/* * Octeon Crypto for OCF * * Written by David McCullough * Copyright (C) 2009 David McCullough * * LICENSE TERMS * * The free distribution and use of this software in both source and binary * form is allowed (with or without changes) provided that: * * 1. distributions of this source code include the above copyright * notice, this list of conditions and the following disclaimer; * * 2. distributions in binary form include the above copyright * notice, this list of conditions and the following disclaimer * in the documentation and/or other associated materials; * * 3. the copyright holder's name is not used to endorse products * built using this software without specific written permission. * * DISCLAIMER * * This software is provided 'as is' with no explicit or implied warranties * in respect of its properties, including, but not limited to, correctness * and/or fitness for purpose. * --------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptodev_if.h" struct cryptocteon_softc { int32_t sc_cid; /* opencrypto id */ }; int cryptocteon_debug = 0; TUNABLE_INT("hw.cryptocteon.debug", &cryptocteon_debug); static void cryptocteon_identify(driver_t *, device_t); static int cryptocteon_probe(device_t); static int cryptocteon_attach(device_t); static int cryptocteon_process(device_t, struct cryptop *, int); static int cryptocteon_probesession(device_t, const struct crypto_session_params *); static int cryptocteon_newsession(device_t, crypto_session_t, const struct crypto_session_params *); static void cryptocteon_identify(driver_t *drv, device_t parent) { if (octeon_has_feature(OCTEON_FEATURE_CRYPTO)) BUS_ADD_CHILD(parent, 0, "cryptocteon", 0); } static int cryptocteon_probe(device_t dev) { device_set_desc(dev, "Octeon Secure Coprocessor"); return (0); } static int cryptocteon_attach(device_t dev) { struct cryptocteon_softc *sc; sc = device_get_softc(dev); sc->sc_cid = crypto_get_driverid(dev, sizeof(struct octo_sess), CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC | CRYPTOCAP_F_ACCEL_SOFTWARE); if (sc->sc_cid < 0) { device_printf(dev, "crypto_get_driverid ret %d\n", sc->sc_cid); return (ENXIO); } return (0); } static bool cryptocteon_auth_supported(const struct crypto_session_params *csp) { u_int hash_len; switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: hash_len = SHA1_HASH_LEN; break; default: return (false); } if (csp->csp_auth_klen > hash_len) return (false); return (true); } static bool cryptocteon_cipher_supported(const struct crypto_session_params *csp) { switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: if (csp->csp_ivlen != 16) return (false); if (csp->csp_cipher_klen != 16 && csp->csp_cipher_klen != 24 && csp->csp_cipher_klen != 32) return (false); break; default: return (false); } return (true); } static int cryptocteon_probesession(device_t dev, const struct crypto_session_params *csp) { if (csp->csp_flags != 0) return (EINVAL); switch (csp->csp_mode) { case CSP_MODE_DIGEST: if (!cryptocteon_auth_supported(csp)) return (EINVAL); break; case CSP_MODE_CIPHER: if (!cryptocteon_cipher_supported(csp)) return (EINVAL); break; case CSP_MODE_ETA: if (!cryptocteon_auth_supported(csp) || !cryptocteon_cipher_supported(csp)) return (EINVAL); break; default: return (EINVAL); } return (CRYPTODEV_PROBE_ACCEL_SOFTWARE); } static void cryptocteon_calc_hash(const struct crypto_session_params *csp, const char *key, struct octo_sess *ocd) { char hash_key[SHA1_HASH_LEN]; memset(hash_key, 0, sizeof(hash_key)); memcpy(hash_key, key, csp->csp_auth_klen); octo_calc_hash(csp->csp_auth_alg == CRYPTO_SHA1_HMAC, hash_key, ocd->octo_hminner, ocd->octo_hmouter); } /* Generate a new octo session. */ static int cryptocteon_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct cryptocteon_softc *sc; struct octo_sess *ocd; sc = device_get_softc(dev); ocd = crypto_get_driver_session(cses); ocd->octo_encklen = csp->csp_cipher_klen; if (csp->csp_cipher_key != NULL) memcpy(ocd->octo_enckey, csp->csp_cipher_key, ocd->octo_encklen); if (csp->csp_auth_key != NULL) cryptocteon_calc_hash(csp, csp->csp_auth_key, ocd); ocd->octo_mlen = csp->csp_auth_mlen; if (csp->csp_auth_mlen == 0) { switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: ocd->octo_mlen = SHA1_HASH_LEN; break; } } switch (csp->csp_mode) { case CSP_MODE_DIGEST: switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: ocd->octo_encrypt = octo_null_sha1_encrypt; ocd->octo_decrypt = octo_null_sha1_encrypt; break; } break; case CSP_MODE_CIPHER: switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: ocd->octo_encrypt = octo_aes_cbc_encrypt; ocd->octo_decrypt = octo_aes_cbc_decrypt; break; } break; case CSP_MODE_ETA: switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: ocd->octo_encrypt = octo_aes_cbc_sha1_encrypt; ocd->octo_decrypt = octo_aes_cbc_sha1_decrypt; break; } break; } break; } KASSERT(ocd->octo_encrypt != NULL && ocd->octo_decrypt != NULL, ("%s: missing function pointers", __func__)); return (0); } /* * Process a request. */ static int cryptocteon_process(device_t dev, struct cryptop *crp, int hint) { const struct crypto_session_params *csp; struct octo_sess *od; size_t iovcnt, iovlen; struct mbuf *m = NULL; struct uio *uiop = NULL; unsigned char *ivp = NULL; unsigned char iv_data[16]; unsigned char icv[SHA1_HASH_LEN], icv2[SHA1_HASH_LEN]; int auth_off, auth_len, crypt_off, crypt_len; struct cryptocteon_softc *sc; sc = device_get_softc(dev); crp->crp_etype = 0; od = crypto_get_driver_session(crp->crp_session); csp = crypto_get_params(crp->crp_session); /* * The crypto routines assume that the regions to auth and * cipher are exactly 8 byte multiples and aligned on 8 * byte logical boundaries within the iovecs. */ if (crp->crp_aad_length % 8 != 0 || crp->crp_payload_length % 8 != 0) { crp->crp_etype = EFBIG; goto done; } /* * As currently written, the crypto routines assume the AAD and * payload are adjacent. */ if (crp->crp_aad_length != 0 && crp->crp_payload_start != crp->crp_aad_start + crp->crp_aad_length) { crp->crp_etype = EFBIG; goto done; } crypt_off = crp->crp_payload_start; crypt_len = crp->crp_payload_length; if (crp->crp_aad_length != 0) { auth_off = crp->crp_aad_start; auth_len = crp->crp_aad_length + crp->crp_payload_length; } else { auth_off = crypt_off; auth_len = crypt_len; } /* * do some error checking outside of the loop for m and IOV processing * this leaves us with valid m or uiop pointers for later */ switch (crp->crp_buf.cb_type) { case CRYPTO_BUF_MBUF: { unsigned frags; m = crp->crp_buf.cb_mbuf; for (frags = 0; m != NULL; frags++) m = m->m_next; if (frags >= UIO_MAXIOV) { printf("%s,%d: %d frags > UIO_MAXIOV", __FILE__, __LINE__, frags); crp->crp_etype = EFBIG; goto done; } m = crp->crp_buf.cb_mbuf; break; } case CRYPTO_BUF_UIO: uiop = crp->crp_buf.cb_uio; if (uiop->uio_iovcnt > UIO_MAXIOV) { printf("%s,%d: %d uio_iovcnt > UIO_MAXIOV", __FILE__, __LINE__, uiop->uio_iovcnt); crp->crp_etype = EFBIG; goto done; } break; default: break; } if (csp->csp_cipher_alg != 0) { if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) ivp = crp->crp_iv; else { crypto_copydata(crp, crp->crp_iv_start, csp->csp_ivlen, iv_data); ivp = iv_data; } } /* * setup the I/O vector to cover the buffer */ switch (crp->crp_buf.cb_type) { case CRYPTO_BUF_MBUF: iovcnt = 0; iovlen = 0; while (m != NULL) { od->octo_iov[iovcnt].iov_base = mtod(m, void *); od->octo_iov[iovcnt].iov_len = m->m_len; m = m->m_next; iovlen += od->octo_iov[iovcnt++].iov_len; } break; case CRYPTO_BUF_UIO: iovlen = 0; for (iovcnt = 0; iovcnt < uiop->uio_iovcnt; iovcnt++) { od->octo_iov[iovcnt].iov_base = uiop->uio_iov[iovcnt].iov_base; od->octo_iov[iovcnt].iov_len = uiop->uio_iov[iovcnt].iov_len; iovlen += od->octo_iov[iovcnt].iov_len; } break; case CRYPTO_BUF_CONTIG: iovlen = crp->crp_buf.cb_buf_len; od->octo_iov[0].iov_base = crp->crp_buf.cb_buf; od->octo_iov[0].iov_len = crp->crp_buf.cb_buf_len; iovcnt = 1; break; default: panic("can't happen"); } /* * setup a new explicit key */ if (crp->crp_cipher_key != NULL) memcpy(od->octo_enckey, crp->crp_cipher_key, od->octo_encklen); if (crp->crp_auth_key != NULL) cryptocteon_calc_hash(csp, crp->crp_auth_key, od); if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) (*od->octo_encrypt)(od, od->octo_iov, iovcnt, iovlen, auth_off, auth_len, crypt_off, crypt_len, icv, ivp); else (*od->octo_decrypt)(od, od->octo_iov, iovcnt, iovlen, auth_off, auth_len, crypt_off, crypt_len, icv, ivp); if (csp->csp_auth_alg != 0) { if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { crypto_copydata(crp, crp->crp_digest_start, od->octo_mlen, icv2); if (timingsafe_bcmp(icv, icv2, od->octo_mlen) != 0) crp->crp_etype = EBADMSG; } else crypto_copyback(crp, crp->crp_digest_start, od->octo_mlen, icv); } done: crypto_done(crp); return (0); } static device_method_t cryptocteon_methods[] = { /* device methods */ DEVMETHOD(device_identify, cryptocteon_identify), DEVMETHOD(device_probe, cryptocteon_probe), DEVMETHOD(device_attach, cryptocteon_attach), /* crypto device methods */ DEVMETHOD(cryptodev_probesession, cryptocteon_probesession), DEVMETHOD(cryptodev_newsession, cryptocteon_newsession), DEVMETHOD(cryptodev_process, cryptocteon_process), { 0, 0 } }; static driver_t cryptocteon_driver = { "cryptocteon", cryptocteon_methods, sizeof (struct cryptocteon_softc), }; static devclass_t cryptocteon_devclass; DRIVER_MODULE(cryptocteon, nexus, cryptocteon_driver, cryptocteon_devclass, 0, 0);