsAllMethodsAndProperties(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl, const ObjCInterfaceDecl *IDecl, ObjCProtocolDecl *Protocol) { // In auto-synthesis, protocol properties are not synthesized. So, // a conforming protocol must have its required properties declared // in class interface. bool HasAtleastOneRequiredProperty = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) for (const auto *Property : PDecl->instance_properties()) { if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional) continue; HasAtleastOneRequiredProperty = true; DeclContext::lookup_result R = IDecl->lookup(Property->getDeclName()); if (R.empty()) { // Relax the rule and look into class's implementation for a synthesize // or dynamic declaration. Class is implementing a property coming from // another protocol. This still makes the target protocol as conforming. if (!ImpDecl->FindPropertyImplDecl( Property->getDeclName().getAsIdentifierInfo(), Property->getQueryKind())) return false; } else if (auto *ClassProperty = R.find_first()) { if ((ClassProperty->getPropertyAttributes() != Property->getPropertyAttributes()) || !Ctx.hasSameType(ClassProperty->getType(), Property->getType())) return false; } else return false; } // At this point, all required properties in this protocol conform to those // declared in the class. // Check that class implements the required methods of the protocol too. bool HasAtleastOneRequiredMethod = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) { if (PDecl->meth_begin() == PDecl->meth_end()) return HasAtleastOneRequiredProperty; for (const auto *MD : PDecl->methods()) { if (MD->isImplicit()) continue; if (MD->getImplementationControl() == ObjCImplementationControl::Optional) continue; DeclContext::lookup_result R = ImpDecl->lookup(MD->getDeclName()); if (R.empty()) return false; bool match = false; HasAtleastOneRequiredMethod = true; for (NamedDecl *ND : R) if (ObjCMethodDecl *ImpMD = dyn_cast(ND)) if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) { match = true; break; } if (!match) return false; } } return HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod; } static bool rewriteToObjCInterfaceDecl(const ObjCInterfaceDecl *IDecl, llvm::SmallVectorImpl &ConformingProtocols, const NSAPI &NS, edit::Commit &commit) { const ObjCList &Protocols = IDecl->getReferencedProtocols(); std::string ClassString; SourceLocation EndLoc = IDecl->getSuperClass() ? IDecl->getSuperClassLoc() : IDecl->getLocation(); if (Protocols.empty()) { ClassString = '<'; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { ClassString += ConformingProtocols[i]->getNameAsString(); if (i != (e-1)) ClassString += ", "; } ClassString += "> "; } else { ClassString = ", "; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { ClassString += ConformingProtocols[i]->getNameAsString(); if (i != (e-1)) ClassString += ", "; } ObjCInterfaceDecl::protocol_loc_iterator PL = IDecl->protocol_loc_end() - 1; EndLoc = *PL; } commit.insertAfterToken(EndLoc, ClassString); return true; } static StringRef GetUnsignedName(StringRef NSIntegerName) { StringRef UnsignedName = llvm::StringSwitch(NSIntegerName) .Case("int8_t", "uint8_t") .Case("int16_t", "uint16_t") .Case("int32_t", "uint32_t") .Case("NSInteger", "NSUInteger") .Case("int64_t", "uint64_t") .Default(NSIntegerName); return UnsignedName; } static bool rewriteToNSEnumDecl(const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl, const NSAPI &NS, edit::Commit &commit, StringRef NSIntegerName, bool NSOptions) { std::string ClassString; if (NSOptions) { ClassString = "typedef NS_OPTIONS("; ClassString += GetUnsignedName(NSIntegerName); } else { ClassString = "typedef NS_ENUM("; ClassString += NSIntegerName; } ClassString += ", "; ClassString += TypedefDcl->getIdentifier()->getName(); ClassString += ')'; SourceRange R(EnumDcl->getBeginLoc(), EnumDcl->getBeginLoc()); commit.replace(R, ClassString); SourceLocation EndOfEnumDclLoc = EnumDcl->getEndLoc(); EndOfEnumDclLoc = trans::findSemiAfterLocation(EndOfEnumDclLoc, NS.getASTContext(), /*IsDecl*/true); if (EndOfEnumDclLoc.isValid()) { SourceRange EnumDclRange(EnumDcl->getBeginLoc(), EndOfEnumDclLoc); commit.insertFromRange(TypedefDcl->getBeginLoc(), EnumDclRange); } else return false; SourceLocation EndTypedefDclLoc = TypedefDcl->getEndLoc(); EndTypedefDclLoc = trans::findSemiAfterLocation(EndTypedefDclLoc, NS.getASTContext(), /*IsDecl*/true); if (EndTypedefDclLoc.isValid()) { SourceRange TDRange(TypedefDcl->getBeginLoc(), EndTypedefDclLoc); commit.remove(TDRange); } else return false; EndOfEnumDclLoc = trans::findLocationAfterSemi(EnumDcl->getEndLoc(), NS.getASTContext(), /*IsDecl*/ true); if (EndOfEnumDclLoc.isValid()) { SourceLocation BeginOfEnumDclLoc = EnumDcl->getBeginLoc(); // FIXME. This assumes that enum decl; is immediately preceded by eoln. // It is trying to remove the enum decl. lines entirely. BeginOfEnumDclLoc = BeginOfEnumDclLoc.getLocWithOffset(-1); commit.remove(SourceRange(BeginOfEnumDclLoc, EndOfEnumDclLoc)); return true; } return false; } static void rewriteToNSMacroDecl(ASTContext &Ctx, const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl, const NSAPI &NS, edit::Commit &commit, bool IsNSIntegerType) { QualType DesignatedEnumType = EnumDcl->getIntegerType(); assert(!DesignatedEnumType.isNull() && "rewriteToNSMacroDecl - underlying enum type is null"); PrintingPolicy Policy(Ctx.getPrintingPolicy()); std::string TypeString = DesignatedEnumType.getAsString(Policy); std::string ClassString = IsNSIntegerType ? "NS_ENUM(" : "NS_OPTIONS("; ClassString += TypeString; ClassString += ", "; ClassString += TypedefDcl->getIdentifier()->getName(); ClassString += ") "; SourceLocation EndLoc = EnumDcl->getBraceRange().getBegin(); if (EndLoc.isInvalid()) return; CharSourceRange R = CharSourceRange::getCharRange(EnumDcl->getBeginLoc(), EndLoc); commit.replace(R, ClassString); // This is to remove spaces between '}' and typedef name. SourceLocation StartTypedefLoc = EnumDcl->getEndLoc(); StartTypedefLoc = StartTypedefLoc.getLocWithOffset(+1); SourceLocation EndTypedefLoc = TypedefDcl->getEndLoc(); commit.remove(SourceRange(StartTypedefLoc, EndTypedefLoc)); } static bool UseNSOptionsMacro(Preprocessor &PP, ASTContext &Ctx, const EnumDecl *EnumDcl) { bool PowerOfTwo = true; bool AllHexdecimalEnumerator = true; uint64_t MaxPowerOfTwoVal = 0; for (auto *Enumerator : EnumDcl->enumerators()) { const Expr *InitExpr = Enumerator->getInitExpr(); if (!InitExpr) { PowerOfTwo = false; AllHexdecimalEnumerator = false; continue; } InitExpr = InitExpr->IgnoreParenCasts(); if (const BinaryOperator *BO = dyn_cast(InitExpr)) if (BO->isShiftOp() || BO->isBitwiseOp()) return true; uint64_t EnumVal = Enumerator->getInitVal().getZExtValue(); if (PowerOfTwo && EnumVal) { if (!llvm::isPowerOf2_64(EnumVal)) PowerOfTwo = false; else if (EnumVal > MaxPowerOfTwoVal) MaxPowerOfTwoVal = EnumVal; } if (AllHexdecimalEnumerator && EnumVal) { bool FoundHexdecimalEnumerator = false; SourceLocation EndLoc = Enumerator->getEndLoc(); Token Tok; if (!PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true)) if (Tok.isLiteral() && Tok.getLength() > 2) { if (const char *StringLit = Tok.getLiteralData()) FoundHexdecimalEnumerator = (StringLit[0] == '0' && (toLowercase(StringLit[1]) == 'x')); } if (!FoundHexdecimalEnumerator) AllHexdecimalEnumerator = false; } } return AllHexdecimalEnumerator || (PowerOfTwo && (MaxPowerOfTwoVal > 2)); } void ObjCMigrateASTConsumer::migrateProtocolConformance(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl) { const ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface(); if (!IDecl || ObjCProtocolDecls.empty() || IDecl->isDeprecated()) return; // Find all implicit conforming protocols for this class // and make them explicit. llvm::SmallPtrSet ExplicitProtocols; Ctx.CollectInheritedProtocols(IDecl, ExplicitProtocols); llvm::SmallVector PotentialImplicitProtocols; for (ObjCProtocolDecl *ProtDecl : ObjCProtocolDecls) if (!ExplicitProtocols.count(ProtDecl)) PotentialImplicitProtocols.push_back(ProtDecl); if (PotentialImplicitProtocols.empty()) return; // go through list of non-optional methods and properties in each protocol // in the PotentialImplicitProtocols list. If class implements every one of the // methods and properties, then this class conforms to this protocol. llvm::SmallVector ConformingProtocols; for (unsigned i = 0, e = PotentialImplicitProtocols.size(); i != e; i++) if (ClassImplementsAllMethodsAndProperties(Ctx, ImpDecl, IDecl, PotentialImplicitProtocols[i])) ConformingProtocols.push_back(PotentialImplicitProtocols[i]); if (ConformingProtocols.empty()) return; // Further reduce number of conforming protocols. If protocol P1 is in the list // protocol P2 (P2), No need to include P1. llvm::SmallVector MinimalConformingProtocols; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { bool DropIt = false; ObjCProtocolDecl *TargetPDecl = ConformingProtocols[i]; for (unsigned i1 = 0, e1 = ConformingProtocols.size(); i1 != e1; i1++) { ObjCProtocolDecl *PDecl = ConformingProtocols[i1]; if (PDecl == TargetPDecl) continue; if (PDecl->lookupProtocolNamed( TargetPDecl->getDeclName().getAsIdentifierInfo())) { DropIt = true; break; } } if (!DropIt) MinimalConformingProtocols.push_back(TargetPDecl); } if (MinimalConformingProtocols.empty()) return; edit::Commit commit(*Editor); rewriteToObjCInterfaceDecl(IDecl, MinimalConformingProtocols, *NSAPIObj, commit); Editor->commit(commit); } void ObjCMigrateASTConsumer::CacheObjCNSIntegerTypedefed( const TypedefDecl *TypedefDcl) { QualType qt = TypedefDcl->getTypeSourceInfo()->getType(); if (NSAPIObj->isObjCNSIntegerType(qt)) NSIntegerTypedefed = TypedefDcl; else if (NSAPIObj->isObjCNSUIntegerType(qt)) NSUIntegerTypedefed = TypedefDcl; } bool ObjCMigrateASTConsumer::migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl) { if (!EnumDcl->isCompleteDefinition() || EnumDcl->getIdentifier() || EnumDcl->isDeprecated()) return false; if (!TypedefDcl) { if (NSIntegerTypedefed) { TypedefDcl = NSIntegerTypedefed; NSIntegerTypedefed = nullptr; } else if (NSUIntegerTypedefed) { TypedefDcl = NSUIntegerTypedefed; NSUIntegerTypedefed = nullptr; } else return false; FileID FileIdOfTypedefDcl = PP.getSourceManager().getFileID(TypedefDcl->getLocation()); FileID FileIdOfEnumDcl = PP.getSourceManager().getFileID(EnumDcl->getLocation()); if (FileIdOfTypedefDcl != FileIdOfEnumDcl) return false; } if (TypedefDcl->isDeprecated()) return false; QualType qt = TypedefDcl->getTypeSourceInfo()->getType(); StringRef NSIntegerName = NSAPIObj->GetNSIntegralKind(qt); if (NSIntegerName.empty()) { // Also check for typedef enum {...} TD; if (const EnumType *EnumTy = qt->getAs()) { if (EnumTy->getDecl() == EnumDcl) { bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl); if (!InsertFoundation(Ctx, TypedefDcl->getBeginLoc())) return false; edit::Commit commit(*Editor); rewriteToNSMacroDecl(Ctx, EnumDcl, TypedefDcl, *NSAPIObj, commit, !NSOptions); Editor->commit(commit); return true; } } return false; } // We may still use NS_OPTIONS based on what we find in the enumertor list. bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl); if (!InsertFoundation(Ctx, TypedefDcl->getBeginLoc())) return false; edit::Commit commit(*Editor); bool Res = rewriteToNSEnumDecl(EnumDcl, TypedefDcl, *NSAPIObj, commit, NSIntegerName, NSOptions); Editor->commit(commit); return Res; } static void ReplaceWithInstancetype(ASTContext &Ctx, const ObjCMigrateASTConsumer &ASTC, ObjCMethodDecl *OM) { if (OM->getReturnType() == Ctx.getObjCInstanceType()) return; // already has instancetype. SourceRange R; std::string ClassString; if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) { TypeLoc TL = TSInfo->getTypeLoc(); R = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); ClassString = "instancetype"; } else { R = SourceRange(OM->getBeginLoc(), OM->getBeginLoc()); ClassString = OM->isInstanceMethod() ? '-' : '+'; ClassString += " (instancetype)"; } edit::Commit commit(*ASTC.Editor); commit.replace(R, ClassString); ASTC.Editor->commit(commit); } static void ReplaceWithClasstype(const ObjCMigrateASTConsumer &ASTC, ObjCMethodDecl *OM) { ObjCInterfaceDecl *IDecl = OM->getClassInterface(); SourceRange R; std::string ClassString; if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) { TypeLoc TL = TSInfo->getTypeLoc(); R = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); { ClassString = std::string(IDecl->getName()); ClassString += "*"; } } else { R = SourceRange(OM->getBeginLoc(), OM->getBeginLoc()); ClassString = "+ ("; ClassString += IDecl->getName(); ClassString += "*)"; } edit::Commit commit(*ASTC.Editor); commit.replace(R, ClassString); ASTC.Editor->commit(commit); } void ObjCMigrateASTConsumer::migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM) { ObjCInstanceTypeFamily OIT_Family = Selector::getInstTypeMethodFamily(OM->getSelector()); std::string ClassName; switch (OIT_Family) { case OIT_None: migrateFactoryMethod(Ctx, CDecl, OM); return; case OIT_Array: ClassName = "NSArray"; break; case OIT_Dictionary: ClassName = "NSDictionary"; break; case OIT_Singleton: migrateFactoryMethod(Ctx, CDecl, OM, OIT_Singleton); return; case OIT_Init: if (OM->getReturnType()->isObjCIdType()) ReplaceWithInstancetype(Ctx, *this, OM); return; case OIT_ReturnsSelf: migrateFactoryMethod(Ctx, CDecl, OM, OIT_ReturnsSelf); return; } if (!OM->getReturnType()->isObjCIdType()) return; ObjCInterfaceDecl *IDecl = dyn_cast(CDecl); if (!IDecl) { if (ObjCCategoryDecl *CatDecl = dyn_cast(CDecl)) IDecl = CatDecl->getClassInterface(); else if (ObjCImplDecl *ImpDecl = dyn_cast(CDecl)) IDecl = ImpDecl->getClassInterface(); } if (!IDecl || !IDecl->lookupInheritedClass(&Ctx.Idents.get(ClassName))) { migrateFactoryMethod(Ctx, CDecl, OM); return; } ReplaceWithInstancetype(Ctx, *this, OM); } static bool TypeIsInnerPointer(QualType T) { if (!T->isAnyPointerType()) return false; if (T->isObjCObjectPointerType() || T->isObjCBuiltinType() || T->isBlockPointerType() || T->isFunctionPointerType() || ento::coreFoundation::isCFObjectRef(T)) return false; // Also, typedef-of-pointer-to-incomplete-struct is something that we assume // is not an innter pointer type. QualType OrigT = T; while (const auto *TD = T->getAs()) T = TD->getDecl()->getUnderlyingType(); if (OrigT == T || !T->isPointerType()) return true; const PointerType* PT = T->getAs(); QualType UPointeeT = PT->getPointeeType().getUnqualifiedType(); if (UPointeeT->isRecordType()) { const RecordType *RecordTy = UPointeeT->getAs(); if (!RecordTy->getDecl()->isCompleteDefinition()) return false; } return true; } /// Check whether the two versions match. static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y) { return (X == Y); } /// AvailabilityAttrsMatch - This routine checks that if comparing two /// availability attributes, all their components match. It returns /// true, if not dealing with availability or when all components of /// availability attributes match. This routine is only called when /// the attributes are of the same kind. static bool AvailabilityAttrsMatch(Attr *At1, Attr *At2) { const AvailabilityAttr *AA1 = dyn_cast(At1); if (!AA1) return true; const AvailabilityAttr *AA2 = cast(At2); VersionTuple Introduced1 = AA1->getIntroduced(); VersionTuple Deprecated1 = AA1->getDeprecated(); VersionTuple Obsoleted1 = AA1->getObsoleted(); bool IsUnavailable1 = AA1->getUnavailable(); VersionTuple Introduced2 = AA2->getIntroduced(); VersionTuple Deprecated2 = AA2->getDeprecated(); VersionTuple Obsoleted2 = AA2->getObsoleted(); bool IsUnavailable2 = AA2->getUnavailable(); return (versionsMatch(Introduced1, Introduced2) && versionsMatch(Deprecated1, Deprecated2) && versionsMatch(Obsoleted1, Obsoleted2) && IsUnavailable1 == IsUnavailable2); } static bool MatchTwoAttributeLists(const AttrVec &Attrs1, const AttrVec &Attrs2, bool &AvailabilityArgsMatch) { // This list is very small, so this need not be optimized. for (unsigned i = 0, e = Attrs1.size(); i != e; i++) { bool match = false; for (unsigned j = 0, f = Attrs2.size(); j != f; j++) { // Matching attribute kind only. Except for Availability attributes, // we are not getting into details of the attributes. For all practical purposes // this is sufficient. if (Attrs1[i]->getKind() == Attrs2[j]->getKind()) { if (AvailabilityArgsMatch) AvailabilityArgsMatch = AvailabilityAttrsMatch(Attrs1[i], Attrs2[j]); match = true; break; } } if (!match) return false; } return true; } /// AttributesMatch - This routine checks list of attributes for two /// decls. It returns false, if there is a mismatch in kind of /// attributes seen in the decls. It returns true if the two decls /// have list of same kind of attributes. Furthermore, when there /// are availability attributes in the two decls, it sets the /// AvailabilityArgsMatch to false if availability attributes have /// different versions, etc. static bool AttributesMatch(const Decl *Decl1, const Decl *Decl2, bool &AvailabilityArgsMatch) { if (!Decl1->hasAttrs() || !Decl2->hasAttrs()) { AvailabilityArgsMatch = (Decl1->hasAttrs() == Decl2->hasAttrs()); return true; } AvailabilityArgsMatch = true; const AttrVec &Attrs1 = Decl1->getAttrs(); const AttrVec &Attrs2 = Decl2->getAttrs(); bool match = MatchTwoAttributeLists(Attrs1, Attrs2, AvailabilityArgsMatch); if (match && (Attrs2.size() > Attrs1.size())) return MatchTwoAttributeLists(Attrs2, Attrs1, AvailabilityArgsMatch); return match; } static bool IsValidIdentifier(ASTContext &Ctx, const char *Name) { if (!isAsciiIdentifierStart(Name[0])) return false; std::string NameString = Name; NameString[0] = toLowercase(NameString[0]); const IdentifierInfo *II = &Ctx.Idents.get(NameString); return II->getTokenID() == tok::identifier; } bool ObjCMigrateASTConsumer::migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *Method) { if (Method->isPropertyAccessor() || !Method->isInstanceMethod() || Method->param_size() != 0) return false; // Is this method candidate to be a getter? QualType GRT = Method->getReturnType(); if (GRT->isVoidType()) return false; Selector GetterSelector = Method->getSelector(); ObjCInstanceTypeFamily OIT_Family = Selector::getInstTypeMethodFamily(GetterSelector); if (OIT_Family != OIT_None) return false; const IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0); Selector SetterSelector = SelectorTable::constructSetterSelector(PP.getIdentifierTable(), PP.getSelectorTable(), getterName); ObjCMethodDecl *SetterMethod = D->getInstanceMethod(SetterSelector); unsigned LengthOfPrefix = 0; if (!SetterMethod) { // try a different naming convention for getter: isXxxxx StringRef getterNameString = getterName->getName(); bool IsPrefix = getterNameString.starts_with("is"); // Note that we don't want to change an isXXX method of retainable object // type to property (readonly or otherwise). if (IsPrefix && GRT->isObjCRetainableType()) return false; if (IsPrefix || getterNameString.starts_with("get")) { LengthOfPrefix = (IsPrefix ? 2 : 3); const char *CGetterName = getterNameString.data() + LengthOfPrefix; // Make sure that first character after "is" or "get" prefix can // start an identifier. if (!IsValidIdentifier(Ctx, CGetterName)) return false; if (CGetterName[0] && isUppercase(CGetterName[0])) { getterName = &Ctx.Idents.get(CGetterName); SetterSelector = SelectorTable::constructSetterSelector(PP.getIdentifierTable(), PP.getSelectorTable(), getterName); SetterMethod = D->getInstanceMethod(SetterSelector); } } } if (SetterMethod) { if ((ASTMigrateActions & FrontendOptions::ObjCMT_ReadwriteProperty) == 0) return false; bool AvailabilityArgsMatch; if (SetterMethod->isDeprecated() || !AttributesMatch(Method, SetterMethod, AvailabilityArgsMatch)) return false; // Is this a valid setter, matching the target getter? QualType SRT = SetterMethod->getReturnType(); if (!SRT->isVoidType()) return false; const ParmVarDecl *argDecl = *SetterMethod->param_begin(); QualType ArgType = argDecl->getType(); if (!Ctx.hasSameUnqualifiedType(ArgType, GRT)) return false; edit::Commit commit(*Editor); rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit, LengthOfPrefix, (ASTMigrateActions & FrontendOptions::ObjCMT_AtomicProperty) != 0, (ASTMigrateActions & FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0, AvailabilityArgsMatch); Editor->commit(commit); return true; } else if (ASTMigrateActions & FrontendOptions::ObjCMT_ReadonlyProperty) { // Try a non-void method with no argument (and no setter or property of same name // as a 'readonly' property. edit::Commit commit(*Editor); rewriteToObjCProperty(Method, nullptr /*SetterMethod*/, *NSAPIObj, commit, LengthOfPrefix, (ASTMigrateActions & FrontendOptions::ObjCMT_AtomicProperty) != 0, (ASTMigrateActions & FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0, /*AvailabilityArgsMatch*/false); Editor->commit(commit); return true; } return false; } void ObjCMigrateASTConsumer::migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM) { if (OM->isImplicit() || !OM->isInstanceMethod() || OM->hasAttr()) return; QualType RT = OM->getReturnType(); if (!TypeIsInnerPointer(RT) || !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER")) return; edit::Commit commit(*Editor); commit.insertBefore(OM->getEndLoc(), " NS_RETURNS_INNER_POINTER"); Editor->commit(commit); } void ObjCMigrateASTConsumer::migratePropertyNsReturnsInnerPointer(ASTContext &Ctx, ObjCPropertyDecl *P) { QualType T = P->getType(); if (!TypeIsInnerPointer(T) || !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER")) return; edit::Commit commit(*Editor); commit.insertBefore(P->getEndLoc(), " NS_RETURNS_INNER_POINTER "); Editor->commit(commit); } void ObjCMigrateASTConsumer::migrateAllMethodInstaceType(ASTContext &Ctx, ObjCContainerDecl *CDecl) { if (CDecl->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(CDecl)) return; // migrate methods which can have instancetype as their result type. for (auto *Method : CDecl->methods()) { if (Method->isDeprecated()) continue; migrateMethodInstanceType(Ctx, CDecl, Method); } } void ObjCMigrateASTConsumer::migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM, ObjCInstanceTypeFamily OIT_Family) { if (OM->isInstanceMethod() || OM->getReturnType() == Ctx.getObjCInstanceType() || !OM->getReturnType()->isObjCIdType()) return; // Candidate factory methods are + (id) NaMeXXX : ... which belong to a class // NSYYYNamE with matching names be at least 3 characters long. ObjCInterfaceDecl *IDecl = dyn_cast(CDecl); if (!IDecl) { if (ObjCCategoryDecl *CatDecl = dyn_cast(CDecl)) IDecl = CatDecl->getClassInterface(); else if (ObjCImplDecl *ImpDecl = dyn_cast(CDecl)) IDecl = ImpDecl->getClassInterface(); } if (!IDecl) return; std::string StringClassName = std::string(IDecl->getName()); StringRef LoweredClassName(StringClassName); std::string StringLoweredClassName = LoweredClassName.lower(); LoweredClassName = StringLoweredClassName; const IdentifierInfo *MethodIdName = OM->getSelector().getIdentifierInfoForSlot(0); // Handle method with no name at its first selector slot; e.g. + (id):(int)x. if (!MethodIdName) return; std::string MethodName = std::string(MethodIdName->getName()); if (OIT_Family == OIT_Singleton || OIT_Family == OIT_ReturnsSelf) { StringRef STRefMethodName(MethodName); size_t len = 0; if (STRefMethodName.starts_with("standard")) len = strlen("standard"); else if (STRefMethodName.starts_with("shared")) len = strlen("shared"); else if (STRefMethodName.starts_with("default")) len = strlen("default"); else return; MethodName = std::string(STRefMethodName.substr(len)); } std::string MethodNameSubStr = MethodName.substr(0, 3); StringRef MethodNamePrefix(MethodNameSubStr); std::string StringLoweredMethodNamePrefix = MethodNamePrefix.lower(); MethodNamePrefix = StringLoweredMethodNamePrefix; size_t Ix = LoweredClassName.rfind(MethodNamePrefix); if (Ix == StringRef::npos) return; std::string ClassNamePostfix = std::string(LoweredClassName.substr(Ix)); StringRef LoweredMethodName(MethodName); std::string StringLoweredMethodName = LoweredMethodName.lower(); LoweredMethodName = StringLoweredMethodName; if (!LoweredMethodName.starts_with(ClassNamePostfix)) return; if (OIT_Family == OIT_ReturnsSelf) ReplaceWithClasstype(*this, OM); else ReplaceWithInstancetype(Ctx, *this, OM); } static bool IsVoidStarType(QualType Ty) { if (!Ty->isPointerType()) return false; // Is the type void*? const PointerType* PT = Ty->castAs(); if (PT->getPointeeType().getUnqualifiedType()->isVoidType()) return true; return IsVoidStarType(PT->getPointeeType()); } /// AuditedType - This routine audits the type AT and returns false if it is one of known /// CF object types or of the "void *" variety. It returns true if we don't care about the type /// such as a non-pointer or pointers which have no ownership issues (such as "int *"). static bool AuditedType (QualType AT) { if (!AT->isAnyPointerType() && !AT->isBlockPointerType()) return true; // FIXME. There isn't much we can say about CF pointer type; or is there? if (ento::coreFoundation::isCFObjectRef(AT) || IsVoidStarType(AT) || // If an ObjC object is type, assuming that it is not a CF function and // that it is an un-audited function. AT->isObjCObjectPointerType() || AT->isObjCBuiltinType()) return false; // All other pointers are assumed audited as harmless. return true; } void ObjCMigrateASTConsumer::AnnotateImplicitBridging(ASTContext &Ctx) { if (CFFunctionIBCandidates.empty()) return; if (!NSAPIObj->isMacroDefined("CF_IMPLICIT_BRIDGING_ENABLED")) { CFFunctionIBCandidates.clear(); FileId = FileID(); return; } // Insert CF_IMPLICIT_BRIDGING_ENABLE/CF_IMPLICIT_BRIDGING_DISABLED const Decl *FirstFD = CFFunctionIBCandidates[0]; const Decl *LastFD = CFFunctionIBCandidates[CFFunctionIBCandidates.size()-1]; const char *PragmaString = "\nCF_IMPLICIT_BRIDGING_ENABLED\n\n"; edit::Commit commit(*Editor); commit.insertBefore(FirstFD->getBeginLoc(), PragmaString); PragmaString = "\n\nCF_IMPLICIT_BRIDGING_DISABLED\n"; SourceLocation EndLoc = LastFD->getEndLoc(); // get location just past end of function location. EndLoc = PP.getLocForEndOfToken(EndLoc); if (isa(LastFD)) { // For Methods, EndLoc points to the ending semcolon. So, // not of these extra work is needed. Token Tok; // get locaiton of token that comes after end of function. bool Failed = PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true); if (!Failed) EndLoc = Tok.getLocation(); } commit.insertAfterToken(EndLoc, PragmaString); Editor->commit(commit); FileId = FileID(); CFFunctionIBCandidates.clear(); } void ObjCMigrateASTConsumer::migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl) { if (Decl->isDeprecated()) return; if (Decl->hasAttr()) { assert(CFFunctionIBCandidates.empty() && "Cannot have audited functions/methods inside user " "provided CF_IMPLICIT_BRIDGING_ENABLE"); return; } // Finction must be annotated first. if (const FunctionDecl *FuncDecl = dyn_cast(Decl)) { CF_BRIDGING_KIND AuditKind = migrateAddFunctionAnnotation(Ctx, FuncDecl); if (AuditKind == CF_BRIDGING_ENABLE) { CFFunctionIBCandidates.push_back(Decl); if (FileId.isInvalid()) FileId = PP.getSourceManager().getFileID(Decl->getLocation()); } else if (AuditKind == CF_BRIDGING_MAY_INCLUDE) { if (!CFFunctionIBCandidates.empty()) { CFFunctionIBCandidates.push_back(Decl); if (FileId.isInvalid()) FileId = PP.getSourceManager().getFileID(Decl->getLocation()); } } else AnnotateImplicitBridging(Ctx); } else { migrateAddMethodAnnotation(Ctx, cast(Decl)); AnnotateImplicitBridging(Ctx); } } void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx, const RetainSummary *RS, const FunctionDecl *FuncDecl, bool ResultAnnotated) { // Annotate function. if (!ResultAnnotated) { RetEffect Ret = RS->getRetEffect(); const char *AnnotationString = nullptr; if (Ret.getObjKind() == ObjKind::CF) { if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED")) AnnotationString = " CF_RETURNS_RETAINED"; else if (Ret.notOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED")) AnnotationString = " CF_RETURNS_NOT_RETAINED"; } else if (Ret.getObjKind() == ObjKind::ObjC) { if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED")) AnnotationString = " NS_RETURNS_RETAINED"; } if (AnnotationString) { edit::Commit commit(*Editor); commit.insertAfterToken(FuncDecl->getEndLoc(), AnnotationString); Editor->commit(commit); } } unsigned i = 0; for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(), pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = RS->getArg(i); if (AE.getKind() == DecRef && AE.getObjKind() == ObjKind::CF && !pd->hasAttr() && NSAPIObj->isMacroDefined("CF_CONSUMED")) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "CF_CONSUMED "); Editor->commit(commit); } else if (AE.getKind() == DecRef && AE.getObjKind() == ObjKind::ObjC && !pd->hasAttr() && NSAPIObj->isMacroDefined("NS_CONSUMED")) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "NS_CONSUMED "); Editor->commit(commit); } } } ObjCMigrateASTConsumer::CF_BRIDGING_KIND ObjCMigrateASTConsumer::migrateAddFunctionAnnotation( ASTContext &Ctx, const FunctionDecl *FuncDecl) { if (FuncDecl->hasBody()) return CF_BRIDGING_NONE; const RetainSummary *RS = getSummaryManager(Ctx).getSummary(AnyCall(FuncDecl)); bool FuncIsReturnAnnotated = (FuncDecl->hasAttr() || FuncDecl->hasAttr() || FuncDecl->hasAttr() || FuncDecl->hasAttr() || FuncDecl->hasAttr()); // Trivial case of when function is annotated and has no argument. if (FuncIsReturnAnnotated && FuncDecl->getNumParams() == 0) return CF_BRIDGING_NONE; bool ReturnCFAudited = false; if (!FuncIsReturnAnnotated) { RetEffect Ret = RS->getRetEffect(); if (Ret.getObjKind() == ObjKind::CF && (Ret.isOwned() || Ret.notOwned())) ReturnCFAudited = true; else if (!AuditedType(FuncDecl->getReturnType())) return CF_BRIDGING_NONE; } // At this point result type is audited for potential inclusion. unsigned i = 0; bool ArgCFAudited = false; for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(), pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = RS->getArg(i); if ((AE.getKind() == DecRef /*CFConsumed annotated*/ || AE.getKind() == IncRef) && AE.getObjKind() == ObjKind::CF) { if (AE.getKind() == DecRef && !pd->hasAttr()) ArgCFAudited = true; else if (AE.getKind() == IncRef) ArgCFAudited = true; } else { QualType AT = pd->getType(); if (!AuditedType(AT)) { AddCFAnnotations(Ctx, RS, FuncDecl, FuncIsReturnAnnotated); return CF_BRIDGING_NONE; } } } if (ReturnCFAudited || ArgCFAudited) return CF_BRIDGING_ENABLE; return CF_BRIDGING_MAY_INCLUDE; } void ObjCMigrateASTConsumer::migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl) { if (!isa(CDecl) || CDecl->isDeprecated()) return; // migrate methods which can have instancetype as their result type. for (const auto *Method : CDecl->methods()) migrateCFAnnotation(Ctx, Method); } void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx, const RetainSummary *RS, const ObjCMethodDecl *MethodDecl, bool ResultAnnotated) { // Annotate function. if (!ResultAnnotated) { RetEffect Ret = RS->getRetEffect(); const char *AnnotationString = nullptr; if (Ret.getObjKind() == ObjKind::CF) { if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED")) AnnotationString = " CF_RETURNS_RETAINED"; else if (Ret.notOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED")) AnnotationString = " CF_RETURNS_NOT_RETAINED"; } else if (Ret.getObjKind() == ObjKind::ObjC) { ObjCMethodFamily OMF = MethodDecl->getMethodFamily(); switch (OMF) { case clang::OMF_alloc: case clang::OMF_new: case clang::OMF_copy: case clang::OMF_init: case clang::OMF_mutableCopy: break; default: if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED")) AnnotationString = " NS_RETURNS_RETAINED"; break; } } if (AnnotationString) { edit::Commit commit(*Editor); commit.insertBefore(MethodDecl->getEndLoc(), AnnotationString); Editor->commit(commit); } } unsigned i = 0; for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(), pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = RS->getArg(i); if (AE.getKind() == DecRef && AE.getObjKind() == ObjKind::CF && !pd->hasAttr() && NSAPIObj->isMacroDefined("CF_CONSUMED")) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "CF_CONSUMED "); Editor->commit(commit); } } } void ObjCMigrateASTConsumer::migrateAddMethodAnnotation( ASTContext &Ctx, const ObjCMethodDecl *MethodDecl) { if (MethodDecl->hasBody() || MethodDecl->isImplicit()) return; const RetainSummary *RS = getSummaryManager(Ctx).getSummary(AnyCall(MethodDecl)); bool MethodIsReturnAnnotated = (MethodDecl->hasAttr() || MethodDecl->hasAttr() || MethodDecl->hasAttr() || MethodDecl->hasAttr() || MethodDecl->hasAttr()); if (RS->getReceiverEffect().getKind() == DecRef && !MethodDecl->hasAttr() && MethodDecl->getMethodFamily() != OMF_init && MethodDecl->getMethodFamily() != OMF_release && NSAPIObj->isMacroDefined("NS_CONSUMES_SELF")) { edit::Commit commit(*Editor); commit.insertBefore(MethodDecl->getEndLoc(), " NS_CONSUMES_SELF"); Editor->commit(commit); } // Trivial case of when function is annotated and has no argument. if (MethodIsReturnAnnotated && (MethodDecl->param_begin() == MethodDecl->param_end())) return; if (!MethodIsReturnAnnotated) { RetEffect Ret = RS->getRetEffect(); if ((Ret.getObjKind() == ObjKind::CF || Ret.getObjKind() == ObjKind::ObjC) && (Ret.isOwned() || Ret.notOwned())) { AddCFAnnotations(Ctx, RS, MethodDecl, false); return; } else if (!AuditedType(MethodDecl->getReturnType())) return; } // At this point result type is either annotated or audited. unsigned i = 0; for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(), pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = RS->getArg(i); if ((AE.getKind() == DecRef && !pd->hasAttr()) || AE.getKind() == IncRef || !AuditedType(pd->getType())) { AddCFAnnotations(Ctx, RS, MethodDecl, MethodIsReturnAnnotated); return; } } } namespace { class SuperInitChecker : public RecursiveASTVisitor { public: bool shouldVisitTemplateInstantiations() const { return false; } bool shouldWalkTypesOfTypeLocs() const { return false; } bool VisitObjCMessageExpr(ObjCMessageExpr *E) { if (E->getReceiverKind() == ObjCMessageExpr::SuperInstance) { if (E->getMethodFamily() == OMF_init) return false; } return true; } }; } // end anonymous namespace static bool hasSuperInitCall(const ObjCMethodDecl *MD) { return !SuperInitChecker().TraverseStmt(MD->getBody()); } void ObjCMigrateASTConsumer::inferDesignatedInitializers( ASTContext &Ctx, const ObjCImplementationDecl *ImplD) { const ObjCInterfaceDecl *IFace = ImplD->getClassInterface(); if (!IFace || IFace->hasDesignatedInitializers()) return; if (!NSAPIObj->isMacroDefined("NS_DESIGNATED_INITIALIZER")) return; for (const auto *MD : ImplD->instance_methods()) { if (MD->isDeprecated() || MD->getMethodFamily() != OMF_init || MD->isDesignatedInitializerForTheInterface()) continue; const ObjCMethodDecl *IFaceM = IFace->getMethod(MD->getSelector(), /*isInstance=*/true); if (!IFaceM) continue; if (hasSuperInitCall(MD)) { edit::Commit commit(*Editor); commit.insert(IFaceM->getEndLoc(), " NS_DESIGNATED_INITIALIZER"); Editor->commit(commit); } } } bool ObjCMigrateASTConsumer::InsertFoundation(ASTContext &Ctx, SourceLocation Loc) { if (FoundationIncluded) return true; if (Loc.isInvalid()) return false; auto *nsEnumId = &Ctx.Idents.get("NS_ENUM"); if (PP.getMacroDefinitionAtLoc(nsEnumId, Loc)) { FoundationIncluded = true; return true; } edit::Commit commit(*Editor); if (Ctx.getLangOpts().Modules) commit.insert(Loc, "#ifndef NS_ENUM\n@import Foundation;\n#endif\n"); else commit.insert(Loc, "#ifndef NS_ENUM\n#import \n#endif\n"); Editor->commit(commit); FoundationIncluded = true; return true; } namespace { class RewritesReceiver : public edit::EditsReceiver { Rewriter &Rewrite; public: RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { } void insert(SourceLocation loc, StringRef text) override { Rewrite.InsertText(loc, text); } void replace(CharSourceRange range, StringRef text) override { Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text); } }; class JSONEditWriter : public edit::EditsReceiver { SourceManager &SourceMgr; llvm::raw_ostream &OS; public: JSONEditWriter(SourceManager &SM, llvm::raw_ostream &OS) : SourceMgr(SM), OS(OS) { OS << "[\n"; } ~JSONEditWriter() override { OS << "]\n"; } private: struct EntryWriter { SourceManager &SourceMgr; llvm::raw_ostream &OS; EntryWriter(SourceManager &SM, llvm::raw_ostream &OS) : SourceMgr(SM), OS(OS) { OS << " {\n"; } ~EntryWriter() { OS << " },\n"; } void writeLoc(SourceLocation Loc) { FileID FID; unsigned Offset; std::tie(FID, Offset) = SourceMgr.getDecomposedLoc(Loc); assert(FID.isValid()); SmallString<200> Path = StringRef(SourceMgr.getFileEntryRefForID(FID)->getName()); llvm::sys::fs::make_absolute(Path); OS << " \"file\": \""; OS.write_escaped(Path.str()) << "\",\n"; OS << " \"offset\": " << Offset << ",\n"; } void writeRemove(CharSourceRange Range) { assert(Range.isCharRange()); std::pair Begin = SourceMgr.getDecomposedLoc(Range.getBegin()); std::pair End = SourceMgr.getDecomposedLoc(Range.getEnd()); assert(Begin.first == End.first); assert(Begin.second <= End.second); unsigned Length = End.second - Begin.second; OS << " \"remove\": " << Length << ",\n"; } void writeText(StringRef Text) { OS << " \"text\": \""; OS.write_escaped(Text) << "\",\n"; } }; void insert(SourceLocation Loc, StringRef Text) override { EntryWriter Writer(SourceMgr, OS); Writer.writeLoc(Loc); Writer.writeText(Text); } void replace(CharSourceRange Range, StringRef Text) override { EntryWriter Writer(SourceMgr, OS); Writer.writeLoc(Range.getBegin()); Writer.writeRemove(Range); Writer.writeText(Text); } void remove(CharSourceRange Range) override { EntryWriter Writer(SourceMgr, OS); Writer.writeLoc(Range.getBegin()); Writer.writeRemove(Range); } }; } // end anonymous namespace void ObjCMigrateASTConsumer::HandleTranslationUnit(ASTContext &Ctx) { TranslationUnitDecl *TU = Ctx.getTranslationUnitDecl(); if (ASTMigrateActions & FrontendOptions::ObjCMT_MigrateDecls) { for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end(); D != DEnd; ++D) { FileID FID = PP.getSourceManager().getFileID((*D)->getLocation()); if (FID.isValid()) if (FileId.isValid() && FileId != FID) { if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) AnnotateImplicitBridging(Ctx); } if (ObjCInterfaceDecl *CDecl = dyn_cast(*D)) if (canModify(CDecl)) migrateObjCContainerDecl(Ctx, CDecl); if (ObjCCategoryDecl *CatDecl = dyn_cast(*D)) { if (canModify(CatDecl)) migrateObjCContainerDecl(Ctx, CatDecl); } else if (ObjCProtocolDecl *PDecl = dyn_cast(*D)) { ObjCProtocolDecls.insert(PDecl->getCanonicalDecl()); if (canModify(PDecl)) migrateObjCContainerDecl(Ctx, PDecl); } else if (const ObjCImplementationDecl *ImpDecl = dyn_cast(*D)) { if ((ASTMigrateActions & FrontendOptions::ObjCMT_ProtocolConformance) && canModify(ImpDecl)) migrateProtocolConformance(Ctx, ImpDecl); } else if (const EnumDecl *ED = dyn_cast(*D)) { if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros)) continue; if (!canModify(ED)) continue; DeclContext::decl_iterator N = D; if (++N != DEnd) { const TypedefDecl *TD = dyn_cast(*N); if (migrateNSEnumDecl(Ctx, ED, TD) && TD) D++; } else migrateNSEnumDecl(Ctx, ED, /*TypedefDecl */nullptr); } else if (const TypedefDecl *TD = dyn_cast(*D)) { if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros)) continue; if (!canModify(TD)) continue; DeclContext::decl_iterator N = D; if (++N == DEnd) continue; if (const EnumDecl *ED = dyn_cast(*N)) { if (canModify(ED)) { if (++N != DEnd) if (const TypedefDecl *TDF = dyn_cast(*N)) { // prefer typedef-follows-enum to enum-follows-typedef pattern. if (migrateNSEnumDecl(Ctx, ED, TDF)) { ++D; ++D; CacheObjCNSIntegerTypedefed(TD); continue; } } if (migrateNSEnumDecl(Ctx, ED, TD)) { ++D; continue; } } } CacheObjCNSIntegerTypedefed(TD); } else if (const FunctionDecl *FD = dyn_cast(*D)) { if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) && canModify(FD)) migrateCFAnnotation(Ctx, FD); } if (ObjCContainerDecl *CDecl = dyn_cast(*D)) { bool CanModify = canModify(CDecl); // migrate methods which can have instancetype as their result type. if ((ASTMigrateActions & FrontendOptions::ObjCMT_Instancetype) && CanModify) migrateAllMethodInstaceType(Ctx, CDecl); // annotate methods with CF annotations. if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) && CanModify) migrateARCSafeAnnotation(Ctx, CDecl); } if (const ObjCImplementationDecl * ImplD = dyn_cast(*D)) { if ((ASTMigrateActions & FrontendOptions::ObjCMT_DesignatedInitializer) && canModify(ImplD)) inferDesignatedInitializers(Ctx, ImplD); } } if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) AnnotateImplicitBridging(Ctx); } if (IsOutputFile) { std::error_code EC; llvm::raw_fd_ostream OS(MigrateDir, EC, llvm::sys::fs::OF_None); if (EC) { DiagnosticsEngine &Diags = Ctx.getDiagnostics(); Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0")) << EC.message(); return; } JSONEditWriter Writer(Ctx.getSourceManager(), OS); Editor->applyRewrites(Writer); return; } Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts()); RewritesReceiver Rec(rewriter); Editor->applyRewrites(Rec); for (Rewriter::buffer_iterator I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) { FileID FID = I->first; RewriteBuffer &buf = I->second; OptionalFileEntryRef file = Ctx.getSourceManager().getFileEntryRefForID(FID); assert(file); SmallString<512> newText; llvm::raw_svector_ostream vecOS(newText); buf.write(vecOS); std::unique_ptr memBuf( llvm::MemoryBuffer::getMemBufferCopy(newText.str(), file->getName())); SmallString<64> filePath(file->getName()); FileMgr.FixupRelativePath(filePath); Remapper.remap(filePath.str(), std::move(memBuf)); } if (IsOutputFile) { Remapper.flushToFile(MigrateDir, Ctx.getDiagnostics()); } else { Remapper.flushToDisk(MigrateDir, Ctx.getDiagnostics()); } } bool MigrateSourceAction::BeginInvocation(CompilerInstance &CI) { CI.getDiagnostics().setIgnoreAllWarnings(true); return true; } static std::vector getAllowListFilenames(StringRef DirPath) { using namespace llvm::sys::fs; using namespace llvm::sys::path; std::vector Filenames; if (DirPath.empty() || !is_directory(DirPath)) return Filenames; std::error_code EC; directory_iterator DI = directory_iterator(DirPath, EC); directory_iterator DE; for (; !EC && DI != DE; DI = DI.increment(EC)) { if (is_regular_file(DI->path())) Filenames.push_back(std::string(filename(DI->path()))); } return Filenames; } std::unique_ptr MigrateSourceAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { PPConditionalDirectiveRecord * PPRec = new PPConditionalDirectiveRecord(CI.getSourceManager()); unsigned ObjCMTAction = CI.getFrontendOpts().ObjCMTAction; unsigned ObjCMTOpts = ObjCMTAction; // These are companion flags, they do not enable transformations. ObjCMTOpts &= ~(FrontendOptions::ObjCMT_AtomicProperty | FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty); if (ObjCMTOpts == FrontendOptions::ObjCMT_None) { // If no specific option was given, enable literals+subscripting transforms // by default. ObjCMTAction |= FrontendOptions::ObjCMT_Literals | FrontendOptions::ObjCMT_Subscripting; } CI.getPreprocessor().addPPCallbacks(std::unique_ptr(PPRec)); std::vector AllowList = getAllowListFilenames(CI.getFrontendOpts().ObjCMTAllowListPath); return std::make_unique( CI.getFrontendOpts().OutputFile, ObjCMTAction, Remapper, CI.getFileManager(), PPRec, CI.getPreprocessor(), /*isOutputFile=*/true, AllowList); } namespace { struct EditEntry { OptionalFileEntryRef File; unsigned Offset = 0; unsigned RemoveLen = 0; std::string Text; }; } // end anonymous namespace namespace llvm { template<> struct DenseMapInfo { static inline EditEntry getEmptyKey() { EditEntry Entry; Entry.Offset = unsigned(-1); return Entry; } static inline EditEntry getTombstoneKey() { EditEntry Entry; Entry.Offset = unsigned(-2); return Entry; } static unsigned getHashValue(const EditEntry& Val) { return (unsigned)llvm::hash_combine(Val.File, Val.Offset, Val.RemoveLen, Val.Text); } static bool isEqual(const EditEntry &LHS, const EditEntry &RHS) { return LHS.File == RHS.File && LHS.Offset == RHS.Offset && LHS.RemoveLen == RHS.RemoveLen && LHS.Text == RHS.Text; } }; } // end namespace llvm namespace { class RemapFileParser { FileManager &FileMgr; public: RemapFileParser(FileManager &FileMgr) : FileMgr(FileMgr) { } bool parse(StringRef File, SmallVectorImpl &Entries) { using namespace llvm::yaml; llvm::ErrorOr> FileBufOrErr = llvm::MemoryBuffer::getFile(File); if (!FileBufOrErr) return true; llvm::SourceMgr SM; Stream YAMLStream(FileBufOrErr.get()->getMemBufferRef(), SM); document_iterator I = YAMLStream.begin(); if (I == YAMLStream.end()) return true; Node *Root = I->getRoot(); if (!Root) return true; SequenceNode *SeqNode = dyn_cast(Root); if (!SeqNode) return true; for (SequenceNode::iterator AI = SeqNode->begin(), AE = SeqNode->end(); AI != AE; ++AI) { MappingNode *MapNode = dyn_cast(&*AI); if (!MapNode) continue; parseEdit(MapNode, Entries); } return false; } private: void parseEdit(llvm::yaml::MappingNode *Node, SmallVectorImpl &Entries) { using namespace llvm::yaml; EditEntry Entry; bool Ignore = false; for (MappingNode::iterator KVI = Node->begin(), KVE = Node->end(); KVI != KVE; ++KVI) { ScalarNode *KeyString = dyn_cast((*KVI).getKey()); if (!KeyString) continue; SmallString<10> KeyStorage; StringRef Key = KeyString->getValue(KeyStorage); ScalarNode *ValueString = dyn_cast((*KVI).getValue()); if (!ValueString) continue; SmallString<64> ValueStorage; StringRef Val = ValueString->getValue(ValueStorage); if (Key == "file") { if (auto File = FileMgr.getOptionalFileRef(Val)) Entry.File = File; else Ignore = true; } else if (Key == "offset") { if (Val.getAsInteger(10, Entry.Offset)) Ignore = true; } else if (Key == "remove") { if (Val.getAsInteger(10, Entry.RemoveLen)) Ignore = true; } else if (Key == "text") { Entry.Text = std::string(Val); } } if (!Ignore) Entries.push_back(Entry); } }; } // end anonymous namespace static bool reportDiag(const Twine &Err, DiagnosticsEngine &Diag) { Diag.Report(Diag.getCustomDiagID(DiagnosticsEngine::Error, "%0")) << Err.str(); return true; } static std::string applyEditsToTemp(FileEntryRef FE, ArrayRef Edits, FileManager &FileMgr, DiagnosticsEngine &Diag) { using namespace llvm::sys; SourceManager SM(Diag, FileMgr); FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User); LangOptions LangOpts; edit::EditedSource Editor(SM, LangOpts); for (ArrayRef::iterator I = Edits.begin(), E = Edits.end(); I != E; ++I) { const EditEntry &Entry = *I; assert(Entry.File == FE); SourceLocation Loc = SM.getLocForStartOfFile(FID).getLocWithOffset(Entry.Offset); CharSourceRange Range; if (Entry.RemoveLen != 0) { Range = CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(Entry.RemoveLen)); } edit::Commit commit(Editor); if (Range.isInvalid()) { commit.insert(Loc, Entry.Text); } else if (Entry.Text.empty()) { commit.remove(Range); } else { commit.replace(Range, Entry.Text); } Editor.commit(commit); } Rewriter rewriter(SM, LangOpts); RewritesReceiver Rec(rewriter); Editor.applyRewrites(Rec, /*adjustRemovals=*/false); const RewriteBuffer *Buf = rewriter.getRewriteBufferFor(FID); SmallString<512> NewText; llvm::raw_svector_ostream OS(NewText); Buf->write(OS); SmallString<64> TempPath; int FD; if (fs::createTemporaryFile(path::filename(FE.getName()), path::extension(FE.getName()).drop_front(), FD, TempPath)) { reportDiag("Could not create file: " + TempPath.str(), Diag); return std::string(); } llvm::raw_fd_ostream TmpOut(FD, /*shouldClose=*/true); TmpOut.write(NewText.data(), NewText.size()); TmpOut.close(); return std::string(TempPath); } bool arcmt::getFileRemappingsFromFileList( std::vector > &remap, ArrayRef remapFiles, DiagnosticConsumer *DiagClient) { bool hasErrorOccurred = false; FileSystemOptions FSOpts; FileManager FileMgr(FSOpts); RemapFileParser Parser(FileMgr); IntrusiveRefCntPtr DiagID(new DiagnosticIDs()); IntrusiveRefCntPtr Diags( new DiagnosticsEngine(DiagID, new DiagnosticOptions, DiagClient, /*ShouldOwnClient=*/false)); typedef llvm::DenseMap > FileEditEntriesTy; FileEditEntriesTy FileEditEntries; llvm::DenseSet EntriesSet; for (ArrayRef::iterator I = remapFiles.begin(), E = remapFiles.end(); I != E; ++I) { SmallVector Entries; if (Parser.parse(*I, Entries)) continue; for (SmallVectorImpl::iterator EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { EditEntry &Entry = *EI; if (!Entry.File) continue; std::pair::iterator, bool> Insert = EntriesSet.insert(Entry); if (!Insert.second) continue; FileEditEntries[*Entry.File].push_back(Entry); } } for (FileEditEntriesTy::iterator I = FileEditEntries.begin(), E = FileEditEntries.end(); I != E; ++I) { std::string TempFile = applyEditsToTemp(I->first, I->second, FileMgr, *Diags); if (TempFile.empty()) { hasErrorOccurred = true; continue; } remap.emplace_back(std::string(I->first.getName()), TempFile); } return hasErrorOccurred; }