/* * Double-precision vector acos(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "poly_advsimd_f64.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { float64x2_t poly[12]; float64x2_t pi, pi_over_2; uint64x2_t abs_mask; } data = { /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */ .poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4), V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6), V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6), V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7), V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6), V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), }, .pi = V2 (0x1.921fb54442d18p+1), .pi_over_2 = V2 (0x1.921fb54442d18p+0), .abs_mask = V2 (0x7fffffffffffffff), }; #define AllMask v_u64 (0xffffffffffffffff) #define Oneu (0x3ff0000000000000) #define Small (0x3e50000000000000) /* 2^-53. */ #if WANT_SIMD_EXCEPT static float64x2_t VPCS_ATTR NOINLINE special_case (float64x2_t x, float64x2_t y, uint64x2_t special) { return v_call_f64 (acos, x, y, special); } #endif /* Double-precision implementation of vector acos(x). For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct rounding. If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following approximation. For |x| in [Small, 0.5], use an order 11 polynomial P such that the final approximation of asin is an odd polynomial: acos(x) ~ pi/2 - (x + x^3 P(x^2)). The largest observed error in this region is 1.18 ulps, _ZGVnN2v_acos (0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0 want 0x1.0d54d1985c069p+0. For |x| in [0.5, 1.0], use same approximation with a change of variable acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). The largest observed error in this region is 1.52 ulps, _ZGVnN2v_acos (0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1 want 0x1.edbbedf8a7d6cp-1. */ float64x2_t VPCS_ATTR V_NAME_D1 (acos) (float64x2_t x) { const struct data *d = ptr_barrier (&data); float64x2_t ax = vabsq_f64 (x); #if WANT_SIMD_EXCEPT /* A single comparison for One, Small and QNaN. */ uint64x2_t special = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)), v_u64 (Oneu - Small)); if (unlikely (v_any_u64 (special))) return special_case (x, x, AllMask); #endif uint64x2_t a_le_half = vcleq_f64 (ax, v_f64 (0.5)); /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with z2 = x ^ 2 and z = |x| , if |x| < 0.5 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ float64x2_t z2 = vbslq_f64 (a_le_half, vmulq_f64 (x, x), vfmaq_f64 (v_f64 (0.5), v_f64 (-0.5), ax)); float64x2_t z = vbslq_f64 (a_le_half, ax, vsqrtq_f64 (z2)); /* Use a single polynomial approximation P for both intervals. */ float64x2_t z4 = vmulq_f64 (z2, z2); float64x2_t z8 = vmulq_f64 (z4, z4); float64x2_t z16 = vmulq_f64 (z8, z8); float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly); /* Finalize polynomial: z + z * z2 * P(z2). */ p = vfmaq_f64 (z, vmulq_f64 (z, z2), p); /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 = 2 Q(|x|) , for 0.5 < x < 1.0 = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ float64x2_t y = vbslq_f64 (d->abs_mask, p, x); uint64x2_t is_neg = vcltzq_f64 (x); float64x2_t off = vreinterpretq_f64_u64 ( vandq_u64 (is_neg, vreinterpretq_u64_f64 (d->pi))); float64x2_t mul = vbslq_f64 (a_le_half, v_f64 (-1.0), v_f64 (2.0)); float64x2_t add = vbslq_f64 (a_le_half, d->pi_over_2, off); return vfmaq_f64 (add, mul, y); } PL_SIG (V, D, 1, acos, -1.0, 1.0) PL_TEST_ULP (V_NAME_D1 (acos), 1.02) PL_TEST_EXPECT_FENV (V_NAME_D1 (acos), WANT_SIMD_EXCEPT) PL_TEST_INTERVAL (V_NAME_D1 (acos), 0, Small, 5000) PL_TEST_INTERVAL (V_NAME_D1 (acos), Small, 0.5, 50000) PL_TEST_INTERVAL (V_NAME_D1 (acos), 0.5, 1.0, 50000) PL_TEST_INTERVAL (V_NAME_D1 (acos), 1.0, 0x1p11, 50000) PL_TEST_INTERVAL (V_NAME_D1 (acos), 0x1p11, inf, 20000) PL_TEST_INTERVAL (V_NAME_D1 (acos), -0, -inf, 20000)