/*- * Copyright (c) 2017 The FreeBSD Foundation * All rights reserved. * Copyright (c) 2018, 2019 Intel Corporation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_acpi.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _COMPONENT ACPI_OEM ACPI_MODULE_NAME("NVDIMM") static struct uuid intel_nvdimm_dsm_uuid = {0x4309AC30,0x0D11,0x11E4,0x91,0x91,{0x08,0x00,0x20,0x0C,0x9A,0x66}}; #define INTEL_NVDIMM_DSM_REV 1 #define INTEL_NVDIMM_DSM_GET_LABEL_SIZE 4 #define INTEL_NVDIMM_DSM_GET_LABEL_DATA 5 static devclass_t nvdimm_devclass; MALLOC_DEFINE(M_NVDIMM, "nvdimm", "NVDIMM driver memory"); static int read_label_area_size(struct nvdimm_dev *nv) { ACPI_OBJECT *result_buffer; ACPI_HANDLE handle; ACPI_STATUS status; ACPI_BUFFER result; uint32_t *out; int error; handle = nvdimm_root_get_acpi_handle(nv->nv_dev); if (handle == NULL) return (ENODEV); result.Length = ACPI_ALLOCATE_BUFFER; result.Pointer = NULL; status = acpi_EvaluateDSM(handle, (uint8_t *)&intel_nvdimm_dsm_uuid, INTEL_NVDIMM_DSM_REV, INTEL_NVDIMM_DSM_GET_LABEL_SIZE, NULL, &result); error = ENXIO; if (ACPI_SUCCESS(status) && result.Pointer != NULL && result.Length >= sizeof(ACPI_OBJECT)) { result_buffer = result.Pointer; if (result_buffer->Type == ACPI_TYPE_BUFFER && result_buffer->Buffer.Length >= 12) { out = (uint32_t *)result_buffer->Buffer.Pointer; nv->label_area_size = out[1]; nv->max_label_xfer = out[2]; error = 0; } } if (result.Pointer != NULL) AcpiOsFree(result.Pointer); return (error); } static int read_label_area(struct nvdimm_dev *nv, uint8_t *dest, off_t offset, off_t length) { ACPI_BUFFER result; ACPI_HANDLE handle; ACPI_OBJECT params_pkg, params_buf, *result_buf; ACPI_STATUS status; uint32_t params[2]; off_t to_read; int error; error = 0; handle = nvdimm_root_get_acpi_handle(nv->nv_dev); if (offset < 0 || length <= 0 || offset + length > nv->label_area_size || handle == NULL) return (ENODEV); params_pkg.Type = ACPI_TYPE_PACKAGE; params_pkg.Package.Count = 1; params_pkg.Package.Elements = ¶ms_buf; params_buf.Type = ACPI_TYPE_BUFFER; params_buf.Buffer.Length = sizeof(params); params_buf.Buffer.Pointer = (UINT8 *)params; while (length > 0) { to_read = MIN(length, nv->max_label_xfer); params[0] = offset; params[1] = to_read; result.Length = ACPI_ALLOCATE_BUFFER; result.Pointer = NULL; status = acpi_EvaluateDSM(handle, (uint8_t *)&intel_nvdimm_dsm_uuid, INTEL_NVDIMM_DSM_REV, INTEL_NVDIMM_DSM_GET_LABEL_DATA, ¶ms_pkg, &result); if (ACPI_FAILURE(status) || result.Length < sizeof(ACPI_OBJECT) || result.Pointer == NULL) { error = ENXIO; break; } result_buf = (ACPI_OBJECT *)result.Pointer; if (result_buf->Type != ACPI_TYPE_BUFFER || result_buf->Buffer.Pointer == NULL || result_buf->Buffer.Length != 4 + to_read || ((uint16_t *)result_buf->Buffer.Pointer)[0] != 0) { error = ENXIO; break; } bcopy(result_buf->Buffer.Pointer + 4, dest, to_read); dest += to_read; offset += to_read; length -= to_read; if (result.Pointer != NULL) { AcpiOsFree(result.Pointer); result.Pointer = NULL; } } if (result.Pointer != NULL) AcpiOsFree(result.Pointer); return (error); } static uint64_t fletcher64(const void *data, size_t length) { size_t i; uint32_t a, b; const uint32_t *d; a = 0; b = 0; d = (const uint32_t *)data; length = length / sizeof(uint32_t); for (i = 0; i < length; i++) { a += d[i]; b += a; } return ((uint64_t)b << 32 | a); } static bool label_index_is_valid(struct nvdimm_label_index *index, uint32_t max_labels, size_t size, size_t offset) { uint64_t checksum; index = (struct nvdimm_label_index *)((uint8_t *)index + size * offset); if (strcmp(index->signature, NVDIMM_INDEX_BLOCK_SIGNATURE) != 0) return false; checksum = index->checksum; index->checksum = 0; if (checksum != fletcher64(index, size) || index->this_offset != size * offset || index->this_size != size || index->other_offset != size * (offset == 0 ? 1 : 0) || index->seq == 0 || index->seq > 3 || index->slot_cnt > max_labels || index->label_size != 1) return false; return true; } static int read_label(struct nvdimm_dev *nv, int num) { struct nvdimm_label_entry *entry, *i, *next; uint64_t checksum; off_t offset; int error; offset = nv->label_index->label_offset + num * (128 << nv->label_index->label_size); entry = malloc(sizeof(*entry), M_NVDIMM, M_WAITOK); error = read_label_area(nv, (uint8_t *)&entry->label, offset, sizeof(struct nvdimm_label)); if (error != 0) { free(entry, M_NVDIMM); return (error); } checksum = entry->label.checksum; entry->label.checksum = 0; if (checksum != fletcher64(&entry->label, sizeof(entry->label)) || entry->label.slot != num) { free(entry, M_NVDIMM); return (ENXIO); } /* Insertion ordered by dimm_phys_addr */ if (SLIST_EMPTY(&nv->labels) || entry->label.dimm_phys_addr <= SLIST_FIRST(&nv->labels)->label.dimm_phys_addr) { SLIST_INSERT_HEAD(&nv->labels, entry, link); return (0); } SLIST_FOREACH_SAFE(i, &nv->labels, link, next) { if (next == NULL || entry->label.dimm_phys_addr <= next->label.dimm_phys_addr) { SLIST_INSERT_AFTER(i, entry, link); return (0); } } __assert_unreachable(); } static int read_labels(struct nvdimm_dev *nv) { struct nvdimm_label_index *indices, *index1; size_t bitfield_size, index_size, num_labels; int error, n; bool index_0_valid, index_1_valid; for (index_size = 256; ; index_size += 256) { num_labels = 8 * (index_size - sizeof(struct nvdimm_label_index)); if (index_size + num_labels * sizeof(struct nvdimm_label) >= nv->label_area_size) break; } num_labels = (nv->label_area_size - index_size) / sizeof(struct nvdimm_label); bitfield_size = roundup2(num_labels, 8) / 8; indices = malloc(2 * index_size, M_NVDIMM, M_WAITOK); index1 = (void *)((uint8_t *)indices + index_size); error = read_label_area(nv, (void *)indices, 0, 2 * index_size); if (error != 0) { free(indices, M_NVDIMM); return (error); } index_0_valid = label_index_is_valid(indices, num_labels, index_size, 0); index_1_valid = label_index_is_valid(indices, num_labels, index_size, 1); if (!index_0_valid && !index_1_valid) { free(indices, M_NVDIMM); return (ENXIO); } if (index_0_valid && index_1_valid) { if (((int)indices->seq - (int)index1->seq + 3) % 3 == 1) { /* index 0 was more recently updated */ index_1_valid = false; } else { /* * either index 1 was more recently updated, * or the sequence numbers are equal, in which * case the specification says the block with * the higher offset is to be treated as valid */ index_0_valid = false; } } nv->label_index = malloc(index_size, M_NVDIMM, M_WAITOK); bcopy(index_0_valid ? indices : index1, nv->label_index, index_size); free(indices, M_NVDIMM); bit_ffc_at((bitstr_t *)nv->label_index->free, 0, nv->label_index->slot_cnt, &n); while (n >= 0) { read_label(nv, n); bit_ffc_at((bitstr_t *)nv->label_index->free, n + 1, nv->label_index->slot_cnt, &n); } return (0); } struct nvdimm_dev * nvdimm_find_by_handle(nfit_handle_t nv_handle) { struct nvdimm_dev *res; device_t *dimms; int i, error, num_dimms; res = NULL; error = devclass_get_devices(nvdimm_devclass, &dimms, &num_dimms); if (error != 0) return (NULL); for (i = 0; i < num_dimms; i++) { if (nvdimm_root_get_device_handle(dimms[i]) == nv_handle) { res = device_get_softc(dimms[i]); break; } } free(dimms, M_TEMP); return (res); } static int nvdimm_probe(device_t dev) { return (BUS_PROBE_NOWILDCARD); } static int nvdimm_attach(device_t dev) { struct nvdimm_dev *nv; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; struct sysctl_oid_list *children; struct sbuf *sb; ACPI_TABLE_NFIT *nfitbl; ACPI_HANDLE handle; ACPI_STATUS status; ACPI_NFIT_MEMORY_MAP **maps; int error, i, num_maps; uint16_t flags; nv = device_get_softc(dev); ctx = device_get_sysctl_ctx(dev); oid = device_get_sysctl_tree(dev); children = SYSCTL_CHILDREN(oid); handle = nvdimm_root_get_acpi_handle(dev); MPASS(handle != NULL); nv->nv_dev = dev; nv->nv_handle = nvdimm_root_get_device_handle(dev); status = AcpiGetTable(ACPI_SIG_NFIT, 1, (ACPI_TABLE_HEADER **)&nfitbl); if (ACPI_FAILURE(status)) { if (bootverbose) device_printf(dev, "cannot get NFIT\n"); return (ENXIO); } acpi_nfit_get_flush_addrs(nfitbl, nv->nv_handle, &nv->nv_flush_addr, &nv->nv_flush_addr_cnt); /* * Each NVDIMM should have at least one memory map associated with it. * If any of the maps have one of the error flags set, reflect that in * the overall status. */ acpi_nfit_get_memory_maps_by_dimm(nfitbl, nv->nv_handle, &maps, &num_maps); if (num_maps == 0) { free(nv->nv_flush_addr, M_NVDIMM); free(maps, M_NVDIMM); device_printf(dev, "cannot find memory map\n"); return (ENXIO); } flags = 0; for (i = 0; i < num_maps; i++) { flags |= maps[i]->Flags; } free(maps, M_NVDIMM); /* sbuf_new_auto(9) is M_WAITOK; no need to check for NULL. */ sb = sbuf_new_auto(); (void) sbuf_printf(sb, "0x%b", flags, "\20" "\001SAVE_FAILED" "\002RESTORE_FAILED" "\003FLUSH_FAILED" "\004NOT_ARMED" "\005HEALTH_OBSERVED" "\006HEALTH_ENABLED" "\007MAP_FAILED"); error = sbuf_finish(sb); if (error != 0) { sbuf_delete(sb); free(nv->nv_flush_addr, M_NVDIMM); device_printf(dev, "cannot convert flags to string\n"); return (error); } /* strdup(9) is M_WAITOK; no need to check for NULL. */ nv->nv_flags_str = strdup(sbuf_data(sb), M_NVDIMM); sbuf_delete(sb); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "flags", CTLFLAG_RD | CTLFLAG_MPSAFE, nv->nv_flags_str, 0, "NVDIMM State Flags"); /* * Anything other than HEALTH_ENABLED indicates a fault condition of * some kind, so log if that's seen. */ if ((flags & ~ACPI_NFIT_MEM_HEALTH_ENABLED) != 0) device_printf(dev, "flags: %s\n", nv->nv_flags_str); AcpiPutTable(&nfitbl->Header); error = read_label_area_size(nv); if (error == 0) { /* * Ignoring errors reading labels. Not all NVDIMMs * support labels and namespaces. */ read_labels(nv); } return (0); } static int nvdimm_detach(device_t dev) { struct nvdimm_dev *nv; struct nvdimm_label_entry *label, *next; nv = device_get_softc(dev); free(nv->nv_flags_str, M_NVDIMM); free(nv->nv_flush_addr, M_NVDIMM); free(nv->label_index, M_NVDIMM); SLIST_FOREACH_SAFE(label, &nv->labels, link, next) { SLIST_REMOVE_HEAD(&nv->labels, link); free(label, M_NVDIMM); } return (0); } static int nvdimm_suspend(device_t dev) { return (0); } static int nvdimm_resume(device_t dev) { return (0); } static device_method_t nvdimm_methods[] = { DEVMETHOD(device_probe, nvdimm_probe), DEVMETHOD(device_attach, nvdimm_attach), DEVMETHOD(device_detach, nvdimm_detach), DEVMETHOD(device_suspend, nvdimm_suspend), DEVMETHOD(device_resume, nvdimm_resume), DEVMETHOD_END }; static driver_t nvdimm_driver = { "nvdimm", nvdimm_methods, sizeof(struct nvdimm_dev), }; DRIVER_MODULE(nvdimm, nvdimm_acpi_root, nvdimm_driver, nvdimm_devclass, NULL, NULL); MODULE_DEPEND(nvdimm, acpi, 1, 1, 1);