/* * Helper for single-precision routines which calculate exp(x) and do not * need special-case handling * * Copyright (c) 2019-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef PL_MATH_V_EXPF_INLINE_H #define PL_MATH_V_EXPF_INLINE_H #include "v_math.h" struct v_expf_data { float32x4_t poly[5]; float32x4_t shift, invln2_and_ln2; }; /* maxerr: 1.45358 +0.5 ulp. */ #define V_EXPF_DATA \ { \ .poly = { V4 (0x1.0e4020p-7f), V4 (0x1.573e2ep-5f), V4 (0x1.555e66p-3f), \ V4 (0x1.fffdb6p-2f), V4 (0x1.ffffecp-1f) }, \ .shift = V4 (0x1.8p23f), \ .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 }, \ } #define ExponentBias v_u32 (0x3f800000) /* asuint(1.0f). */ #define C(i) d->poly[i] static inline float32x4_t v_expf_inline (float32x4_t x, const struct v_expf_data *d) { /* Helper routine for calculating exp(x). Copied from v_expf.c, with all special-case handling removed - the calling routine should handle special values if required. */ /* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)] x = ln2*n + r, with r in [-ln2/2, ln2/2]. */ float32x4_t n, r, z; z = vfmaq_laneq_f32 (d->shift, x, d->invln2_and_ln2, 0); n = vsubq_f32 (z, d->shift); r = vfmsq_laneq_f32 (x, n, d->invln2_and_ln2, 1); r = vfmsq_laneq_f32 (r, n, d->invln2_and_ln2, 2); uint32x4_t e = vshlq_n_u32 (vreinterpretq_u32_f32 (z), 23); float32x4_t scale = vreinterpretq_f32_u32 (vaddq_u32 (e, ExponentBias)); /* Custom order-4 Estrin avoids building high order monomial. */ float32x4_t r2 = vmulq_f32 (r, r); float32x4_t p, q, poly; p = vfmaq_f32 (C (1), C (0), r); q = vfmaq_f32 (C (3), C (2), r); q = vfmaq_f32 (q, p, r2); p = vmulq_f32 (C (4), r); poly = vfmaq_f32 (p, q, r2); return vfmaq_f32 (scale, poly, scale); } #endif // PL_MATH_V_EXPF_INLINE_H