/* * Single-precision e^x - 1 function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "poly_scalar_f32.h" #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" #define Shift (0x1.8p23f) #define InvLn2 (0x1.715476p+0f) #define Ln2hi (0x1.62e4p-1f) #define Ln2lo (0x1.7f7d1cp-20f) #define AbsMask (0x7fffffff) #define InfLimit \ (0x1.644716p6) /* Smallest value of x for which expm1(x) overflows. */ #define NegLimit \ (-0x1.9bbabcp+6) /* Largest value of x for which expm1(x) rounds to 1. */ /* Approximation for exp(x) - 1 using polynomial on a reduced interval. The maximum error is 1.51 ULP: expm1f(0x1.8baa96p-2) got 0x1.e2fb9p-2 want 0x1.e2fb94p-2. */ float expm1f (float x) { uint32_t ix = asuint (x); uint32_t ax = ix & AbsMask; /* Tiny: |x| < 0x1p-23. expm1(x) is closely approximated by x. Inf: x == +Inf => expm1(x) = x. */ if (ax <= 0x34000000 || (ix == 0x7f800000)) return x; /* +/-NaN. */ if (ax > 0x7f800000) return __math_invalidf (x); if (x >= InfLimit) return __math_oflowf (0); if (x <= NegLimit || ix == 0xff800000) return -1; /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ float j = fmaf (InvLn2, x, Shift) - Shift; int32_t i = j; float f = fmaf (j, -Ln2hi, x); f = fmaf (j, -Ln2lo, f); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ float p = fmaf (f * f, horner_4_f32 (f, __expm1f_poly), f); /* Assemble the result, using a slight rearrangement to achieve acceptable accuracy. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^(i - 1). */ float t = ldexpf (0.5f, i); /* expm1(x) ~= 2 * (p * t + (t - 1/2)). */ return 2 * fmaf (p, t, t - 0.5f); } PL_SIG (S, F, 1, expm1, -9.9, 9.9) PL_TEST_ULP (expm1f, 1.02) PL_TEST_SYM_INTERVAL (expm1f, 0, 0x1p-23, 1000) PL_TEST_INTERVAL (expm1f, 0x1p-23, 0x1.644716p6, 100000) PL_TEST_INTERVAL (expm1f, 0x1.644716p6, inf, 1000) PL_TEST_INTERVAL (expm1f, -0x1p-23, -0x1.9bbabcp+6, 100000) PL_TEST_INTERVAL (expm1f, -0x1.9bbabcp+6, -inf, 1000)