/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2008-2012 Semihalf. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "platform_if.h" #ifdef SMP extern void *ap_pcpu; extern vm_paddr_t kernload; /* Kernel physical load address */ extern uint8_t __boot_page[]; /* Boot page body */ extern vm_paddr_t bp_kernload; /* Boot page copy of kernload */ extern vm_offset_t bp_virtaddr; /* Virtual address of boot page */ extern vm_offset_t __startkernel; struct cpu_release { uint32_t entry_h; uint32_t entry_l; uint32_t r3_h; uint32_t r3_l; uint32_t reserved; uint32_t pir; }; #endif extern uint32_t *bootinfo; vm_paddr_t ccsrbar_pa; vm_offset_t ccsrbar_va; vm_size_t ccsrbar_size; static int cpu, maxcpu; static device_t rcpm_dev; static void dummy_freeze(device_t, bool); static void (*freeze_timebase)(device_t, bool) = dummy_freeze; static int mpc85xx_probe(platform_t); static void mpc85xx_mem_regions(platform_t, struct mem_region *phys, int *physsz, struct mem_region *avail, int *availsz); static u_long mpc85xx_timebase_freq(platform_t, struct cpuref *cpuref); static int mpc85xx_smp_first_cpu(platform_t, struct cpuref *cpuref); static int mpc85xx_smp_next_cpu(platform_t, struct cpuref *cpuref); static int mpc85xx_smp_get_bsp(platform_t, struct cpuref *cpuref); static int mpc85xx_smp_start_cpu(platform_t, struct pcpu *cpu); static void mpc85xx_smp_timebase_sync(platform_t, u_long tb, int ap); static void mpc85xx_reset(platform_t); static platform_method_t mpc85xx_methods[] = { PLATFORMMETHOD(platform_probe, mpc85xx_probe), PLATFORMMETHOD(platform_attach, mpc85xx_attach), PLATFORMMETHOD(platform_mem_regions, mpc85xx_mem_regions), PLATFORMMETHOD(platform_timebase_freq, mpc85xx_timebase_freq), PLATFORMMETHOD(platform_smp_first_cpu, mpc85xx_smp_first_cpu), PLATFORMMETHOD(platform_smp_next_cpu, mpc85xx_smp_next_cpu), PLATFORMMETHOD(platform_smp_get_bsp, mpc85xx_smp_get_bsp), PLATFORMMETHOD(platform_smp_start_cpu, mpc85xx_smp_start_cpu), PLATFORMMETHOD(platform_smp_timebase_sync, mpc85xx_smp_timebase_sync), PLATFORMMETHOD(platform_reset, mpc85xx_reset), PLATFORMMETHOD_END }; DEFINE_CLASS_0(mpc85xx, mpc85xx_platform, mpc85xx_methods, 0); PLATFORM_DEF(mpc85xx_platform); static int mpc85xx_probe(platform_t plat) { u_int pvr = (mfpvr() >> 16) & 0xFFFF; switch (pvr) { case FSL_E500v1: case FSL_E500v2: case FSL_E500mc: case FSL_E5500: case FSL_E6500: return (BUS_PROBE_DEFAULT); } return (ENXIO); } int mpc85xx_attach(platform_t plat) { phandle_t cpus, child, ccsr; const char *soc_name_guesses[] = {"/soc", "soc", NULL}; const char **name; pcell_t ranges[6], acells, pacells, scells; uint64_t ccsrbar, ccsrsize; int i; if ((cpus = OF_finddevice("/cpus")) != -1) { for (maxcpu = 0, child = OF_child(cpus); child != 0; child = OF_peer(child), maxcpu++) ; } else maxcpu = 1; /* * Locate CCSR region. Irritatingly, there is no way to find it * unless you already know where it is. Try to infer its location * from the device tree. */ ccsr = -1; for (name = soc_name_guesses; *name != NULL && ccsr == -1; name++) ccsr = OF_finddevice(*name); if (ccsr == -1) { char type[64]; /* That didn't work. Search for devices of type "soc" */ child = OF_child(OF_peer(0)); for (OF_child(child); child != 0; child = OF_peer(child)) { if (OF_getprop(child, "device_type", type, sizeof(type)) <= 0) continue; if (strcmp(type, "soc") == 0) { ccsr = child; break; } } } if (ccsr == -1) panic("Could not locate CCSR window!"); OF_getprop(ccsr, "#size-cells", &scells, sizeof(scells)); OF_getprop(ccsr, "#address-cells", &acells, sizeof(acells)); OF_searchprop(OF_parent(ccsr), "#address-cells", &pacells, sizeof(pacells)); OF_getprop(ccsr, "ranges", ranges, sizeof(ranges)); ccsrbar = ccsrsize = 0; for (i = acells; i < acells + pacells; i++) { ccsrbar <<= 32; ccsrbar |= ranges[i]; } for (i = acells + pacells; i < acells + pacells + scells; i++) { ccsrsize <<= 32; ccsrsize |= ranges[i]; } ccsrbar_va = pmap_early_io_map(ccsrbar, ccsrsize); ccsrbar_pa = ccsrbar; ccsrbar_size = ccsrsize; mpc85xx_enable_l3_cache(); return (0); } void mpc85xx_mem_regions(platform_t plat, struct mem_region *phys, int *physsz, struct mem_region *avail, int *availsz) { ofw_mem_regions(phys, physsz, avail, availsz); } static u_long mpc85xx_timebase_freq(platform_t plat, struct cpuref *cpuref) { u_long ticks; phandle_t cpus, child; pcell_t freq; if (bootinfo != NULL) { if (bootinfo[0] == 1) { /* Backward compatibility. See 8-STABLE. */ ticks = bootinfo[3] >> 3; } else { /* Compatibility with Juniper's loader. */ ticks = bootinfo[5] >> 3; } } else ticks = 0; if ((cpus = OF_finddevice("/cpus")) == -1) goto out; if ((child = OF_child(cpus)) == 0) goto out; switch (OF_getproplen(child, "timebase-frequency")) { case 4: { uint32_t tbase; OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase)); ticks = tbase; return (ticks); } case 8: { uint64_t tbase; OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase)); ticks = tbase; return (ticks); } default: break; } freq = 0; if (OF_getprop(child, "bus-frequency", (void *)&freq, sizeof(freq)) <= 0) goto out; if (freq == 0) goto out; /* * Time Base and Decrementer are updated every 8 CCB bus clocks. * HID0[SEL_TBCLK] = 0 */ if (mpc85xx_is_qoriq()) ticks = freq / 32; else ticks = freq / 8; out: if (ticks <= 0) panic("Unable to determine timebase frequency!"); return (ticks); } static int mpc85xx_smp_first_cpu(platform_t plat, struct cpuref *cpuref) { cpu = 0; cpuref->cr_cpuid = cpu; cpuref->cr_hwref = cpuref->cr_cpuid; if (bootverbose) printf("powerpc_smp_first_cpu: cpuid %d\n", cpuref->cr_cpuid); cpu++; return (0); } static int mpc85xx_smp_next_cpu(platform_t plat, struct cpuref *cpuref) { if (cpu >= maxcpu) return (ENOENT); cpuref->cr_cpuid = cpu++; cpuref->cr_hwref = cpuref->cr_cpuid; if (bootverbose) printf("powerpc_smp_next_cpu: cpuid %d\n", cpuref->cr_cpuid); return (0); } static int mpc85xx_smp_get_bsp(platform_t plat, struct cpuref *cpuref) { cpuref->cr_cpuid = mfspr(SPR_PIR); cpuref->cr_hwref = cpuref->cr_cpuid; return (0); } #ifdef SMP static int mpc85xx_smp_start_cpu_epapr(platform_t plat, struct pcpu *pc) { vm_paddr_t rel_pa, bptr; volatile struct cpu_release *rel; vm_offset_t rel_va, rel_page; phandle_t node; int i; /* If we're calling this, the node already exists. */ node = OF_finddevice("/cpus"); for (i = 0, node = OF_child(node); i < pc->pc_cpuid; i++, node = OF_peer(node)) ; if (OF_getencprop(node, "cpu-release-addr", (pcell_t *)&rel_pa, sizeof(rel_pa)) == -1) { return (ENOENT); } rel_page = kva_alloc(PAGE_SIZE); if (rel_page == 0) return (ENOMEM); critical_enter(); rel_va = rel_page + (rel_pa & PAGE_MASK); pmap_kenter(rel_page, rel_pa & ~PAGE_MASK); rel = (struct cpu_release *)rel_va; bptr = pmap_kextract((uintptr_t)__boot_page); cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel)); rel->pir = pc->pc_cpuid; __asm __volatile("sync" ::: "memory"); rel->entry_h = (bptr >> 32); __asm __volatile("sync" ::: "memory"); cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel)); rel->entry_l = bptr & 0xffffffff; __asm __volatile("sync" ::: "memory"); cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel)); if (bootverbose) printf("Waking up CPU %d via CPU release page %p\n", pc->pc_cpuid, rel); critical_exit(); pmap_kremove(rel_page); kva_free(rel_page, PAGE_SIZE); return (0); } #endif static int mpc85xx_smp_start_cpu(platform_t plat, struct pcpu *pc) { #ifdef SMP vm_paddr_t bptr; uint32_t reg; int timeout; uintptr_t brr; int cpuid; int epapr_boot = 0; uint32_t tgt; if (mpc85xx_is_qoriq()) { reg = ccsr_read4(OCP85XX_COREDISR); cpuid = pc->pc_cpuid; if ((reg & (1 << cpuid)) != 0) { printf("%s: CPU %d is disabled!\n", __func__, pc->pc_cpuid); return (-1); } brr = OCP85XX_BRR; } else { brr = OCP85XX_EEBPCR; cpuid = pc->pc_cpuid + 24; } bp_kernload = kernload; bp_virtaddr = (vm_offset_t)&__boot_page; /* * bp_kernload and bp_virtaddr are in the boot page. Sync the cache * because ePAPR booting has the other core(s) already running. */ cpu_flush_dcache(&bp_kernload, sizeof(bp_kernload)); cpu_flush_dcache(&bp_virtaddr, sizeof(bp_virtaddr)); ap_pcpu = pc; __asm __volatile("msync; isync"); /* First try the ePAPR way. */ if (mpc85xx_smp_start_cpu_epapr(plat, pc) == 0) { epapr_boot = 1; goto spin_wait; } reg = ccsr_read4(brr); if ((reg & (1 << cpuid)) != 0) { printf("SMP: CPU %d already out of hold-off state!\n", pc->pc_cpuid); return (ENXIO); } /* Flush caches to have our changes hit DRAM. */ cpu_flush_dcache(__boot_page, 4096); bptr = pmap_kextract((uintptr_t)__boot_page); KASSERT((bptr & 0xfff) == 0, ("%s: boot page is not aligned (%#jx)", __func__, (uintmax_t)bptr)); if (mpc85xx_is_qoriq()) { /* * Read DDR controller configuration to select proper BPTR target ID. * * On P5020 bit 29 of DDR1_CS0_CONFIG enables DDR controllers * interleaving. If this bit is set, we have to use * OCP85XX_TGTIF_RAM_INTL as BPTR target ID. On other QorIQ DPAA SoCs, * this bit is reserved and always 0. */ reg = ccsr_read4(OCP85XX_DDR1_CS0_CONFIG); if (reg & (1 << 29)) tgt = OCP85XX_TGTIF_RAM_INTL; else tgt = OCP85XX_TGTIF_RAM1; /* * Set BSTR to the physical address of the boot page */ ccsr_write4(OCP85XX_BSTRH, bptr >> 32); ccsr_write4(OCP85XX_BSTRL, bptr); ccsr_write4(OCP85XX_BSTAR, OCP85XX_ENA_MASK | (tgt << OCP85XX_TRGT_SHIFT_QORIQ) | (ffsl(PAGE_SIZE) - 2)); /* Read back OCP85XX_BSTAR to synchronize write */ ccsr_read4(OCP85XX_BSTAR); /* * Enable and configure time base on new CPU. */ /* Set TB clock source to platform clock / 32 */ reg = ccsr_read4(CCSR_CTBCKSELR); ccsr_write4(CCSR_CTBCKSELR, reg & ~(1 << pc->pc_cpuid)); /* Enable TB */ reg = ccsr_read4(CCSR_CTBENR); ccsr_write4(CCSR_CTBENR, reg | (1 << pc->pc_cpuid)); } else { /* * Set BPTR to the physical address of the boot page */ bptr = (bptr >> 12) | 0x80000000u; ccsr_write4(OCP85XX_BPTR, bptr); __asm __volatile("isync; msync"); } /* * Release AP from hold-off state */ reg = ccsr_read4(brr); ccsr_write4(brr, reg | (1 << cpuid)); __asm __volatile("isync; msync"); spin_wait: timeout = 500; while (!pc->pc_awake && timeout--) DELAY(1000); /* wait 1ms */ /* * Disable boot page translation so that the 4K page at the default * address (= 0xfffff000) isn't permanently remapped and thus not * usable otherwise. */ if (!epapr_boot) { if (mpc85xx_is_qoriq()) ccsr_write4(OCP85XX_BSTAR, 0); else ccsr_write4(OCP85XX_BPTR, 0); __asm __volatile("isync; msync"); } if (!pc->pc_awake) panic("SMP: CPU %d didn't wake up.\n", pc->pc_cpuid); return ((pc->pc_awake) ? 0 : EBUSY); #else /* No SMP support */ return (ENXIO); #endif } static void mpc85xx_reset(platform_t plat) { /* * Try the dedicated reset register first. * If the SoC doesn't have one, we'll fall * back to using the debug control register. */ ccsr_write4(OCP85XX_RSTCR, 2); mtmsr(mfmsr() & ~PSL_DE); /* Enable debug interrupts and issue reset. */ mtspr(SPR_DBCR0, DBCR0_IDM | DBCR0_RST_SYSTEM); __asm __volatile("isync"); /* Enable Debug Interrupts in MSR. */ mtmsr(mfmsr() | PSL_DE); printf("Reset failed...\n"); while (1) ; } static void mpc85xx_smp_timebase_sync(platform_t plat, u_long tb, int ap) { static volatile bool tb_ready; static volatile int cpu_done; if (ap) { /* APs. Hold off until we get a stable timebase. */ while (!tb_ready) atomic_thread_fence_seq_cst(); mttb(tb); atomic_add_int(&cpu_done, 1); while (cpu_done < mp_ncpus) atomic_thread_fence_seq_cst(); } else { /* BSP */ freeze_timebase(rcpm_dev, true); tb_ready = true; mttb(tb); atomic_add_int(&cpu_done, 1); while (cpu_done < mp_ncpus) atomic_thread_fence_seq_cst(); freeze_timebase(rcpm_dev, false); } } /* Fallback freeze. In case no real handler is found in the device tree. */ static void dummy_freeze(device_t dev, bool freeze) { /* Nothing to do here, move along. */ } /* QorIQ Run control/power management timebase management. */ #define RCPM_CTBENR 0x00000084 struct mpc85xx_rcpm_softc { struct resource *sc_mem; }; static void mpc85xx_rcpm_freeze_timebase(device_t dev, bool freeze) { struct mpc85xx_rcpm_softc *sc; sc = device_get_softc(dev); if (freeze) bus_write_4(sc->sc_mem, RCPM_CTBENR, 0); else bus_write_4(sc->sc_mem, RCPM_CTBENR, (1 << maxcpu) - 1); } static int mpc85xx_rcpm_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "fsl,qoriq-rcpm-1.0")) return (ENXIO); device_set_desc(dev, "QorIQ Run control and power management"); return (BUS_PROBE_GENERIC); } static int mpc85xx_rcpm_attach(device_t dev) { struct mpc85xx_rcpm_softc *sc; int rid; sc = device_get_softc(dev); freeze_timebase = mpc85xx_rcpm_freeze_timebase; rcpm_dev = dev; rid = 0; sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE | RF_SHAREABLE); return (0); } static device_method_t mpc85xx_rcpm_methods[] = { DEVMETHOD(device_probe, mpc85xx_rcpm_probe), DEVMETHOD(device_attach, mpc85xx_rcpm_attach), DEVMETHOD_END }; static devclass_t mpc85xx_rcpm_devclass; static driver_t mpc85xx_rcpm_driver = { "rcpm", mpc85xx_rcpm_methods, sizeof(struct mpc85xx_rcpm_softc) }; EARLY_DRIVER_MODULE(mpc85xx_rcpm, simplebus, mpc85xx_rcpm_driver, mpc85xx_rcpm_devclass, 0, 0, BUS_PASS_BUS); /* "Global utilities" power management/Timebase management. */ #define GUTS_DEVDISR 0x00000070 #define DEVDISR_TB0 0x00004000 #define DEVDISR_TB1 0x00001000 struct mpc85xx_guts_softc { struct resource *sc_mem; }; static void mpc85xx_guts_freeze_timebase(device_t dev, bool freeze) { struct mpc85xx_guts_softc *sc; uint32_t devdisr; sc = device_get_softc(dev); devdisr = bus_read_4(sc->sc_mem, GUTS_DEVDISR); if (freeze) bus_write_4(sc->sc_mem, GUTS_DEVDISR, devdisr | (DEVDISR_TB0 | DEVDISR_TB1)); else bus_write_4(sc->sc_mem, GUTS_DEVDISR, devdisr & ~(DEVDISR_TB0 | DEVDISR_TB1)); } static int mpc85xx_guts_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "fsl,mpc8572-guts") && !ofw_bus_is_compatible(dev, "fsl,p1020-guts") && !ofw_bus_is_compatible(dev, "fsl,p1021-guts") && !ofw_bus_is_compatible(dev, "fsl,p1022-guts") && !ofw_bus_is_compatible(dev, "fsl,p1023-guts") && !ofw_bus_is_compatible(dev, "fsl,p2020-guts")) return (ENXIO); device_set_desc(dev, "MPC85xx Global Utilities"); return (BUS_PROBE_GENERIC); } static int mpc85xx_guts_attach(device_t dev) { struct mpc85xx_rcpm_softc *sc; int rid; sc = device_get_softc(dev); freeze_timebase = mpc85xx_guts_freeze_timebase; rcpm_dev = dev; rid = 0; sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE | RF_SHAREABLE); return (0); } static device_method_t mpc85xx_guts_methods[] = { DEVMETHOD(device_probe, mpc85xx_guts_probe), DEVMETHOD(device_attach, mpc85xx_guts_attach), DEVMETHOD_END }; static driver_t mpc85xx_guts_driver = { "guts", mpc85xx_guts_methods, sizeof(struct mpc85xx_guts_softc) }; static devclass_t mpc85xx_guts_devclass; EARLY_DRIVER_MODULE(mpc85xx_guts, simplebus, mpc85xx_guts_driver, mpc85xx_guts_devclass, 0, 0, BUS_PASS_BUS);