/* * Single-precision erf(x) function. * * Copyright (c) 2020, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include #include #include "math_config.h" #define TwoOverSqrtPiMinusOne 0x1.06eba8p-3f #define A __erff_data.erff_poly_A #define B __erff_data.erff_poly_B /* Top 12 bits of a float. */ static inline uint32_t top12 (float x) { return asuint (x) >> 20; } /* Efficient implementation of erff using either a pure polynomial approximation or the exponential of a polynomial. Worst-case error is 1.09ulps at 0x1.c111acp-1. */ float erff (float x) { float r, x2, u; /* Get top word. */ uint32_t ix = asuint (x); uint32_t sign = ix >> 31; uint32_t ia12 = top12 (x) & 0x7ff; /* Limit of both intervals is 0.875 for performance reasons but coefficients computed on [0.0, 0.921875] and [0.921875, 4.0], which brought accuracy from 0.94 to 1.1ulps. */ if (ia12 < 0x3f6) { /* a = |x| < 0.875. */ /* Tiny and subnormal cases. */ if (unlikely (ia12 < 0x318)) { /* |x| < 2^(-28). */ if (unlikely (ia12 < 0x040)) { /* |x| < 2^(-119). */ float y = fmaf (TwoOverSqrtPiMinusOne, x, x); return check_uflowf (y); } return x + TwoOverSqrtPiMinusOne * x; } x2 = x * x; /* Normalized cases (|x| < 0.921875). Use Horner scheme for x+x*P(x^2). */ r = A[5]; r = fmaf (r, x2, A[4]); r = fmaf (r, x2, A[3]); r = fmaf (r, x2, A[2]); r = fmaf (r, x2, A[1]); r = fmaf (r, x2, A[0]); r = fmaf (r, x, x); } else if (ia12 < 0x408) { /* |x| < 4.0 - Use a custom Estrin scheme. */ float a = fabsf (x); /* Start with Estrin scheme on high order (small magnitude) coefficients. */ r = fmaf (B[6], a, B[5]); u = fmaf (B[4], a, B[3]); x2 = x * x; r = fmaf (r, x2, u); /* Then switch to pure Horner scheme. */ r = fmaf (r, a, B[2]); r = fmaf (r, a, B[1]); r = fmaf (r, a, B[0]); r = fmaf (r, a, a); /* Single precision exponential with ~0.5ulps, ensures erff has max. rel. error < 1ulp on [0.921875, 4.0], < 1.1ulps on [0.875, 4.0]. */ r = expf (-r); /* Explicit copysign (calling copysignf increases latency). */ if (sign) r = -1.0f + r; else r = 1.0f - r; } else { /* |x| >= 4.0. */ /* Special cases : erff(nan)=nan, erff(+inf)=+1 and erff(-inf)=-1. */ if (unlikely (ia12 >= 0x7f8)) return (1.f - (float) ((ix >> 31) << 1)) + 1.f / x; /* Explicit copysign (calling copysignf increases latency). */ if (sign) r = -1.0f; else r = 1.0f; } return r; }