/* * Core approximation for double-precision vector sincos * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "poly_sve_f64.h" static const struct sv_sincos_data { double sin_poly[7], cos_poly[6], pio2[3]; double inv_pio2, shift, range_val; } sv_sincos_data = { .inv_pio2 = 0x1.45f306dc9c882p-1, .pio2 = { 0x1.921fb50000000p+0, 0x1.110b460000000p-26, 0x1.1a62633145c07p-54 }, .shift = 0x1.8p52, .sin_poly = { /* Computed using Remez in [-pi/2, pi/2]. */ -0x1.555555555547bp-3, 0x1.1111111108a4dp-7, -0x1.a01a019936f27p-13, 0x1.71de37a97d93ep-19, -0x1.ae633919987c6p-26, 0x1.60e277ae07cecp-33, -0x1.9e9540300a1p-41 }, .cos_poly = { /* Computed using Remez in [-pi/4, pi/4]. */ 0x1.555555555554cp-5, -0x1.6c16c16c1521fp-10, 0x1.a01a019cbf62ap-16, -0x1.27e4f812b681ep-22, 0x1.1ee9f152a57cdp-29, -0x1.8fb131098404bp-37 }, .range_val = 0x1p23, }; static inline svbool_t check_ge_rangeval (svbool_t pg, svfloat64_t x, const struct sv_sincos_data *d) { svbool_t in_bounds = svaclt (pg, x, d->range_val); return svnot_z (pg, in_bounds); } /* Double-precision vector function allowing calculation of both sin and cos in one function call, using shared argument reduction and separate polynomials. Largest observed error is for sin, 3.22 ULP: v_sincos_sin (0x1.d70eef40f39b1p+12) got -0x1.ffe9537d5dbb7p-3 want -0x1.ffe9537d5dbb4p-3. */ static inline svfloat64x2_t sv_sincos_inline (svbool_t pg, svfloat64_t x, const struct sv_sincos_data *d) { /* q = nearest integer to 2 * x / pi. */ svfloat64_t q = svsub_x (pg, svmla_x (pg, sv_f64 (d->shift), x, d->inv_pio2), d->shift); svint64_t n = svcvt_s64_x (pg, q); /* Reduce x such that r is in [ -pi/4, pi/4 ]. */ svfloat64_t r = x; r = svmls_x (pg, r, q, d->pio2[0]); r = svmls_x (pg, r, q, d->pio2[1]); r = svmls_x (pg, r, q, d->pio2[2]); svfloat64_t r2 = svmul_x (pg, r, r), r3 = svmul_x (pg, r2, r), r4 = svmul_x (pg, r2, r2); /* Approximate sin(r) ~= r + r^3 * poly_sin(r^2). */ svfloat64_t s = sv_pw_horner_6_f64_x (pg, r2, r4, d->sin_poly); s = svmla_x (pg, r, r3, s); /* Approximate cos(r) ~= 1 - (r^2)/2 + r^4 * poly_cos(r^2). */ svfloat64_t c = sv_pw_horner_5_f64_x (pg, r2, r4, d->cos_poly); c = svmad_x (pg, c, r2, -0.5); c = svmad_x (pg, c, r2, 1); svuint64_t un = svreinterpret_u64 (n); /* If odd quadrant, swap cos and sin. */ svbool_t swap = svcmpeq (pg, svlsl_x (pg, un, 63), 0); svfloat64_t ss = svsel (swap, s, c); svfloat64_t cc = svsel (swap, c, s); /* Fix signs according to quadrant. ss = asdouble(asuint64(ss) ^ ((n & 2) << 62)) cc = asdouble(asuint64(cc) & (((n + 1) & 2) << 62)). */ svuint64_t sin_sign = svlsl_x (pg, svand_x (pg, un, 2), 62); svuint64_t cos_sign = svlsl_x ( pg, svand_x (pg, svreinterpret_u64 (svadd_x (pg, n, 1)), 2), 62); ss = svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (ss), sin_sign)); cc = svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (cc), cos_sign)); return svcreate2 (ss, cc); }