/*- * Copyright (c) 2016 Daniel Wyatt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Nuvoton GPIO driver. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "gpio_if.h" /* Logical Device Numbers. */ #define NCT_LDN_GPIO 0x07 #define NCT_LDN_GPIO_MODE 0x0f /* Logical Device 7 */ #define NCT_LD7_GPIO0_IOR 0xe0 #define NCT_LD7_GPIO0_DAT 0xe1 #define NCT_LD7_GPIO0_INV 0xe2 #define NCT_LD7_GPIO0_DST 0xe3 #define NCT_LD7_GPIO1_IOR 0xe4 #define NCT_LD7_GPIO1_DAT 0xe5 #define NCT_LD7_GPIO1_INV 0xe6 #define NCT_LD7_GPIO1_DST 0xe7 /* Logical Device F */ #define NCT_LDF_GPIO0_OUTCFG 0xe0 #define NCT_LDF_GPIO1_OUTCFG 0xe1 /* Direct I/O port access. */ #define NCT_IO_GSR 0 #define NCT_IO_IOR 1 #define NCT_IO_DAT 2 #define NCT_IO_INV 3 #define NCT_MAX_PIN 15 #define NCT_IS_VALID_PIN(_p) ((_p) >= 0 && (_p) <= NCT_MAX_PIN) #define NCT_PIN_BIT(_p) (1 << ((_p) & 7)) #define NCT_GPIO_CAPS (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT | \ GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL | \ GPIO_PIN_INVIN | GPIO_PIN_INVOUT) /* * Note that the values are important. * They match actual register offsets. */ typedef enum { REG_IOR = 0, REG_DAT = 1, REG_INV = 2, } reg_t; struct nct_softc { device_t dev; device_t dev_f; device_t busdev; struct mtx mtx; struct resource *iores; int iorid; int curgrp; struct { /* direction, 1: pin is input */ uint8_t ior[2]; /* output value */ uint8_t out[2]; /* whether out is valid */ uint8_t out_known[2]; /* inversion, 1: pin is inverted */ uint8_t inv[2]; } cache; struct gpio_pin pins[NCT_MAX_PIN + 1]; }; #define GPIO_LOCK_INIT(_sc) mtx_init(&(_sc)->mtx, \ device_get_nameunit(dev), NULL, MTX_DEF) #define GPIO_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->mtx) #define GPIO_LOCK(_sc) mtx_lock(&(_sc)->mtx) #define GPIO_UNLOCK(_sc) mtx_unlock(&(_sc)->mtx) #define GPIO_ASSERT_LOCKED(_sc) mtx_assert(&(_sc)->mtx, MA_OWNED) #define GPIO_ASSERT_UNLOCKED(_sc) mtx_assert(&(_sc)->mtx, MA_NOTOWNED) struct nuvoton_vendor_device_id { uint16_t chip_id; const char * descr; } nct_devs[] = { { .chip_id = 0x1061, .descr = "Nuvoton NCT5104D", }, { .chip_id = 0xc452, .descr = "Nuvoton NCT5104D (PC-Engines APU)", }, { .chip_id = 0xc453, .descr = "Nuvoton NCT5104D (PC-Engines APU3)", }, }; static void nct_io_set_group(struct nct_softc *sc, int group) { GPIO_ASSERT_LOCKED(sc); if (group != sc->curgrp) { bus_write_1(sc->iores, NCT_IO_GSR, group); sc->curgrp = group; } } static uint8_t nct_io_read(struct nct_softc *sc, int group, uint8_t reg) { nct_io_set_group(sc, group); return (bus_read_1(sc->iores, reg)); } static void nct_io_write(struct nct_softc *sc, int group, uint8_t reg, uint8_t val) { nct_io_set_group(sc, group); return (bus_write_1(sc->iores, reg, val)); } static uint8_t nct_get_ioreg(struct nct_softc *sc, reg_t reg, int group) { uint8_t ioreg; if (sc->iores != NULL) ioreg = NCT_IO_IOR + reg; else if (group == 0) ioreg = NCT_LD7_GPIO0_IOR + reg; else ioreg = NCT_LD7_GPIO1_IOR + reg; return (ioreg); } static uint8_t nct_read_reg(struct nct_softc *sc, reg_t reg, int group) { uint8_t ioreg; uint8_t val; ioreg = nct_get_ioreg(sc, reg, group); if (sc->iores != NULL) val = nct_io_read(sc, group, ioreg); else val = superio_read(sc->dev, ioreg); return (val); } #define GET_BIT(v, b) (((v) >> (b)) & 1) static bool nct_get_pin_reg(struct nct_softc *sc, reg_t reg, uint32_t pin_num) { uint8_t bit; uint8_t group; uint8_t val; KASSERT(NCT_IS_VALID_PIN(pin_num), ("%s: invalid pin number %d", __func__, pin_num)); group = pin_num >> 3; bit = pin_num & 7; val = nct_read_reg(sc, reg, group); return (GET_BIT(val, bit)); } static int nct_get_pin_cache(struct nct_softc *sc, uint32_t pin_num, uint8_t *cache) { uint8_t bit; uint8_t group; uint8_t val; KASSERT(NCT_IS_VALID_PIN(pin_num), ("%s: invalid pin number %d", __func__, pin_num)); group = pin_num >> 3; bit = pin_num & 7; val = cache[group]; return (GET_BIT(val, bit)); } static void nct_write_reg(struct nct_softc *sc, reg_t reg, int group, uint8_t val) { uint8_t ioreg; ioreg = nct_get_ioreg(sc, reg, group); if (sc->iores != NULL) nct_io_write(sc, group, ioreg, val); else superio_write(sc->dev, ioreg, val); } static void nct_set_pin_reg(struct nct_softc *sc, reg_t reg, uint32_t pin_num, bool val) { uint8_t *cache; uint8_t bit; uint8_t bitval; uint8_t group; uint8_t mask; KASSERT(NCT_IS_VALID_PIN(pin_num), ("%s: invalid pin number %d", __func__, pin_num)); KASSERT(reg == REG_IOR || reg == REG_INV, ("%s: unsupported register %d", __func__, reg)); group = pin_num >> 3; bit = pin_num & 7; mask = (uint8_t)1 << bit; bitval = (uint8_t)val << bit; if (reg == REG_IOR) cache = &sc->cache.ior[group]; else cache = &sc->cache.inv[group]; if ((*cache & mask) == bitval) return; *cache &= ~mask; *cache |= bitval; nct_write_reg(sc, reg, group, *cache); } /* * Set a pin to input (val is true) or output (val is false) mode. */ static void nct_set_pin_input(struct nct_softc *sc, uint32_t pin_num, bool val) { nct_set_pin_reg(sc, REG_IOR, pin_num, val); } /* * Check whether a pin is configured as an input. */ static bool nct_pin_is_input(struct nct_softc *sc, uint32_t pin_num) { return (nct_get_pin_cache(sc, pin_num, sc->cache.ior)); } /* * Set a pin to inverted (val is true) or normal (val is false) mode. */ static void nct_set_pin_inverted(struct nct_softc *sc, uint32_t pin_num, bool val) { nct_set_pin_reg(sc, REG_INV, pin_num, val); } static bool nct_pin_is_inverted(struct nct_softc *sc, uint32_t pin_num) { return (nct_get_pin_cache(sc, pin_num, sc->cache.inv)); } /* * Write a value to an output pin. * NB: the hardware remembers last output value across switching from * output mode to input mode and back. * Writes to a pin in input mode are not allowed here as they cannot * have any effect and would corrupt the output value cache. */ static void nct_write_pin(struct nct_softc *sc, uint32_t pin_num, bool val) { uint8_t bit; uint8_t group; KASSERT(!nct_pin_is_input(sc, pin_num), ("attempt to write input pin")); group = pin_num >> 3; bit = pin_num & 7; if (GET_BIT(sc->cache.out_known[group], bit) && GET_BIT(sc->cache.out[group], bit) == val) { /* The pin is already in requested state. */ return; } sc->cache.out_known[group] |= 1 << bit; if (val) sc->cache.out[group] |= 1 << bit; else sc->cache.out[group] &= ~(1 << bit); nct_write_reg(sc, REG_DAT, group, sc->cache.out[group]); } /* * NB: state of an input pin cannot be cached, of course. * For an output we can either take the value from the cache if it's valid * or read the state from the hadrware and cache it. */ static bool nct_read_pin(struct nct_softc *sc, uint32_t pin_num) { uint8_t bit; uint8_t group; bool val; if (nct_pin_is_input(sc, pin_num)) return (nct_get_pin_reg(sc, REG_DAT, pin_num)); group = pin_num >> 3; bit = pin_num & 7; if (GET_BIT(sc->cache.out_known[group], bit)) return (GET_BIT(sc->cache.out[group], bit)); val = nct_get_pin_reg(sc, REG_DAT, pin_num); sc->cache.out_known[group] |= 1 << bit; if (val) sc->cache.out[group] |= 1 << bit; else sc->cache.out[group] &= ~(1 << bit); return (val); } static uint8_t nct_outcfg_addr(uint32_t pin_num) { KASSERT(NCT_IS_VALID_PIN(pin_num), ("%s: invalid pin number %d", __func__, pin_num)); if ((pin_num >> 3) == 0) return (NCT_LDF_GPIO0_OUTCFG); else return (NCT_LDF_GPIO1_OUTCFG); } /* * NB: PP/OD can be configured only via configuration registers. * Also, the registers are in a different logical device. * So, this is a special case. No caching too. */ static void nct_set_pin_opendrain(struct nct_softc *sc, uint32_t pin_num) { uint8_t reg; uint8_t outcfg; reg = nct_outcfg_addr(pin_num); outcfg = superio_read(sc->dev_f, reg); outcfg |= NCT_PIN_BIT(pin_num); superio_write(sc->dev_f, reg, outcfg); } static void nct_set_pin_pushpull(struct nct_softc *sc, uint32_t pin_num) { uint8_t reg; uint8_t outcfg; reg = nct_outcfg_addr(pin_num); outcfg = superio_read(sc->dev_f, reg); outcfg &= ~NCT_PIN_BIT(pin_num); superio_write(sc->dev_f, reg, outcfg); } static bool nct_pin_is_opendrain(struct nct_softc *sc, uint32_t pin_num) { uint8_t reg; uint8_t outcfg; reg = nct_outcfg_addr(pin_num); outcfg = superio_read(sc->dev_f, reg); return (outcfg & NCT_PIN_BIT(pin_num)); } static int nct_probe(device_t dev) { int j; uint16_t chipid; if (superio_vendor(dev) != SUPERIO_VENDOR_NUVOTON) return (ENXIO); if (superio_get_type(dev) != SUPERIO_DEV_GPIO) return (ENXIO); /* * There are several GPIO devices, we attach only to one of them * and use the rest without attaching. */ if (superio_get_ldn(dev) != NCT_LDN_GPIO) return (ENXIO); chipid = superio_devid(dev); for (j = 0; j < nitems(nct_devs); j++) { if (chipid == nct_devs[j].chip_id) { device_set_desc(dev, "Nuvoton GPIO controller"); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int nct_attach(device_t dev) { struct nct_softc *sc; device_t dev_8; uint16_t iobase; int err; int i; sc = device_get_softc(dev); sc->dev = dev; sc->dev_f = superio_find_dev(device_get_parent(dev), SUPERIO_DEV_GPIO, NCT_LDN_GPIO_MODE); if (sc->dev_f == NULL) { device_printf(dev, "failed to find LDN F\n"); return (ENXIO); } /* * As strange as it may seem, I/O port base is configured in the * Logical Device 8 which is primarily used for WDT, but also plays * a role in GPIO configuration. */ iobase = 0; dev_8 = superio_find_dev(device_get_parent(dev), SUPERIO_DEV_WDT, 8); if (dev_8 != NULL) iobase = superio_get_iobase(dev_8); if (iobase != 0 && iobase != 0xffff) { sc->curgrp = -1; sc->iorid = 0; err = bus_set_resource(dev, SYS_RES_IOPORT, sc->iorid, iobase, 7); if (err == 0) { sc->iores = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &sc->iorid, RF_ACTIVE); if (sc->iores == NULL) { device_printf(dev, "can't map i/o space, " "iobase=0x%04x\n", iobase); } } else { device_printf(dev, "failed to set io port resource at 0x%x\n", iobase); } } /* Enable gpio0 and gpio1. */ superio_dev_enable(dev, 0x03); GPIO_LOCK_INIT(sc); GPIO_LOCK(sc); sc->cache.inv[0] = nct_read_reg(sc, REG_INV, 0); sc->cache.inv[1] = nct_read_reg(sc, REG_INV, 1); sc->cache.ior[0] = nct_read_reg(sc, REG_IOR, 0); sc->cache.ior[1] = nct_read_reg(sc, REG_IOR, 1); /* * Caching input values is meaningless as an input can be changed at any * time by an external agent. But outputs are controlled by this * driver, so it can cache their state. Also, the hardware remembers * the output state of a pin when the pin is switched to input mode and * then back to output mode. So, the cache stays valid. * The only problem is with pins that are in input mode at the attach * time. For them the output state is not known until it is set by the * driver for the first time. * 'out' and 'out_known' bits form a tri-state output cache: * |-----+-----------+---------| * | out | out_known | cache | * |-----+-----------+---------| * | X | 0 | invalid | * | 0 | 1 | 0 | * | 1 | 1 | 1 | * |-----+-----------+---------| */ sc->cache.out[0] = nct_read_reg(sc, REG_DAT, 0); sc->cache.out[1] = nct_read_reg(sc, REG_DAT, 1); sc->cache.out_known[0] = ~sc->cache.ior[0]; sc->cache.out_known[1] = ~sc->cache.ior[1]; for (i = 0; i <= NCT_MAX_PIN; i++) { struct gpio_pin *pin; pin = &sc->pins[i]; pin->gp_pin = i; pin->gp_caps = NCT_GPIO_CAPS; pin->gp_flags = 0; snprintf(pin->gp_name, GPIOMAXNAME, "GPIO%02o", i); pin->gp_name[GPIOMAXNAME - 1] = '\0'; if (nct_pin_is_input(sc, i)) pin->gp_flags |= GPIO_PIN_INPUT; else pin->gp_flags |= GPIO_PIN_OUTPUT; if (nct_pin_is_opendrain(sc, i)) pin->gp_flags |= GPIO_PIN_OPENDRAIN; else pin->gp_flags |= GPIO_PIN_PUSHPULL; if (nct_pin_is_inverted(sc, i)) pin->gp_flags |= (GPIO_PIN_INVIN | GPIO_PIN_INVOUT); } GPIO_UNLOCK(sc); sc->busdev = gpiobus_attach_bus(dev); if (sc->busdev == NULL) { GPIO_LOCK_DESTROY(sc); return (ENXIO); } return (0); } static int nct_detach(device_t dev) { struct nct_softc *sc; sc = device_get_softc(dev); gpiobus_detach_bus(dev); if (sc->iores != NULL) bus_release_resource(dev, SYS_RES_IOPORT, sc->iorid, sc->iores); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK_DESTROY(sc); return (0); } static device_t nct_gpio_get_bus(device_t dev) { struct nct_softc *sc; sc = device_get_softc(dev); return (sc->busdev); } static int nct_gpio_pin_max(device_t dev, int *npins) { *npins = NCT_MAX_PIN; return (0); } static int nct_gpio_pin_set(device_t dev, uint32_t pin_num, uint32_t pin_value) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_LOCK(sc); if ((sc->pins[pin_num].gp_flags & GPIO_PIN_OUTPUT) == 0) { GPIO_UNLOCK(sc); return (EINVAL); } nct_write_pin(sc, pin_num, pin_value); GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_get(device_t dev, uint32_t pin_num, uint32_t *pin_value) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); *pin_value = nct_read_pin(sc, pin_num); GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_toggle(device_t dev, uint32_t pin_num) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); if ((sc->pins[pin_num].gp_flags & GPIO_PIN_OUTPUT) == 0) { GPIO_UNLOCK(sc); return (EINVAL); } if (nct_read_pin(sc, pin_num)) nct_write_pin(sc, pin_num, 0); else nct_write_pin(sc, pin_num, 1); GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_getcaps(device_t dev, uint32_t pin_num, uint32_t *caps) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); *caps = sc->pins[pin_num].gp_caps; GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_getflags(device_t dev, uint32_t pin_num, uint32_t *flags) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); *flags = sc->pins[pin_num].gp_flags; GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_getname(device_t dev, uint32_t pin_num, char *name) { struct nct_softc *sc; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); memcpy(name, sc->pins[pin_num].gp_name, GPIOMAXNAME); GPIO_UNLOCK(sc); return (0); } static int nct_gpio_pin_setflags(device_t dev, uint32_t pin_num, uint32_t flags) { struct nct_softc *sc; struct gpio_pin *pin; if (!NCT_IS_VALID_PIN(pin_num)) return (EINVAL); sc = device_get_softc(dev); pin = &sc->pins[pin_num]; if ((flags & pin->gp_caps) != flags) return (EINVAL); if ((flags & (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT)) == (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT)) { return (EINVAL); } if ((flags & (GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL)) == (GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL)) { return (EINVAL); } if ((flags & (GPIO_PIN_INVIN | GPIO_PIN_INVOUT)) == (GPIO_PIN_INVIN | GPIO_PIN_INVOUT)) { return (EINVAL); } GPIO_ASSERT_UNLOCKED(sc); GPIO_LOCK(sc); if ((flags & (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT)) != 0) { nct_set_pin_input(sc, pin_num, (flags & GPIO_PIN_INPUT) != 0); pin->gp_flags &= ~(GPIO_PIN_INPUT | GPIO_PIN_OUTPUT); pin->gp_flags |= flags & (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT); } if ((flags & (GPIO_PIN_INVIN | GPIO_PIN_INVOUT)) != 0) { nct_set_pin_inverted(sc, pin_num, (flags & GPIO_PIN_INVIN) != 0); pin->gp_flags &= ~(GPIO_PIN_INVIN | GPIO_PIN_INVOUT); pin->gp_flags |= flags & (GPIO_PIN_INVIN | GPIO_PIN_INVOUT); } if ((flags & (GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL)) != 0) { if (flags & GPIO_PIN_OPENDRAIN) nct_set_pin_opendrain(sc, pin_num); else nct_set_pin_pushpull(sc, pin_num); pin->gp_flags &= ~(GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL); pin->gp_flags |= flags & (GPIO_PIN_OPENDRAIN | GPIO_PIN_PUSHPULL); } GPIO_UNLOCK(sc); return (0); } static device_method_t nct_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nct_probe), DEVMETHOD(device_attach, nct_attach), DEVMETHOD(device_detach, nct_detach), /* GPIO */ DEVMETHOD(gpio_get_bus, nct_gpio_get_bus), DEVMETHOD(gpio_pin_max, nct_gpio_pin_max), DEVMETHOD(gpio_pin_get, nct_gpio_pin_get), DEVMETHOD(gpio_pin_set, nct_gpio_pin_set), DEVMETHOD(gpio_pin_toggle, nct_gpio_pin_toggle), DEVMETHOD(gpio_pin_getname, nct_gpio_pin_getname), DEVMETHOD(gpio_pin_getcaps, nct_gpio_pin_getcaps), DEVMETHOD(gpio_pin_getflags, nct_gpio_pin_getflags), DEVMETHOD(gpio_pin_setflags, nct_gpio_pin_setflags), DEVMETHOD_END }; static driver_t nct_driver = { "gpio", nct_methods, sizeof(struct nct_softc) }; static devclass_t nct_devclass; DRIVER_MODULE(nctgpio, superio, nct_driver, nct_devclass, NULL, NULL); MODULE_DEPEND(nctgpio, gpiobus, 1, 1, 1); MODULE_DEPEND(nctgpio, superio, 1, 1, 1); MODULE_VERSION(nctgpio, 1);