#include /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ /* * HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf */ #include "opt_kbd.h" #include "opt_ukbd.h" #include "opt_evdev.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR ukbd_debug #include #include #ifdef EVDEV_SUPPORT #include #include #endif #include #include #include #include /* the initial key map, accent map and fkey strings */ #if defined(UKBD_DFLT_KEYMAP) && !defined(KLD_MODULE) #define KBD_DFLT_KEYMAP #include "ukbdmap.h" #endif /* the following file must be included after "ukbdmap.h" */ #include #ifdef USB_DEBUG static int ukbd_debug = 0; static int ukbd_no_leds = 0; static int ukbd_pollrate = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, ukbd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "USB keyboard"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, debug, CTLFLAG_RWTUN, &ukbd_debug, 0, "Debug level"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, no_leds, CTLFLAG_RWTUN, &ukbd_no_leds, 0, "Disables setting of keyboard leds"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, pollrate, CTLFLAG_RWTUN, &ukbd_pollrate, 0, "Force this polling rate, 1-1000Hz"); #endif #define UKBD_EMULATE_ATSCANCODE 1 #define UKBD_DRIVER_NAME "ukbd" #define UKBD_NKEYCODE 256 /* units */ #define UKBD_IN_BUF_SIZE (4 * UKBD_NKEYCODE) /* scancodes */ #define UKBD_IN_BUF_FULL ((UKBD_IN_BUF_SIZE / 2) - 1) /* scancodes */ #define UKBD_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */ #define UKBD_BUFFER_SIZE 64 /* bytes */ #define UKBD_KEY_PRESSED(map, key) ({ \ CTASSERT((key) >= 0 && (key) < UKBD_NKEYCODE); \ ((map)[(key) / 64] & (1ULL << ((key) % 64))); \ }) #define MOD_EJECT 0x01 #define MOD_FN 0x02 struct ukbd_data { uint64_t bitmap[howmany(UKBD_NKEYCODE, 64)]; }; enum { UKBD_INTR_DT_0, UKBD_INTR_DT_1, UKBD_CTRL_LED, UKBD_N_TRANSFER, }; struct ukbd_softc { keyboard_t sc_kbd; keymap_t sc_keymap; accentmap_t sc_accmap; fkeytab_t sc_fkeymap[UKBD_NFKEY]; uint64_t sc_loc_key_valid[howmany(UKBD_NKEYCODE, 64)]; struct hid_location sc_loc_apple_eject; struct hid_location sc_loc_apple_fn; struct hid_location sc_loc_key[UKBD_NKEYCODE]; struct hid_location sc_loc_numlock; struct hid_location sc_loc_capslock; struct hid_location sc_loc_scrolllock; struct usb_callout sc_callout; struct ukbd_data sc_ndata; struct ukbd_data sc_odata; struct thread *sc_poll_thread; struct usb_device *sc_udev; struct usb_interface *sc_iface; struct usb_xfer *sc_xfer[UKBD_N_TRANSFER]; #ifdef EVDEV_SUPPORT struct evdev_dev *sc_evdev; #endif sbintime_t sc_co_basetime; int sc_delay; uint32_t sc_repeat_time; uint32_t sc_input[UKBD_IN_BUF_SIZE]; /* input buffer */ uint32_t sc_time_ms; uint32_t sc_composed_char; /* composed char code, if non-zero */ #ifdef UKBD_EMULATE_ATSCANCODE uint32_t sc_buffered_char[2]; #endif uint32_t sc_flags; /* flags */ #define UKBD_FLAG_COMPOSE 0x00000001 #define UKBD_FLAG_POLLING 0x00000002 #define UKBD_FLAG_SET_LEDS 0x00000004 #define UKBD_FLAG_ATTACHED 0x00000010 #define UKBD_FLAG_GONE 0x00000020 #define UKBD_FLAG_HID_MASK 0x003fffc0 #define UKBD_FLAG_APPLE_EJECT 0x00000040 #define UKBD_FLAG_APPLE_FN 0x00000080 #define UKBD_FLAG_APPLE_SWAP 0x00000100 #define UKBD_FLAG_NUMLOCK 0x00080000 #define UKBD_FLAG_CAPSLOCK 0x00100000 #define UKBD_FLAG_SCROLLLOCK 0x00200000 int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */ int sc_state; /* shift/lock key state */ int sc_accents; /* accent key index (> 0) */ int sc_polling; /* polling recursion count */ int sc_led_size; int sc_kbd_size; uint16_t sc_inputs; uint16_t sc_inputhead; uint16_t sc_inputtail; uint8_t sc_leds; /* store for async led requests */ uint8_t sc_iface_index; uint8_t sc_iface_no; uint8_t sc_id_apple_eject; uint8_t sc_id_apple_fn; uint8_t sc_id_loc_key[UKBD_NKEYCODE]; uint8_t sc_id_numlock; uint8_t sc_id_capslock; uint8_t sc_id_scrolllock; uint8_t sc_kbd_id; uint8_t sc_repeat_key; uint8_t sc_buffer[UKBD_BUFFER_SIZE]; }; #define KEY_NONE 0x00 #define KEY_ERROR 0x01 #define KEY_PRESS 0 #define KEY_RELEASE 0x400 #define KEY_INDEX(c) ((c) & 0xFF) #define SCAN_PRESS 0 #define SCAN_RELEASE 0x80 #define SCAN_PREFIX_E0 0x100 #define SCAN_PREFIX_E1 0x200 #define SCAN_PREFIX_CTL 0x400 #define SCAN_PREFIX_SHIFT 0x800 #define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \ SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT) #define SCAN_CHAR(c) ((c) & 0x7f) #define UKBD_LOCK() USB_MTX_LOCK(&Giant) #define UKBD_UNLOCK() USB_MTX_UNLOCK(&Giant) #define UKBD_LOCK_ASSERT() USB_MTX_ASSERT(&Giant, MA_OWNED) #define NN 0 /* no translation */ /* * Translate USB keycodes to AT keyboard scancodes. */ /* * FIXME: Mac USB keyboard generates: * 0x53: keypad NumLock/Clear * 0x66: Power * 0x67: keypad = * 0x68: F13 * 0x69: F14 * 0x6a: F15 * * USB Apple Keyboard JIS generates: * 0x90: Kana * 0x91: Eisu */ static const uint8_t ukbd_trtab[256] = { 0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */ 18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */ 50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */ 22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */ 4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */ 28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */ 27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */ 53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */ 65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */ 104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */ 97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */ 89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */ 72, 73, 82, 83, 86, 107, 122, NN, /* 60 - 67 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */ NN, NN, NN, NN, 115, 108, 111, 113, /* 70 - 77 */ 109, 110, 112, 118, 114, 116, 117, 119, /* 78 - 7F */ 121, 120, NN, NN, NN, NN, NN, 123, /* 80 - 87 */ 124, 125, 126, 127, 128, NN, NN, NN, /* 88 - 8F */ 129, 130, NN, NN, NN, NN, NN, NN, /* 90 - 97 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */ NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */ NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */ NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */ NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */ 29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */ NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */ }; static const uint8_t ukbd_boot_desc[] = { 0x05, 0x01, 0x09, 0x06, 0xa1, 0x01, 0x05, 0x07, 0x19, 0xe0, 0x29, 0xe7, 0x15, 0x00, 0x25, 0x01, 0x75, 0x01, 0x95, 0x08, 0x81, 0x02, 0x95, 0x01, 0x75, 0x08, 0x81, 0x01, 0x95, 0x03, 0x75, 0x01, 0x05, 0x08, 0x19, 0x01, 0x29, 0x03, 0x91, 0x02, 0x95, 0x05, 0x75, 0x01, 0x91, 0x01, 0x95, 0x06, 0x75, 0x08, 0x15, 0x00, 0x26, 0xff, 0x00, 0x05, 0x07, 0x19, 0x00, 0x2a, 0xff, 0x00, 0x81, 0x00, 0xc0 }; /* prototypes */ static void ukbd_timeout(void *); static void ukbd_set_leds(struct ukbd_softc *, uint8_t); static int ukbd_set_typematic(keyboard_t *, int); #ifdef UKBD_EMULATE_ATSCANCODE static uint32_t ukbd_atkeycode(int, const uint64_t *); static int ukbd_key2scan(struct ukbd_softc *, int, const uint64_t *, int); #endif static uint32_t ukbd_read_char(keyboard_t *, int); static void ukbd_clear_state(keyboard_t *); static int ukbd_ioctl(keyboard_t *, u_long, caddr_t); static int ukbd_enable(keyboard_t *); static int ukbd_disable(keyboard_t *); static void ukbd_interrupt(struct ukbd_softc *); static void ukbd_event_keyinput(struct ukbd_softc *); static device_probe_t ukbd_probe; static device_attach_t ukbd_attach; static device_detach_t ukbd_detach; static device_resume_t ukbd_resume; #ifdef EVDEV_SUPPORT static evdev_event_t ukbd_ev_event; static const struct evdev_methods ukbd_evdev_methods = { .ev_event = ukbd_ev_event, }; #endif static bool ukbd_any_key_pressed(struct ukbd_softc *sc) { bool ret = false; unsigned i; for (i = 0; i != howmany(UKBD_NKEYCODE, 64); i++) ret |= (sc->sc_odata.bitmap[i] != 0); return (ret); } static bool ukbd_any_key_valid(struct ukbd_softc *sc) { bool ret = false; unsigned i; for (i = 0; i != howmany(UKBD_NKEYCODE, 64); i++) ret |= (sc->sc_loc_key_valid[i] != 0); return (ret); } static bool ukbd_is_modifier_key(uint32_t key) { return (key >= 0xe0 && key <= 0xe7); } static void ukbd_start_timer(struct ukbd_softc *sc) { sbintime_t delay, now, prec; now = sbinuptime(); /* check if initial delay passed and fallback to key repeat delay */ if (sc->sc_delay == 0) sc->sc_delay = sc->sc_kbd.kb_delay2; /* compute timeout */ delay = SBT_1MS * sc->sc_delay; sc->sc_co_basetime += delay; /* check if we are running behind */ if (sc->sc_co_basetime < now) sc->sc_co_basetime = now; /* This is rarely called, so prefer precision to efficiency. */ prec = qmin(delay >> 7, SBT_1MS * 10); usb_callout_reset_sbt(&sc->sc_callout, sc->sc_co_basetime, prec, ukbd_timeout, sc, C_ABSOLUTE); } static void ukbd_put_key(struct ukbd_softc *sc, uint32_t key) { UKBD_LOCK_ASSERT(); DPRINTF("0x%02x (%d) %s\n", key, key, (key & KEY_RELEASE) ? "released" : "pressed"); #ifdef EVDEV_SUPPORT if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL) evdev_push_event(sc->sc_evdev, EV_KEY, evdev_hid2key(KEY_INDEX(key)), !(key & KEY_RELEASE)); if (sc->sc_evdev != NULL && evdev_is_grabbed(sc->sc_evdev)) return; #endif if (sc->sc_inputs < UKBD_IN_BUF_SIZE) { sc->sc_input[sc->sc_inputtail] = key; ++(sc->sc_inputs); ++(sc->sc_inputtail); if (sc->sc_inputtail >= UKBD_IN_BUF_SIZE) { sc->sc_inputtail = 0; } } else { DPRINTF("input buffer is full\n"); } } static void ukbd_do_poll(struct ukbd_softc *sc, uint8_t wait) { UKBD_LOCK_ASSERT(); KASSERT((sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("ukbd_do_poll called when not polling\n")); DPRINTFN(2, "polling\n"); if (USB_IN_POLLING_MODE_FUNC() == 0) { /* * In this context the kernel is polling for input, * but the USB subsystem works in normal interrupt-driven * mode, so we just wait on the USB threads to do the job. * Note that we currently hold the Giant, but it's also used * as the transfer mtx, so we must release it while waiting. */ while (sc->sc_inputs == 0) { /* * Give USB threads a chance to run. Note that * kern_yield performs DROP_GIANT + PICKUP_GIANT. */ kern_yield(PRI_UNCHANGED); if (!wait) break; } return; } while (sc->sc_inputs == 0) { usbd_transfer_poll(sc->sc_xfer, UKBD_N_TRANSFER); /* Delay-optimised support for repetition of keys */ if (ukbd_any_key_pressed(sc)) { /* a key is pressed - need timekeeping */ DELAY(1000); /* 1 millisecond has passed */ sc->sc_time_ms += 1; } ukbd_interrupt(sc); if (!wait) break; } } static int32_t ukbd_get_key(struct ukbd_softc *sc, uint8_t wait) { int32_t c; UKBD_LOCK_ASSERT(); KASSERT((USB_IN_POLLING_MODE_FUNC() == 0) || (sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("not polling in kdb or panic\n")); if (sc->sc_inputs == 0 && (sc->sc_flags & UKBD_FLAG_GONE) == 0) { /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]); } if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, wait); if (sc->sc_inputs == 0) { c = -1; } else { c = sc->sc_input[sc->sc_inputhead]; --(sc->sc_inputs); ++(sc->sc_inputhead); if (sc->sc_inputhead >= UKBD_IN_BUF_SIZE) { sc->sc_inputhead = 0; } } return (c); } static void ukbd_interrupt(struct ukbd_softc *sc) { const uint32_t now = sc->sc_time_ms; unsigned key; UKBD_LOCK_ASSERT(); /* Check for modifier key changes first */ for (key = 0xe0; key != 0xe8; key++) { const uint64_t mask = 1ULL << (key % 64); const uint64_t delta = sc->sc_odata.bitmap[key / 64] ^ sc->sc_ndata.bitmap[key / 64]; if (delta & mask) { if (sc->sc_odata.bitmap[key / 64] & mask) ukbd_put_key(sc, key | KEY_RELEASE); else ukbd_put_key(sc, key | KEY_PRESS); } } /* Check for key changes */ for (key = 0; key != UKBD_NKEYCODE; key++) { const uint64_t mask = 1ULL << (key % 64); const uint64_t delta = sc->sc_odata.bitmap[key / 64] ^ sc->sc_ndata.bitmap[key / 64]; if (mask == 1 && delta == 0) { key += 63; continue; /* skip empty areas */ } else if (ukbd_is_modifier_key(key)) { continue; } else if (delta & mask) { if (sc->sc_odata.bitmap[key / 64] & mask) { ukbd_put_key(sc, key | KEY_RELEASE); /* clear repeating key, if any */ if (sc->sc_repeat_key == key) sc->sc_repeat_key = 0; } else { ukbd_put_key(sc, key | KEY_PRESS); sc->sc_co_basetime = sbinuptime(); sc->sc_delay = sc->sc_kbd.kb_delay1; ukbd_start_timer(sc); /* set repeat time for last key */ sc->sc_repeat_time = now + sc->sc_kbd.kb_delay1; sc->sc_repeat_key = key; } } } /* synchronize old data with new data */ sc->sc_odata = sc->sc_ndata; /* check if last key is still pressed */ if (sc->sc_repeat_key != 0) { const int32_t dtime = (sc->sc_repeat_time - now); /* check if time has elapsed */ if (dtime <= 0) { ukbd_put_key(sc, sc->sc_repeat_key | KEY_PRESS); sc->sc_repeat_time = now + sc->sc_kbd.kb_delay2; } } #ifdef EVDEV_SUPPORT if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL) evdev_sync(sc->sc_evdev); if (sc->sc_evdev != NULL && evdev_is_grabbed(sc->sc_evdev)) return; #endif /* wakeup keyboard system */ ukbd_event_keyinput(sc); } static void ukbd_event_keyinput(struct ukbd_softc *sc) { int c; UKBD_LOCK_ASSERT(); if ((sc->sc_flags & UKBD_FLAG_POLLING) != 0) return; if (sc->sc_inputs == 0) return; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { /* let the callback function process the input */ (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } else { /* read and discard the input, no one is waiting for it */ do { c = ukbd_read_char(&sc->sc_kbd, 0); } while (c != NOKEY); } } static void ukbd_timeout(void *arg) { struct ukbd_softc *sc = arg; UKBD_LOCK_ASSERT(); sc->sc_time_ms += sc->sc_delay; sc->sc_delay = 0; ukbd_interrupt(sc); /* Make sure any leftover key events gets read out */ ukbd_event_keyinput(sc); if (ukbd_any_key_pressed(sc) || (sc->sc_inputs != 0)) { ukbd_start_timer(sc); } } static uint32_t ukbd_apple_fn(uint32_t keycode) { switch (keycode) { case 0x28: return 0x49; /* RETURN -> INSERT */ case 0x2a: return 0x4c; /* BACKSPACE -> DEL */ case 0x50: return 0x4a; /* LEFT ARROW -> HOME */ case 0x4f: return 0x4d; /* RIGHT ARROW -> END */ case 0x52: return 0x4b; /* UP ARROW -> PGUP */ case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */ default: return keycode; } } static uint32_t ukbd_apple_swap(uint32_t keycode) { switch (keycode) { case 0x35: return 0x64; case 0x64: return 0x35; default: return keycode; } } static void ukbd_intr_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_page_cache *pc; uint32_t i; uint8_t id; uint8_t modifiers; int offset; int len; UKBD_LOCK_ASSERT(); usbd_xfer_status(xfer, &len, NULL, NULL, NULL); pc = usbd_xfer_get_frame(xfer, 0); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF("actlen=%d bytes\n", len); if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } if (sc->sc_kbd_id != 0) { /* check and remove HID ID byte */ usbd_copy_out(pc, 0, &id, 1); offset = 1; len--; if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } } else { offset = 0; id = 0; } if (len > UKBD_BUFFER_SIZE) len = UKBD_BUFFER_SIZE; /* get data */ usbd_copy_out(pc, offset, sc->sc_buffer, len); /* clear temporary storage */ memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); /* clear modifiers */ modifiers = 0; /* scan through HID data */ if ((sc->sc_flags & UKBD_FLAG_APPLE_EJECT) && (id == sc->sc_id_apple_eject)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_eject)) modifiers |= MOD_EJECT; } if ((sc->sc_flags & UKBD_FLAG_APPLE_FN) && (id == sc->sc_id_apple_fn)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_fn)) modifiers |= MOD_FN; } for (i = 0; i != UKBD_NKEYCODE; i++) { const uint64_t valid = sc->sc_loc_key_valid[i / 64]; const uint64_t mask = 1ULL << (i % 64); if (mask == 1 && valid == 0) { i += 63; continue; /* skip empty areas */ } else if (~valid & mask) { continue; /* location is not valid */ } else if (id != sc->sc_id_loc_key[i]) { continue; /* invalid HID ID */ } else if (i == 0) { struct hid_location tmp_loc = sc->sc_loc_key[0]; /* range check array size */ if (tmp_loc.count > UKBD_NKEYCODE) tmp_loc.count = UKBD_NKEYCODE; while (tmp_loc.count--) { uint32_t key = hid_get_udata(sc->sc_buffer, len, &tmp_loc); /* advance to next location */ tmp_loc.pos += tmp_loc.size; if (key == KEY_ERROR) { DPRINTF("KEY_ERROR\n"); sc->sc_ndata = sc->sc_odata; goto tr_setup; /* ignore */ } if (modifiers & MOD_FN) key = ukbd_apple_fn(key); if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP) key = ukbd_apple_swap(key); if (key == KEY_NONE || key >= UKBD_NKEYCODE) continue; /* set key in bitmap */ sc->sc_ndata.bitmap[key / 64] |= 1ULL << (key % 64); } } else if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_key[i])) { uint32_t key = i; if (modifiers & MOD_FN) key = ukbd_apple_fn(key); if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP) key = ukbd_apple_swap(key); if (key == KEY_NONE || key == KEY_ERROR || key >= UKBD_NKEYCODE) continue; /* set key in bitmap */ sc->sc_ndata.bitmap[key / 64] |= 1ULL << (key % 64); } } #ifdef USB_DEBUG DPRINTF("modifiers = 0x%04x\n", modifiers); for (i = 0; i != UKBD_NKEYCODE; i++) { const uint64_t valid = sc->sc_ndata.bitmap[i / 64]; const uint64_t mask = 1ULL << (i % 64); if (valid & mask) DPRINTF("Key 0x%02x pressed\n", i); } #endif ukbd_interrupt(sc); case USB_ST_SETUP: tr_setup: if (sc->sc_inputs < UKBD_IN_BUF_FULL) { usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); } else { DPRINTF("input queue is full!\n"); } break; default: /* Error */ DPRINTF("error=%s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void ukbd_set_leds_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_device_request req; struct usb_page_cache *pc; uint8_t id; uint8_t any; int len; UKBD_LOCK_ASSERT(); #ifdef USB_DEBUG if (ukbd_no_leds) return; #endif switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: case USB_ST_SETUP: if (!(sc->sc_flags & UKBD_FLAG_SET_LEDS)) break; sc->sc_flags &= ~UKBD_FLAG_SET_LEDS; req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = UR_SET_REPORT; USETW2(req.wValue, UHID_OUTPUT_REPORT, 0); req.wIndex[0] = sc->sc_iface_no; req.wIndex[1] = 0; req.wLength[1] = 0; memset(sc->sc_buffer, 0, UKBD_BUFFER_SIZE); id = 0; any = 0; /* Assumption: All led bits must be in the same ID. */ if (sc->sc_flags & UKBD_FLAG_NUMLOCK) { if (sc->sc_leds & NLKED) { hid_put_udata(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_numlock, 1); } id = sc->sc_id_numlock; any = 1; } if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) { if (sc->sc_leds & SLKED) { hid_put_udata(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_scrolllock, 1); } id = sc->sc_id_scrolllock; any = 1; } if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) { if (sc->sc_leds & CLKED) { hid_put_udata(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_capslock, 1); } id = sc->sc_id_capslock; any = 1; } /* if no leds, nothing to do */ if (!any) break; /* range check output report length */ len = sc->sc_led_size; if (len > (UKBD_BUFFER_SIZE - 1)) len = (UKBD_BUFFER_SIZE - 1); /* check if we need to prefix an ID byte */ sc->sc_buffer[0] = id; pc = usbd_xfer_get_frame(xfer, 1); if (id != 0) { len++; usbd_copy_in(pc, 0, sc->sc_buffer, len); } else { usbd_copy_in(pc, 0, sc->sc_buffer + 1, len); } req.wLength[0] = len; usbd_xfer_set_frame_len(xfer, 1, len); DPRINTF("len=%d, id=%d\n", len, id); /* setup control request last */ pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &req, sizeof(req)); usbd_xfer_set_frame_len(xfer, 0, sizeof(req)); /* start data transfer */ usbd_xfer_set_frames(xfer, 2); usbd_transfer_submit(xfer); break; default: /* Error */ DPRINTFN(1, "error=%s\n", usbd_errstr(error)); break; } } static const struct usb_config ukbd_config[UKBD_N_TRANSFER] = { [UKBD_INTR_DT_0] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &ukbd_intr_callback, }, [UKBD_INTR_DT_1] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &ukbd_intr_callback, }, [UKBD_CTRL_LED] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .bufsize = sizeof(struct usb_device_request) + UKBD_BUFFER_SIZE, .callback = &ukbd_set_leds_callback, .timeout = 1000, /* 1 second */ }, }; /* A match on these entries will load ukbd */ static const STRUCT_USB_HOST_ID __used ukbd_devs[] = { {USB_IFACE_CLASS(UICLASS_HID), USB_IFACE_SUBCLASS(UISUBCLASS_BOOT), USB_IFACE_PROTOCOL(UIPROTO_BOOT_KEYBOARD),}, }; static int ukbd_probe(device_t dev) { keyboard_switch_t *sw = kbd_get_switch(UKBD_DRIVER_NAME); struct usb_attach_arg *uaa = device_get_ivars(dev); void *d_ptr; int error; uint16_t d_len; UKBD_LOCK_ASSERT(); DPRINTFN(11, "\n"); if (sw == NULL) { return (ENXIO); } if (uaa->usb_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bInterfaceClass != UICLASS_HID) return (ENXIO); if (usb_test_quirk(uaa, UQ_KBD_IGNORE)) return (ENXIO); if ((uaa->info.bInterfaceSubClass == UISUBCLASS_BOOT) && (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD)) return (BUS_PROBE_DEFAULT); error = usbd_req_get_hid_desc(uaa->device, NULL, &d_ptr, &d_len, M_TEMP, uaa->info.bIfaceIndex); if (error) return (ENXIO); if (hid_is_keyboard(d_ptr, d_len)) { if (hid_is_mouse(d_ptr, d_len)) { /* * NOTE: We currently don't support USB mouse * and USB keyboard on the same USB endpoint. * Let "ums" driver win. */ error = ENXIO; } else { error = BUS_PROBE_DEFAULT; } } else { error = ENXIO; } free(d_ptr, M_TEMP); return (error); } static void ukbd_parse_hid(struct ukbd_softc *sc, const uint8_t *ptr, uint32_t len) { uint32_t flags; uint32_t key; /* reset detected bits */ sc->sc_flags &= ~UKBD_FLAG_HID_MASK; /* reset detected keys */ memset(sc->sc_loc_key_valid, 0, sizeof(sc->sc_loc_key_valid)); /* check if there is an ID byte */ sc->sc_kbd_size = hid_report_size_max(ptr, len, hid_input, &sc->sc_kbd_id); /* investigate if this is an Apple Keyboard */ if (hid_locate(ptr, len, HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT), hid_input, 0, &sc->sc_loc_apple_eject, &flags, &sc->sc_id_apple_eject)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_EJECT | UKBD_FLAG_APPLE_SWAP; DPRINTFN(1, "Found Apple eject-key\n"); } if (hid_locate(ptr, len, HID_USAGE2(0xFFFF, 0x0003), hid_input, 0, &sc->sc_loc_apple_fn, &flags, &sc->sc_id_apple_fn)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_FN; DPRINTFN(1, "Found Apple FN-key\n"); } /* figure out event buffer */ if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0x00), hid_input, 0, &sc->sc_loc_key[0], &flags, &sc->sc_id_loc_key[0])) { if (flags & HIO_VARIABLE) { DPRINTFN(1, "Ignoring keyboard event control\n"); } else { sc->sc_loc_key_valid[0] |= 1; DPRINTFN(1, "Found keyboard event array\n"); } } /* figure out the keys */ for (key = 1; key != UKBD_NKEYCODE; key++) { if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, key), hid_input, 0, &sc->sc_loc_key[key], &flags, &sc->sc_id_loc_key[key])) { if (flags & HIO_VARIABLE) { sc->sc_loc_key_valid[key / 64] |= 1ULL << (key % 64); DPRINTFN(1, "Found key 0x%02x\n", key); } } } /* figure out leds on keyboard */ sc->sc_led_size = hid_report_size_max(ptr, len, hid_output, NULL); if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x01), hid_output, 0, &sc->sc_loc_numlock, &flags, &sc->sc_id_numlock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_NUMLOCK; DPRINTFN(1, "Found keyboard numlock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x02), hid_output, 0, &sc->sc_loc_capslock, &flags, &sc->sc_id_capslock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CAPSLOCK; DPRINTFN(1, "Found keyboard capslock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x03), hid_output, 0, &sc->sc_loc_scrolllock, &flags, &sc->sc_id_scrolllock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SCROLLLOCK; DPRINTFN(1, "Found keyboard scrolllock\n"); } } static int ukbd_attach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); int unit = device_get_unit(dev); keyboard_t *kbd = &sc->sc_kbd; void *hid_ptr = NULL; usb_error_t err; uint16_t n; uint16_t hid_len; #ifdef EVDEV_SUPPORT struct evdev_dev *evdev; int i; #endif #ifdef USB_DEBUG int rate; #endif UKBD_LOCK_ASSERT(); kbd_init_struct(kbd, UKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0); kbd->kb_data = (void *)sc; device_set_usb_desc(dev); sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; sc->sc_iface_index = uaa->info.bIfaceIndex; sc->sc_iface_no = uaa->info.bIfaceNum; sc->sc_mode = K_XLATE; usb_callout_init_mtx(&sc->sc_callout, &Giant, 0); #ifdef UKBD_NO_POLLING err = usbd_transfer_setup(uaa->device, &uaa->info.bIfaceIndex, sc->sc_xfer, ukbd_config, UKBD_N_TRANSFER, sc, &Giant); #else /* * Setup the UKBD USB transfers one by one, so they are memory * independent which allows for handling panics triggered by * the keyboard driver itself, typically via CTRL+ALT+ESC * sequences. Or if the USB keyboard driver was processing a * key at the moment of panic. */ for (n = 0; n != UKBD_N_TRANSFER; n++) { err = usbd_transfer_setup(uaa->device, &uaa->info.bIfaceIndex, sc->sc_xfer + n, ukbd_config + n, 1, sc, &Giant); if (err) break; } #endif if (err) { DPRINTF("error=%s\n", usbd_errstr(err)); goto detach; } /* setup default keyboard maps */ sc->sc_keymap = key_map; sc->sc_accmap = accent_map; for (n = 0; n < UKBD_NFKEY; n++) { sc->sc_fkeymap[n] = fkey_tab[n]; } kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap, sc->sc_fkeymap, UKBD_NFKEY); KBD_FOUND_DEVICE(kbd); ukbd_clear_state(kbd); /* * FIXME: set the initial value for lock keys in "sc_state" * according to the BIOS data? */ KBD_PROBE_DONE(kbd); /* get HID descriptor */ err = usbd_req_get_hid_desc(uaa->device, NULL, &hid_ptr, &hid_len, M_TEMP, uaa->info.bIfaceIndex); if (err == 0) { DPRINTF("Parsing HID descriptor of %d bytes\n", (int)hid_len); ukbd_parse_hid(sc, hid_ptr, hid_len); free(hid_ptr, M_TEMP); } /* check if we should use the boot protocol */ if (usb_test_quirk(uaa, UQ_KBD_BOOTPROTO) || (err != 0) || ukbd_any_key_valid(sc) == false) { DPRINTF("Forcing boot protocol\n"); err = usbd_req_set_protocol(sc->sc_udev, NULL, sc->sc_iface_index, 0); if (err != 0) { DPRINTF("Set protocol error=%s (ignored)\n", usbd_errstr(err)); } ukbd_parse_hid(sc, ukbd_boot_desc, sizeof(ukbd_boot_desc)); } /* ignore if SETIDLE fails, hence it is not crucial */ usbd_req_set_idle(sc->sc_udev, NULL, sc->sc_iface_index, 0, 0); ukbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state); KBD_INIT_DONE(kbd); if (kbd_register(kbd) < 0) { goto detach; } KBD_CONFIG_DONE(kbd); ukbd_enable(kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(kbd)) { goto detach; } #endif #ifdef EVDEV_SUPPORT evdev = evdev_alloc(); evdev_set_name(evdev, device_get_desc(dev)); evdev_set_phys(evdev, device_get_nameunit(dev)); evdev_set_id(evdev, BUS_USB, uaa->info.idVendor, uaa->info.idProduct, 0); evdev_set_serial(evdev, usb_get_serial(uaa->device)); evdev_set_methods(evdev, kbd, &ukbd_evdev_methods); evdev_support_event(evdev, EV_SYN); evdev_support_event(evdev, EV_KEY); if (sc->sc_flags & (UKBD_FLAG_NUMLOCK | UKBD_FLAG_CAPSLOCK | UKBD_FLAG_SCROLLLOCK)) evdev_support_event(evdev, EV_LED); evdev_support_event(evdev, EV_REP); for (i = 0x00; i <= 0xFF; i++) evdev_support_key(evdev, evdev_hid2key(i)); if (sc->sc_flags & UKBD_FLAG_NUMLOCK) evdev_support_led(evdev, LED_NUML); if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) evdev_support_led(evdev, LED_CAPSL); if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) evdev_support_led(evdev, LED_SCROLLL); if (evdev_register_mtx(evdev, &Giant)) evdev_free(evdev); else sc->sc_evdev = evdev; #endif sc->sc_flags |= UKBD_FLAG_ATTACHED; if (bootverbose) { kbdd_diag(kbd, bootverbose); } #ifdef USB_DEBUG /* check for polling rate override */ rate = ukbd_pollrate; if (rate > 0) { if (rate > 1000) rate = 1; else rate = 1000 / rate; /* set new polling interval in ms */ usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_0], rate); usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_1], rate); } #endif /* start the keyboard */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]); return (0); /* success */ detach: ukbd_detach(dev); return (ENXIO); /* error */ } static int ukbd_detach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); int error; UKBD_LOCK_ASSERT(); DPRINTF("\n"); sc->sc_flags |= UKBD_FLAG_GONE; usb_callout_stop(&sc->sc_callout); /* kill any stuck keys */ if (sc->sc_flags & UKBD_FLAG_ATTACHED) { /* stop receiving events from the USB keyboard */ usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_1]); /* release all leftover keys, if any */ memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); /* process releasing of all keys */ ukbd_interrupt(sc); } ukbd_disable(&sc->sc_kbd); #ifdef KBD_INSTALL_CDEV if (sc->sc_flags & UKBD_FLAG_ATTACHED) { error = kbd_detach(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_detach() " "returned non-zero! (ignored)\n"); } } #endif #ifdef EVDEV_SUPPORT evdev_free(sc->sc_evdev); #endif if (KBD_IS_CONFIGURED(&sc->sc_kbd)) { error = kbd_unregister(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_unregister() " "returned non-zero! (ignored)\n"); } } sc->sc_kbd.kb_flags = 0; usbd_transfer_unsetup(sc->sc_xfer, UKBD_N_TRANSFER); usb_callout_drain(&sc->sc_callout); DPRINTF("%s: disconnected\n", device_get_nameunit(dev)); return (0); } static int ukbd_resume(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); UKBD_LOCK_ASSERT(); ukbd_clear_state(&sc->sc_kbd); return (0); } #ifdef EVDEV_SUPPORT static void ukbd_ev_event(struct evdev_dev *evdev, uint16_t type, uint16_t code, int32_t value) { keyboard_t *kbd = evdev_get_softc(evdev); if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && (type == EV_LED || type == EV_REP)) { mtx_lock(&Giant); kbd_ev_event(kbd, type, code, value); mtx_unlock(&Giant); } } #endif /* early keyboard probe, not supported */ static int ukbd_configure(int flags) { return (0); } /* detect a keyboard, not used */ static int ukbd__probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return (ENXIO); } /* test the interface to the device, not used */ static int ukbd_test_if(keyboard_t *kbd) { return (0); } /* finish using this keyboard, not used */ static int ukbd_term(keyboard_t *kbd) { return (ENXIO); } /* keyboard interrupt routine, not used */ static int ukbd_intr(keyboard_t *kbd, void *arg) { return (0); } /* lock the access to the keyboard, not used */ static int ukbd_lock(keyboard_t *kbd, int lock) { return (1); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int ukbd_enable(keyboard_t *kbd) { UKBD_LOCK(); KBD_ACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* disallow the access to the device */ static int ukbd_disable(keyboard_t *kbd) { UKBD_LOCK(); KBD_DEACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* check if data is waiting */ /* Currently unused. */ static int ukbd_check(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, 0); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { return (1); } #endif if (sc->sc_inputs > 0) { return (1); } return (0); } /* check if char is waiting */ static int ukbd_check_char_locked(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { return (1); } return (ukbd_check(kbd)); } static int ukbd_check_char(keyboard_t *kbd) { int result; UKBD_LOCK(); result = ukbd_check_char_locked(kbd); UKBD_UNLOCK(); return (result); } /* read one byte from the keyboard if it's allowed */ /* Currently unused. */ static int ukbd_read(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t keycode; uint32_t scancode; #endif UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (-1); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { scancode = sc->sc_buffered_char[0]; if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] &= ~SCAN_PREFIX; return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } #endif /* UKBD_EMULATE_ATSCANCODE */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1)) return (-1); ++(kbd->kb_count); #ifdef UKBD_EMULATE_ATSCANCODE keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.bitmap); if (keycode == NN) { return -1; } return (ukbd_key2scan(sc, keycode, sc->sc_ndata.bitmap, (usbcode & KEY_RELEASE))); #else /* !UKBD_EMULATE_ATSCANCODE */ return (usbcode); #endif /* UKBD_EMULATE_ATSCANCODE */ } /* read char from the keyboard */ static uint32_t ukbd_read_char_locked(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; uint32_t action; uint32_t keycode; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t scancode; #endif UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (NOKEY); next_code: /* do we have a composed char to return ? */ if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { action = sc->sc_composed_char; sc->sc_composed_char = 0; if (action > 0xFF) { goto errkey; } goto done; } #ifdef UKBD_EMULATE_ATSCANCODE /* do we have a pending raw scan code? */ if (sc->sc_mode == K_RAW) { scancode = sc->sc_buffered_char[0]; if (scancode) { if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX); return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } } #endif /* UKBD_EMULATE_ATSCANCODE */ /* see if there is something in the keyboard port */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (usbcode == -1) { return (NOKEY); } ++kbd->kb_count; #ifdef UKBD_EMULATE_ATSCANCODE /* USB key index -> key code -> AT scan code */ keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.bitmap); if (keycode == NN) { return (NOKEY); } /* return an AT scan code for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (ukbd_key2scan(sc, keycode, sc->sc_ndata.bitmap, (usbcode & KEY_RELEASE))); } #else /* !UKBD_EMULATE_ATSCANCODE */ /* return the byte as is for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (usbcode); } /* USB key index -> key code */ keycode = ukbd_trtab[KEY_INDEX(usbcode)]; if (keycode == NN) { return (NOKEY); } #endif /* UKBD_EMULATE_ATSCANCODE */ switch (keycode) { case 0x38: /* left alt (compose key) */ if (usbcode & KEY_RELEASE) { if (sc->sc_flags & UKBD_FLAG_COMPOSE) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; if (sc->sc_composed_char > 0xFF) { sc->sc_composed_char = 0; } } } else { if (!(sc->sc_flags & UKBD_FLAG_COMPOSE)) { sc->sc_flags |= UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; } } break; } /* return the key code in the K_CODE mode */ if (usbcode & KEY_RELEASE) { keycode |= SCAN_RELEASE; } if (sc->sc_mode == K_CODE) { return (keycode); } /* compose a character code */ if (sc->sc_flags & UKBD_FLAG_COMPOSE) { switch (keycode) { /* key pressed, process it */ case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x40; goto check_composed; case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x47; goto check_composed; case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x4E; goto check_composed; case 0x52: /* keypad 0 */ sc->sc_composed_char *= 10; goto check_composed; /* key released, no interest here */ case SCAN_RELEASE | 0x47: case SCAN_RELEASE | 0x48: case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */ case SCAN_RELEASE | 0x4B: case SCAN_RELEASE | 0x4C: case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */ case SCAN_RELEASE | 0x4F: case SCAN_RELEASE | 0x50: case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */ case SCAN_RELEASE | 0x52: /* keypad 0 */ goto next_code; case 0x38: /* left alt key */ break; default: if (sc->sc_composed_char > 0) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; goto errkey; } break; } } /* keycode to key action */ action = genkbd_keyaction(kbd, SCAN_CHAR(keycode), (keycode & SCAN_RELEASE), &sc->sc_state, &sc->sc_accents); if (action == NOKEY) { goto next_code; } done: return (action); check_composed: if (sc->sc_composed_char <= 0xFF) { goto next_code; } errkey: return (ERRKEY); } /* Currently wait is always false. */ static uint32_t ukbd_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; UKBD_LOCK(); keycode = ukbd_read_char_locked(kbd, wait); UKBD_UNLOCK(); return (keycode); } /* some useful control functions */ static int ukbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { struct ukbd_softc *sc = kbd->kb_data; int i; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) int ival; #endif UKBD_LOCK_ASSERT(); switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = sc->sc_mode; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { if ((sc->sc_flags & UKBD_FLAG_POLLING) == 0) ukbd_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in "sc_state" won't be changed */ if (*(int *)arg & ~LOCK_MASK) return (EINVAL); i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (sc->sc_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } if (KBD_HAS_DEVICE(kbd)) ukbd_set_leds(sc, i); KBD_LED_VAL(kbd) = *(int *)arg; break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; /* set LEDs and quit */ return (ukbd_ioctl(kbd, KDSETLED, arg)); case KDSETREPEAT: /* set keyboard repeat rate (new * interface) */ if (!KBD_HAS_DEVICE(kbd)) { return (0); } /* * Convert negative, zero and tiny args to the same limits * as atkbd. We could support delays of 1 msec, but * anything much shorter than the shortest atkbd value * of 250.34 is almost unusable as well as incompatible. */ kbd->kb_delay1 = imax(((int *)arg)[0], 250); kbd->kb_delay2 = imax(((int *)arg)[1], 34); #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_repeats(sc->sc_evdev, kbd); #endif return (0); #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 67): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETRAD: /* set keyboard repeat rate (old * interface) */ return (ukbd_set_typematic(kbd, *(int *)arg)); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table * (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table * entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ case OPIO_DEADKEYMAP: /* set accent key translation table (compat) */ sc->sc_accents = 0; /* FALLTHROUGH */ default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } static int ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { int result; /* * XXX Check if someone is calling us from a critical section: */ if (curthread->td_critnest != 0) return (EDEADLK); /* * XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any * context where printf(9) can be called, which among other things * includes interrupt filters and threads with any kinds of locks * already held. For this reason it would be dangerous to acquire * the Giant here unconditionally. On the other hand we have to * have it to handle the ioctl. * So we make our best effort to auto-detect whether we can grab * the Giant or not. Blame syscons(4) for this. */ switch (cmd) { case KDGKBSTATE: case KDSKBSTATE: case KDSETLED: if (!mtx_owned(&Giant) && !USB_IN_POLLING_MODE_FUNC()) return (EDEADLK); /* best I could come up with */ /* FALLTHROUGH */ default: UKBD_LOCK(); result = ukbd_ioctl_locked(kbd, cmd, arg); UKBD_UNLOCK(); return (result); } } /* clear the internal state of the keyboard */ static void ukbd_clear_state(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); sc->sc_flags &= ~(UKBD_FLAG_COMPOSE | UKBD_FLAG_POLLING); sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_accents = 0; sc->sc_composed_char = 0; #ifdef UKBD_EMULATE_ATSCANCODE sc->sc_buffered_char[0] = 0; sc->sc_buffered_char[1] = 0; #endif memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); memset(&sc->sc_odata, 0, sizeof(sc->sc_odata)); sc->sc_repeat_time = 0; sc->sc_repeat_key = 0; } /* save the internal state, not used */ static int ukbd_get_state(keyboard_t *kbd, void *buf, size_t len) { return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int ukbd_set_state(keyboard_t *kbd, void *buf, size_t len) { return (EINVAL); } static int ukbd_poll(keyboard_t *kbd, int on) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK(); /* * Keep a reference count on polling to allow recursive * cngrab() during a panic for example. */ if (on) sc->sc_polling++; else if (sc->sc_polling > 0) sc->sc_polling--; if (sc->sc_polling != 0) { sc->sc_flags |= UKBD_FLAG_POLLING; sc->sc_poll_thread = curthread; } else { sc->sc_flags &= ~UKBD_FLAG_POLLING; sc->sc_delay = 0; } UKBD_UNLOCK(); return (0); } /* local functions */ static void ukbd_set_leds(struct ukbd_softc *sc, uint8_t leds) { UKBD_LOCK_ASSERT(); DPRINTF("leds=0x%02x\n", leds); #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_leds(sc->sc_evdev, leds); #endif sc->sc_leds = leds; sc->sc_flags |= UKBD_FLAG_SET_LEDS; /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_CTRL_LED]); } static int ukbd_set_typematic(keyboard_t *kbd, int code) { #ifdef EVDEV_SUPPORT struct ukbd_softc *sc = kbd->kb_data; #endif static const int delays[] = {250, 500, 750, 1000}; static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504}; if (code & ~0x7f) { return (EINVAL); } kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_repeats(sc->sc_evdev, kbd); #endif return (0); } #ifdef UKBD_EMULATE_ATSCANCODE static uint32_t ukbd_atkeycode(int usbcode, const uint64_t *bitmap) { uint32_t keycode; keycode = ukbd_trtab[KEY_INDEX(usbcode)]; /* * Translate Alt-PrintScreen to SysRq. * * Some or all AT keyboards connected through USB have already * mapped Alted PrintScreens to an unusual usbcode (0x8a). * ukbd_trtab translates this to 0x7e, and key2scan() would * translate that to 0x79 (Intl' 4). Assume that if we have * an Alted 0x7e here then it actually is an Alted PrintScreen. * * The usual usbcode for all PrintScreens is 0x46. ukbd_trtab * translates this to 0x5c, so the Alt check to classify 0x5c * is routine. */ if ((keycode == 0x5c || keycode == 0x7e) && (UKBD_KEY_PRESSED(bitmap, 0xe2 /* ALT-L */) || UKBD_KEY_PRESSED(bitmap, 0xe6 /* ALT-R */))) return (0x54); return (keycode); } static int ukbd_key2scan(struct ukbd_softc *sc, int code, const uint64_t *bitmap, int up) { static const int scan[] = { /* 89 */ 0x11c, /* Enter */ /* 90-99 */ 0x11d, /* Ctrl-R */ 0x135, /* Divide */ 0x137, /* PrintScreen */ 0x138, /* Alt-R */ 0x147, /* Home */ 0x148, /* Up */ 0x149, /* PageUp */ 0x14b, /* Left */ 0x14d, /* Right */ 0x14f, /* End */ /* 100-109 */ 0x150, /* Down */ 0x151, /* PageDown */ 0x152, /* Insert */ 0x153, /* Delete */ 0x146, /* Pause/Break */ 0x15b, /* Win_L(Super_L) */ 0x15c, /* Win_R(Super_R) */ 0x15d, /* Application(Menu) */ /* SUN TYPE 6 USB KEYBOARD */ 0x168, /* Sun Type 6 Help */ 0x15e, /* Sun Type 6 Stop */ /* 110 - 119 */ 0x15f, /* Sun Type 6 Again */ 0x160, /* Sun Type 6 Props */ 0x161, /* Sun Type 6 Undo */ 0x162, /* Sun Type 6 Front */ 0x163, /* Sun Type 6 Copy */ 0x164, /* Sun Type 6 Open */ 0x165, /* Sun Type 6 Paste */ 0x166, /* Sun Type 6 Find */ 0x167, /* Sun Type 6 Cut */ 0x125, /* Sun Type 6 Mute */ /* 120 - 130 */ 0x11f, /* Sun Type 6 VolumeDown */ 0x11e, /* Sun Type 6 VolumeUp */ 0x120, /* Sun Type 6 PowerDown */ /* Japanese 106/109 keyboard */ 0x73, /* Keyboard Intl' 1 (backslash / underscore) */ 0x70, /* Keyboard Intl' 2 (Katakana / Hiragana) */ 0x7d, /* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */ 0x79, /* Keyboard Intl' 4 (Henkan) */ 0x7b, /* Keyboard Intl' 5 (Muhenkan) */ 0x5c, /* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */ 0x71, /* Apple Keyboard JIS (Kana) */ 0x72, /* Apple Keyboard JIS (Eisu) */ }; if ((code >= 89) && (code < (int)(89 + nitems(scan)))) { code = scan[code - 89]; } /* PrintScreen */ if (code == 0x137 && (!( UKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) || UKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */) || UKBD_KEY_PRESSED(bitmap, 0xe1 /* SHIFT-L */) || UKBD_KEY_PRESSED(bitmap, 0xe5 /* SHIFT-R */)))) { code |= SCAN_PREFIX_SHIFT; } /* Pause/Break */ if ((code == 0x146) && (!( UKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) || UKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */)))) { code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL); } code |= (up ? SCAN_RELEASE : SCAN_PRESS); if (code & SCAN_PREFIX) { if (code & SCAN_PREFIX_CTL) { /* Ctrl */ sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX); } else if (code & SCAN_PREFIX_SHIFT) { /* Shift */ sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT); } else { sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX); sc->sc_buffered_char[1] = 0; } return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } return (code); } #endif /* UKBD_EMULATE_ATSCANCODE */ static keyboard_switch_t ukbdsw = { .probe = &ukbd__probe, .init = &ukbd_init, .term = &ukbd_term, .intr = &ukbd_intr, .test_if = &ukbd_test_if, .enable = &ukbd_enable, .disable = &ukbd_disable, .read = &ukbd_read, .check = &ukbd_check, .read_char = &ukbd_read_char, .check_char = &ukbd_check_char, .ioctl = &ukbd_ioctl, .lock = &ukbd_lock, .clear_state = &ukbd_clear_state, .get_state = &ukbd_get_state, .set_state = &ukbd_set_state, .poll = &ukbd_poll, }; KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure); static int ukbd_driver_load(module_t mod, int what, void *arg) { switch (what) { case MOD_LOAD: kbd_add_driver(&ukbd_kbd_driver); break; case MOD_UNLOAD: kbd_delete_driver(&ukbd_kbd_driver); break; } return (0); } static devclass_t ukbd_devclass; static device_method_t ukbd_methods[] = { DEVMETHOD(device_probe, ukbd_probe), DEVMETHOD(device_attach, ukbd_attach), DEVMETHOD(device_detach, ukbd_detach), DEVMETHOD(device_resume, ukbd_resume), DEVMETHOD_END }; static driver_t ukbd_driver = { .name = "ukbd", .methods = ukbd_methods, .size = sizeof(struct ukbd_softc), }; DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, ukbd_driver_load, 0); MODULE_DEPEND(ukbd, usb, 1, 1, 1); MODULE_DEPEND(ukbd, hid, 1, 1, 1); #ifdef EVDEV_SUPPORT MODULE_DEPEND(ukbd, evdev, 1, 1, 1); #endif MODULE_VERSION(ukbd, 1); USB_PNP_HOST_INFO(ukbd_devs);