/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2004-2006 * Damien Bergamini . All rights reserved. * Copyright (c) 2006 Sam Leffler, Errno Consulting * Copyright (c) 2007 Andrew Thompson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include /*- * Intel(R) PRO/Wireless 2100 MiniPCI driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IPW_DEBUG #ifdef IPW_DEBUG #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) int ipw_debug = 0; SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(ipw, pci, 1, 1, 1); MODULE_DEPEND(ipw, wlan, 1, 1, 1); MODULE_DEPEND(ipw, firmware, 1, 1, 1); struct ipw_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct ipw_ident ipw_ident_table[] = { { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, { 0, 0, NULL } }; static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void ipw_vap_delete(struct ieee80211vap *); static int ipw_dma_alloc(struct ipw_softc *); static void ipw_release(struct ipw_softc *); static void ipw_media_status(struct ifnet *, struct ifmediareq *); static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); static uint16_t ipw_read_chanmask(struct ipw_softc *); static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, struct ipw_soft_bd *, struct ipw_soft_buf *); static void ipw_rx_intr(struct ipw_softc *); static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); static void ipw_tx_intr(struct ipw_softc *); static void ipw_intr(void *); static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); static const char * ipw_cmdname(int); static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); static int ipw_tx_start(struct ipw_softc *, struct mbuf *, struct ieee80211_node *); static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int ipw_transmit(struct ieee80211com *, struct mbuf *); static void ipw_start(struct ipw_softc *); static void ipw_watchdog(void *); static void ipw_parent(struct ieee80211com *); static void ipw_stop_master(struct ipw_softc *); static int ipw_enable(struct ipw_softc *); static int ipw_disable(struct ipw_softc *); static int ipw_reset(struct ipw_softc *); static int ipw_load_ucode(struct ipw_softc *, const char *, int); static int ipw_load_firmware(struct ipw_softc *, const char *, int); static int ipw_config(struct ipw_softc *); static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); static void ipw_init_task(void *, int); static void ipw_init(void *); static void ipw_init_locked(struct ipw_softc *); static void ipw_stop(void *); static void ipw_stop_locked(struct ipw_softc *); static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); #if 0 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *); static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); #endif static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, const uint8_t *, bus_size_t); static int ipw_scan(struct ipw_softc *); static void ipw_scan_start(struct ieee80211com *); static void ipw_scan_end(struct ieee80211com *); static void ipw_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static void ipw_set_channel(struct ieee80211com *); static void ipw_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); static void ipw_scan_mindwell(struct ieee80211_scan_state *); static int ipw_probe(device_t); static int ipw_attach(device_t); static int ipw_detach(device_t); static int ipw_shutdown(device_t); static int ipw_suspend(device_t); static int ipw_resume(device_t); static device_method_t ipw_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ipw_probe), DEVMETHOD(device_attach, ipw_attach), DEVMETHOD(device_detach, ipw_detach), DEVMETHOD(device_shutdown, ipw_shutdown), DEVMETHOD(device_suspend, ipw_suspend), DEVMETHOD(device_resume, ipw_resume), DEVMETHOD_END }; static driver_t ipw_driver = { "ipw", ipw_methods, sizeof (struct ipw_softc) }; static devclass_t ipw_devclass; DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL); MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ipw, ipw_ident_table, nitems(ipw_ident_table) - 1); MODULE_VERSION(ipw, 1); static int ipw_probe(device_t dev) { const struct ipw_ident *ident; for (ident = ipw_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return ENXIO; } /* Base Address Register */ static int ipw_attach(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int error, i; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); mbufq_init(&sc->sc_snd, ifqmaxlen); TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); i = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); i = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail1; } if (ipw_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail2; } if (ipw_dma_alloc(sc) != 0) { device_printf(dev, "could not allocate DMA resources\n"); goto fail2; } ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_DS; /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_PMGT /* power save supported */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_WPA /* 802.11i supported */ ; /* read MAC address from EEPROM */ val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); ic->ic_macaddr[0] = val >> 8; ic->ic_macaddr[1] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); ic->ic_macaddr[2] = val >> 8; ic->ic_macaddr[3] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); ic->ic_macaddr[4] = val >> 8; ic->ic_macaddr[5] = val & 0xff; sc->chanmask = ipw_read_chanmask(sc); ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); /* check support for radio transmitter switch in EEPROM */ if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; ieee80211_ifattach(ic); ic->ic_scan_start = ipw_scan_start; ic->ic_scan_end = ipw_scan_end; ic->ic_getradiocaps = ipw_getradiocaps; ic->ic_set_channel = ipw_set_channel; ic->ic_scan_curchan = ipw_scan_curchan; ic->ic_scan_mindwell = ipw_scan_mindwell; ic->ic_raw_xmit = ipw_raw_xmit; ic->ic_vap_create = ipw_vap_create; ic->ic_vap_delete = ipw_vap_delete; ic->ic_transmit = ipw_transmit; ic->ic_parent = ipw_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IPW_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IPW_RX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, ipw_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, ipw_sysctl_stats, "S", "statistics"); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, ipw_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail3; } if (bootverbose) ieee80211_announce(ic); return 0; fail3: ipw_release(sc); fail2: bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); fail1: bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); fail: mtx_destroy(&sc->sc_mtx); return ENXIO; } static int ipw_detach(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; bus_teardown_intr(dev, sc->irq, sc->sc_ih); ieee80211_draintask(ic, &sc->sc_init_task); ipw_stop(sc); ieee80211_ifdetach(ic); callout_drain(&sc->sc_wdtimer); mbufq_drain(&sc->sc_snd); ipw_release(sc); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); if (sc->sc_firmware != NULL) { firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); sc->sc_firmware = NULL; } mtx_destroy(&sc->sc_mtx); return 0; } static struct ieee80211vap * ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ipw_softc *sc = ic->ic_softc; struct ipw_vap *ivp; struct ieee80211vap *vap; const struct firmware *fp; const struct ipw_firmware_hdr *hdr; const char *imagename; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; switch (opmode) { case IEEE80211_M_STA: imagename = "ipw_bss"; break; case IEEE80211_M_IBSS: imagename = "ipw_ibss"; break; case IEEE80211_M_MONITOR: imagename = "ipw_monitor"; break; default: return NULL; } /* * Load firmware image using the firmware(9) subsystem. Doing * this unlocked is ok since we're single-threaded by the * 802.11 layer. */ if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name, imagename) != 0) { if (sc->sc_firmware != NULL) firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); sc->sc_firmware = firmware_get(imagename); } if (sc->sc_firmware == NULL) { device_printf(sc->sc_dev, "could not load firmware image '%s'\n", imagename); return NULL; } fp = sc->sc_firmware; if (fp->datasize < sizeof *hdr) { device_printf(sc->sc_dev, "firmware image too short %zu\n", fp->datasize); firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); sc->sc_firmware = NULL; return NULL; } hdr = (const struct ipw_firmware_hdr *)fp->data; if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + le32toh(hdr->ucodesz)) { device_printf(sc->sc_dev, "firmware image too short %zu\n", fp->datasize); firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); sc->sc_firmware = NULL; return NULL; } ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override with driver methods */ ivp->newstate = vap->iv_newstate; vap->iv_newstate = ipw_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, mac); ic->ic_opmode = opmode; return vap; } static void ipw_vap_delete(struct ieee80211vap *vap) { struct ipw_vap *ivp = IPW_VAP(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static int ipw_dma_alloc(struct ipw_softc *sc) { struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; bus_addr_t physaddr; int error, i; /* * Allocate parent DMA tag for subsequent allocations. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create parent DMA tag\n"); goto fail; } /* * Allocate and map tx ring. */ error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, NULL, &sc->tbd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate tx ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); goto fail; } /* * Allocate and map rx ring. */ error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, NULL, &sc->rbd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate rx ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); goto fail; } /* * Allocate and map status ring. */ error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, NULL, NULL, &sc->status_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create status ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate status ring DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->status_dmat, sc->status_map, sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map status ring DMA memory\n"); goto fail; } /* * Allocate command DMA map. */ error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create command DMA tag\n"); goto fail; } error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); if (error != 0) { device_printf(sc->sc_dev, "could not create command DMA map\n"); goto fail; } /* * Allocate headers DMA maps. */ error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create header DMA tag\n"); goto fail; } SLIST_INIT(&sc->free_shdr); for (i = 0; i < IPW_NDATA; i++) { shdr = &sc->shdr_list[i]; error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); if (error != 0) { device_printf(sc->sc_dev, "could not create header DMA map\n"); goto fail; } SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); } /* * Allocate tx buffers DMA maps. */ error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &sc->txbuf_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx DMA tag\n"); goto fail; } SLIST_INIT(&sc->free_sbuf); for (i = 0; i < IPW_NDATA; i++) { sbuf = &sc->tx_sbuf_list[i]; error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); if (error != 0) { device_printf(sc->sc_dev, "could not create tx DMA map\n"); goto fail; } SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); } /* * Initialize tx ring. */ for (i = 0; i < IPW_NTBD; i++) { sbd = &sc->stbd_list[i]; sbd->bd = &sc->tbd_list[i]; sbd->type = IPW_SBD_TYPE_NOASSOC; } /* * Pre-allocate rx buffers and DMA maps. */ error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rxbuf_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx DMA tag\n"); goto fail; } for (i = 0; i < IPW_NRBD; i++) { sbd = &sc->srbd_list[i]; sbuf = &sc->rx_sbuf_list[i]; sbd->bd = &sc->rbd_list[i]; sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (sbuf->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); if (error != 0) { device_printf(sc->sc_dev, "could not create rx DMA map\n"); goto fail; } error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map rx DMA memory\n"); goto fail; } sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(MCLBYTES); } bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); return 0; fail: ipw_release(sc); return error; } static void ipw_release(struct ipw_softc *sc) { struct ipw_soft_buf *sbuf; int i; if (sc->parent_dmat != NULL) { bus_dma_tag_destroy(sc->parent_dmat); } if (sc->tbd_dmat != NULL) { bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); bus_dma_tag_destroy(sc->tbd_dmat); } if (sc->rbd_dmat != NULL) { if (sc->rbd_list != NULL) { bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, sc->rbd_map); } bus_dma_tag_destroy(sc->rbd_dmat); } if (sc->status_dmat != NULL) { if (sc->status_list != NULL) { bus_dmamap_unload(sc->status_dmat, sc->status_map); bus_dmamem_free(sc->status_dmat, sc->status_list, sc->status_map); } bus_dma_tag_destroy(sc->status_dmat); } for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); if (sc->cmd_dmat != NULL) { bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); bus_dma_tag_destroy(sc->cmd_dmat); } if (sc->hdr_dmat != NULL) { for (i = 0; i < IPW_NDATA; i++) bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); bus_dma_tag_destroy(sc->hdr_dmat); } if (sc->txbuf_dmat != NULL) { for (i = 0; i < IPW_NDATA; i++) { bus_dmamap_destroy(sc->txbuf_dmat, sc->tx_sbuf_list[i].map); } bus_dma_tag_destroy(sc->txbuf_dmat); } if (sc->rxbuf_dmat != NULL) { for (i = 0; i < IPW_NRBD; i++) { sbuf = &sc->rx_sbuf_list[i]; if (sbuf->m != NULL) { bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); m_freem(sbuf->m); } bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); } bus_dma_tag_destroy(sc->rxbuf_dmat); } } static int ipw_shutdown(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); ipw_stop(sc); return 0; } static int ipw_suspend(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; ieee80211_suspend_all(ic); return 0; } static int ipw_resume(device_t dev) { struct ipw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; pci_write_config(dev, 0x41, 0, 1); ieee80211_resume_all(ic); return 0; } static int ipw_cvtrate(int ipwrate) { switch (ipwrate) { case IPW_RATE_DS1: return 2; case IPW_RATE_DS2: return 4; case IPW_RATE_DS5: return 11; case IPW_RATE_DS11: return 22; } return 0; } /* * The firmware automatically adapts the transmit speed. We report its current * value here. */ static void ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; struct ipw_softc *sc = ic->ic_softc; /* read current transmission rate from adapter */ vap->iv_bss->ni_txrate = ipw_cvtrate( ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); ieee80211_media_status(ifp, imr); } static int ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ipw_vap *ivp = IPW_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ipw_softc *sc = ic->ic_softc; enum ieee80211_state ostate; DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], sc->flags)); ostate = vap->iv_state; IEEE80211_UNLOCK(ic); switch (nstate) { case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) { /* * XXX when joining an ibss network we are called * with a SCAN -> RUN transition on scan complete. * Use that to call ipw_assoc. On completing the * join we are then called again with an AUTH -> RUN * transition and we want to do nothing. This is * all totally bogus and needs to be redone. */ if (ostate == IEEE80211_S_SCAN) ipw_assoc(ic, vap); } break; case IEEE80211_S_INIT: if (sc->flags & IPW_FLAG_ASSOCIATED) ipw_disassoc(ic, vap); break; case IEEE80211_S_AUTH: /* * Move to ASSOC state after the ipw_assoc() call. Firmware * takes care of authentication, after the call we'll receive * only an assoc response which would otherwise be discared * if we are still in AUTH state. */ nstate = IEEE80211_S_ASSOC; ipw_assoc(ic, vap); break; case IEEE80211_S_ASSOC: /* * If we are not transitioning from AUTH then resend the * association request. */ if (ostate != IEEE80211_S_AUTH) ipw_assoc(ic, vap); break; default: break; } IEEE80211_LOCK(ic); return ivp->newstate(vap, nstate, arg); } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* write start bit (1) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); /* write READ opcode (10) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); } IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; } IPW_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_C); return le16toh(val); } static uint16_t ipw_read_chanmask(struct ipw_softc *sc) { uint16_t val; /* set supported .11b channels (read from EEPROM) */ if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) val = 0x7ff; /* default to channels 1-11 */ val <<= 1; return (val); } static void ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ipw_cmd *cmd; bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); cmd = mtod(sbuf->m, struct ipw_cmd *); DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), le32toh(cmd->status))); sc->flags &= ~IPW_FLAG_BUSY; wakeup(sc); } static void ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t state; bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); state = le32toh(*mtod(sbuf->m, uint32_t *)); switch (state) { case IPW_STATE_ASSOCIATED: DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", IEEESTATE(vap), sc->flags)); /* XXX suppress state change in case the fw auto-associates */ if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { DPRINTF(("Unexpected association (%s, flags 0x%x)\n", IEEESTATE(vap), sc->flags)); break; } sc->flags &= ~IPW_FLAG_ASSOCIATING; sc->flags |= IPW_FLAG_ASSOCIATED; break; case IPW_STATE_SCANNING: DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", IEEESTATE(vap), sc->flags)); /* * NB: Check driver state for association on assoc * loss as the firmware will immediately start to * scan and we would treat it as a beacon miss if * we checked the 802.11 layer state. */ if (sc->flags & IPW_FLAG_ASSOCIATED) { IPW_UNLOCK(sc); /* XXX probably need to issue disassoc to fw */ ieee80211_beacon_miss(ic); IPW_LOCK(sc); } break; case IPW_STATE_SCAN_COMPLETE: /* * XXX For some reason scan requests generate scan * started + scan done events before any traffic is * received (e.g. probe response frames). We work * around this by marking the HACK flag and skipping * the first scan complete event. */ DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", IEEESTATE(vap), sc->flags)); if (sc->flags & IPW_FLAG_HACK) { sc->flags &= ~IPW_FLAG_HACK; break; } if (sc->flags & IPW_FLAG_SCANNING) { IPW_UNLOCK(sc); ieee80211_scan_done(vap); IPW_LOCK(sc); sc->flags &= ~IPW_FLAG_SCANNING; sc->sc_scan_timer = 0; } break; case IPW_STATE_ASSOCIATION_LOST: DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", IEEESTATE(vap), sc->flags)); sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); if (vap->iv_state == IEEE80211_S_RUN) { IPW_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); IPW_LOCK(sc); } break; case IPW_STATE_DISABLED: /* XXX? is this right? */ sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", IEEESTATE(vap), sc->flags)); break; case IPW_STATE_RADIO_DISABLED: device_printf(sc->sc_dev, "radio turned off\n"); ieee80211_notify_radio(ic, 0); ipw_stop_locked(sc); /* XXX start polling thread to detect radio on */ break; default: DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", __func__, state, IEEESTATE(vap), sc->flags)); break; } #undef IEEESTATE } /* * Set driver state for current channel. */ static void ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; ic->ic_curchan = chan; ieee80211_radiotap_chan_change(ic); } /* * XXX: Hack to set the current channel to the value advertised in beacons or * probe responses. Only used during AP detection. */ static void ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; struct ieee80211_frame *wh; uint8_t subtype; uint8_t *frm, *efrm; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; /* XXX use ieee80211_parse_beacon */ frm = (uint8_t *)(wh + 1); efrm = mtod(m, uint8_t *) + m->m_len; frm += 12; /* skip tstamp, bintval and capinfo fields */ while (frm < efrm) { if (*frm == IEEE80211_ELEMID_DSPARMS) #if IEEE80211_CHAN_MAX < 255 if (frm[2] <= IEEE80211_CHAN_MAX) #endif { DPRINTF(("Fixing channel to %d\n", frm[2])); c = ieee80211_find_channel(ic, ieee80211_ieee2mhz(frm[2], 0), IEEE80211_CHAN_B); if (c == NULL) c = &ic->ic_channels[0]; ipw_setcurchan(sc, c); } frm += frm[1] + 2; } } static void ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct mbuf *mnew, *m; struct ieee80211_node *ni; bus_addr_t physaddr; int error; int8_t rssi, nf; DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), status->rssi)); if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || le32toh(status->len) > MCLBYTES) return; /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), MCLBYTES, ipw_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, &physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } counter_u64_add(ic->ic_ierrors, 1); return; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = sbuf->m; sbuf->m = mnew; sbd->bd->physaddr = htole32(physaddr); m->m_pkthdr.len = m->m_len = le32toh(status->len); rssi = status->rssi + IPW_RSSI_TO_DBM; nf = -95; if (ieee80211_radiotap_active(ic)) { struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antsignal = rssi; tap->wr_antnoise = nf; } if (sc->flags & IPW_FLAG_SCANNING) ipw_fix_channel(sc, m); IPW_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi - nf, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi - nf, nf); IPW_LOCK(sc); bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); } static void ipw_rx_intr(struct ipw_softc *sc) { struct ipw_status *status; struct ipw_soft_bd *sbd; struct ipw_soft_buf *sbuf; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_RX_READ); bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { status = &sc->status_list[i]; sbd = &sc->srbd_list[i]; sbuf = sbd->priv; switch (le16toh(status->code) & 0xf) { case IPW_STATUS_CODE_COMMAND: ipw_rx_cmd_intr(sc, sbuf); break; case IPW_STATUS_CODE_NEWSTATE: ipw_rx_newstate_intr(sc, sbuf); break; case IPW_STATUS_CODE_DATA_802_3: case IPW_STATUS_CODE_DATA_802_11: ipw_rx_data_intr(sc, status, sbd, sbuf); break; case IPW_STATUS_CODE_NOTIFICATION: DPRINTFN(2, ("notification status, len %u flags 0x%x\n", le32toh(status->len), status->flags)); /* XXX maybe drive state machine AUTH->ASSOC? */ break; default: device_printf(sc->sc_dev, "unexpected status code %u\n", le16toh(status->code)); } /* firmware was killed, stop processing received frames */ if (!(sc->flags & IPW_FLAG_FW_INITED)) return; sbd->bd->flags = 0; } bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); /* kick the firmware */ sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); } static void ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) { struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; switch (sbd->type) { case IPW_SBD_TYPE_COMMAND: bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); break; case IPW_SBD_TYPE_HEADER: shdr = sbd->priv; bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->hdr_dmat, shdr->map); SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); break; case IPW_SBD_TYPE_DATA: sbuf = sbd->priv; bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); ieee80211_tx_complete(sbuf->ni, sbuf->m, 0/*XXX*/); sc->sc_tx_timer = 0; break; } sbd->type = IPW_SBD_TYPE_NOASSOC; } static void ipw_tx_intr(struct ipw_softc *sc) { struct ipw_soft_bd *sbd; uint32_t r, i; if (!(sc->flags & IPW_FLAG_FW_INITED)) return; r = CSR_READ_4(sc, IPW_CSR_TX_READ); for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { sbd = &sc->stbd_list[i]; ipw_release_sbd(sc, sbd); sc->txfree++; } /* remember what the firmware has processed */ sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; ipw_start(sc); } static void ipw_fatal_error_intr(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); device_printf(sc->sc_dev, "firmware error\n"); if (vap != NULL) { IPW_UNLOCK(sc); ieee80211_cancel_scan(vap); IPW_LOCK(sc); } ieee80211_runtask(ic, &sc->sc_init_task); } static void ipw_intr(void *arg) { struct ipw_softc *sc = arg; uint32_t r; IPW_LOCK(sc); r = CSR_READ_4(sc, IPW_CSR_INTR); if (r == 0 || r == 0xffffffff) goto done; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); /* acknowledge all interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR, r); if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { ipw_fatal_error_intr(sc); goto done; } if (r & IPW_INTR_FW_INIT_DONE) wakeup(sc); if (r & IPW_INTR_RX_TRANSFER) ipw_rx_intr(sc); if (r & IPW_INTR_TX_TRANSFER) ipw_tx_intr(sc); /* re-enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); done: IPW_UNLOCK(sc); } static void ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static const char * ipw_cmdname(int cmd) { static const struct { int cmd; const char *name; } cmds[] = { { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, { IPW_CMD_DISABLE, "DISABLE" }, { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, { IPW_CMD_ENABLE, "ENABLE" }, { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, { IPW_CMD_SET_ESSID, "SET_ESSID" }, { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, { IPW_CMD_SET_MODE, "SET_MODE" }, { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, }; static char buf[12]; int i; for (i = 0; i < nitems(cmds); i++) if (cmds[i].cmd == cmd) return cmds[i].name; snprintf(buf, sizeof(buf), "%u", cmd); return buf; } /* * Send a command to the firmware and wait for the acknowledgement. */ static int ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) { struct ipw_soft_bd *sbd; bus_addr_t physaddr; int error; IPW_LOCK_ASSERT(sc); if (sc->flags & IPW_FLAG_BUSY) { device_printf(sc->sc_dev, "%s: %s not sent, busy\n", __func__, ipw_cmdname(type)); return EAGAIN; } sc->flags |= IPW_FLAG_BUSY; sbd = &sc->stbd_list[sc->txcur]; error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map command DMA memory\n"); sc->flags &= ~IPW_FLAG_BUSY; return error; } sc->cmd.type = htole32(type); sc->cmd.subtype = 0; sc->cmd.len = htole32(len); sc->cmd.seq = 0; memcpy(sc->cmd.data, data, len); sbd->type = IPW_SBD_TYPE_COMMAND; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(sizeof (struct ipw_cmd)); sbd->bd->nfrag = 1; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | IPW_BD_FLAG_TX_LAST_FRAGMENT; bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); #ifdef IPW_DEBUG if (ipw_debug >= 4) { printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 0, 0, len); /* Print the data buffer in the higher debug level */ if (ipw_debug >= 9 && len > 0) { printf(" data: 0x"); for (int i = 1; i <= len; i++) printf("%1D", (u_char *)data + len - i, ""); } printf("\n"); } #endif /* kick firmware */ sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); /* wait at most one second for command to complete */ error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); if (error != 0) { device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", __func__, ipw_cmdname(type), error); sc->flags &= ~IPW_FLAG_BUSY; return (error); } return (0); } static int ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; struct ieee80211_key *k; struct mbuf *mnew; bus_dma_segment_t segs[IPW_MAX_NSEG]; bus_addr_t physaddr; int nsegs, error, i; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; ieee80211_radiotap_tx(vap, m0); } shdr = SLIST_FIRST(&sc->free_shdr); sbuf = SLIST_FIRST(&sc->free_sbuf); KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); shdr->hdr.subtype = 0; shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; shdr->hdr.encrypt = 0; shdr->hdr.keyidx = 0; shdr->hdr.keysz = 0; shdr->hdr.fragmentsz = 0; IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); if (ic->ic_opmode == IEEE80211_M_STA) IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); else IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); /* trim IEEE802.11 header */ m_adj(m0, sizeof (struct ieee80211_frame)); error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map header DMA memory\n"); bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); m_freem(m0); return error; } SLIST_REMOVE_HEAD(&sc->free_sbuf, next); SLIST_REMOVE_HEAD(&sc->free_shdr, next); sbd = &sc->stbd_list[sc->txcur]; sbd->type = IPW_SBD_TYPE_HEADER; sbd->priv = shdr; sbd->bd->physaddr = htole32(physaddr); sbd->bd->len = htole32(sizeof (struct ipw_hdr)); sbd->bd->nfrag = 1 + nsegs; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, ":")); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; sbuf->m = m0; sbuf->ni = ni; for (i = 0; i < nsegs; i++) { sbd = &sc->stbd_list[sc->txcur]; sbd->bd->physaddr = htole32(segs[i].ds_addr); sbd->bd->len = htole32(segs[i].ds_len); sbd->bd->nfrag = 0; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; if (i == nsegs - 1) { sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; } else { sbd->type = IPW_SBD_TYPE_NOASSOC; sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; } DPRINTFN(5, ("sending fragment (%d)\n", i)); sc->txfree--; sc->txcur = (sc->txcur + 1) % IPW_NTBD; } bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); /* kick firmware */ CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); return 0; } static int ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { /* no support; just discard */ m_freem(m); ieee80211_free_node(ni); return 0; } static int ipw_transmit(struct ieee80211com *ic, struct mbuf *m) { struct ipw_softc *sc = ic->ic_softc; int error; IPW_LOCK(sc); if ((sc->flags & IPW_FLAG_RUNNING) == 0) { IPW_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { IPW_UNLOCK(sc); return (error); } ipw_start(sc); IPW_UNLOCK(sc); return (0); } static void ipw_start(struct ipw_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; IPW_LOCK_ASSERT(sc); while (sc->txfree >= 1 + IPW_MAX_NSEG && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (ipw_tx_start(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } /* start watchdog timer */ sc->sc_tx_timer = 5; } } static void ipw_watchdog(void *arg) { struct ipw_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IPW_LOCK_ASSERT(sc); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(ic->ic_oerrors, 1); taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); } } if (sc->sc_scan_timer > 0) { if (--sc->sc_scan_timer == 0) { DPRINTFN(3, ("Scan timeout\n")); /* End the scan */ if (sc->flags & IPW_FLAG_SCANNING) { IPW_UNLOCK(sc); ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); IPW_LOCK(sc); sc->flags &= ~IPW_FLAG_SCANNING; } } } if (sc->flags & IPW_FLAG_RUNNING) callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); } static void ipw_parent(struct ieee80211com *ic) { struct ipw_softc *sc = ic->ic_softc; int startall = 0; IPW_LOCK(sc); if (ic->ic_nrunning > 0) { if (!(sc->flags & IPW_FLAG_RUNNING)) { ipw_init_locked(sc); startall = 1; } } else if (sc->flags & IPW_FLAG_RUNNING) ipw_stop_locked(sc); IPW_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void ipw_stop_master(struct ipw_softc *sc) { uint32_t tmp; int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); for (ntries = 0; ntries < 50; ntries++) { if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 50) device_printf(sc->sc_dev, "timeout waiting for master\n"); tmp = CSR_READ_4(sc, IPW_CSR_RST); CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); /* Clear all flags except the following */ sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; } static int ipw_reset(struct ipw_softc *sc) { uint32_t tmp; int ntries; ipw_stop_master(sc); /* move adapter to D0 state */ tmp = CSR_READ_4(sc, IPW_CSR_CTL); CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) return EIO; tmp = CSR_READ_4(sc, IPW_CSR_RST); CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); DELAY(10); tmp = CSR_READ_4(sc, IPW_CSR_CTL); CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); return 0; } static int ipw_waitfordisable(struct ipw_softc *sc, int waitfor) { int ms = hz < 1000 ? 1 : hz/10; int i, error; for (i = 0; i < 100; i++) { if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) return 0; error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); if (error == 0 || error != EWOULDBLOCK) return 0; } DPRINTF(("%s: timeout waiting for %s\n", __func__, waitfor ? "disable" : "enable")); return ETIMEDOUT; } static int ipw_enable(struct ipw_softc *sc) { int error; if ((sc->flags & IPW_FLAG_ENABLED) == 0) { DPRINTF(("Enable adapter\n")); error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); if (error != 0) return error; error = ipw_waitfordisable(sc, 0); if (error != 0) return error; sc->flags |= IPW_FLAG_ENABLED; } return 0; } static int ipw_disable(struct ipw_softc *sc) { int error; if (sc->flags & IPW_FLAG_ENABLED) { DPRINTF(("Disable adapter\n")); error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); if (error != 0) return error; error = ipw_waitfordisable(sc, 1); if (error != 0) return error; sc->flags &= ~IPW_FLAG_ENABLED; } return 0; } /* * Upload the microcode to the device. */ static int ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) { int ntries; MEM_WRITE_4(sc, 0x3000e0, 0x80000000); CSR_WRITE_4(sc, IPW_CSR_RST, 0); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); for (ntries = 0; ntries < 10; ntries++) { if (MEM_READ_1(sc, 0x210000) & 1) break; DELAY(10); } if (ntries == 10) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0); return 0; } /* set of macros to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) #define GETLE16(p) ((p)[0] | (p)[1] << 8) static int ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) { const uint8_t *p, *end; uint32_t tmp, dst; uint16_t len; int error; p = fw; end = fw + size; while (p < end) { dst = GETLE32(p); p += 4; len = GETLE16(p); p += 2; ipw_write_mem_1(sc, dst, p, len); p += len; } CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | IPW_IO_LED_OFF); /* enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); /* kick the firmware */ CSR_WRITE_4(sc, IPW_CSR_RST, 0); tmp = CSR_READ_4(sc, IPW_CSR_CTL); CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for firmware " "initialization to complete\n"); return error; } tmp = CSR_READ_4(sc, IPW_CSR_IO); CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK); return 0; } static int ipw_setwepkeys(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ipw_wep_key wepkey; struct ieee80211_key *wk; int error, i; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &vap->iv_nw_keys[i]; if (wk->wk_cipher == NULL || wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) continue; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } return 0; } static int ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) { struct ipw_wpa_ie wpaie; memset(&wpaie, 0, sizeof(wpaie)); wpaie.len = htole32(ielen); /* XXX verify length */ memcpy(&wpaie.ie, ie, ielen); DPRINTF(("Setting WPA IE\n")); return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); } static int ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) { static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { DPRINTF(("Setting mandatory BSSID to null\n")); return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); } else { DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, bssid, IEEE80211_ADDR_LEN); } } static int ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) { if (ssidlen == 0) { /* * A bug in the firmware breaks the ``don't associate'' * bit in the scan options command. To compensate for * this install a bogus ssid when no ssid is specified * so the firmware won't try to associate. */ DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); return ipw_cmd(sc, IPW_CMD_SET_ESSID, "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" "\x3c\x3d", IEEE80211_NWID_LEN); } else { #ifdef IPW_DEBUG if (ipw_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ssid, ssidlen); printf("\n"); } #endif return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); } } static int ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) { struct ipw_scan_options opts; DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); opts.channels = htole32(chanmask); opts.flags = htole32(flags); return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); } static int ipw_scan(struct ipw_softc *sc) { uint32_t params; int error; DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); if (sc->flags & IPW_FLAG_SCANNING) return (EBUSY); sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); if (error != 0) goto done; /* * Setup null/bogus ssid so firmware doesn't use any previous * ssid to try and associate. This is because the ``don't * associate'' option bit is broken (sigh). */ error = ipw_setssid(sc, NULL, 0); if (error != 0) goto done; /* * NB: the adapter may be disabled on association lost; * if so just re-enable it to kick off scanning. */ DPRINTF(("Starting scan\n")); sc->sc_scan_timer = 3; if (sc->flags & IPW_FLAG_ENABLED) { params = 0; /* XXX? */ error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, ¶ms, sizeof(params)); } else error = ipw_enable(sc); done: if (error != 0) { DPRINTF(("Scan failed\n")); sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); } return (error); } static int ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; uint32_t data; int error; data = htole32(ieee80211_chan2ieee(ic, chan)); DPRINTF(("Setting channel to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); if (error == 0) ipw_setcurchan(sc, chan); return error; } static void ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) { struct ipw_softc *sc = ic->ic_softc; struct ieee80211_node *ni = vap->iv_bss; struct ipw_security security; uint32_t data; int error; IPW_LOCK(sc); error = ipw_disable(sc); if (error != 0) goto done; memset(&security, 0, sizeof security); security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? IPW_AUTH_SHARED : IPW_AUTH_OPEN; security.ciphers = htole32(IPW_CIPHER_NONE); DPRINTF(("Setting authmode to %u\n", security.authmode)); error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, sizeof security); if (error != 0) goto done; data = htole32(vap->iv_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) goto done; data = htole32(vap->iv_fragthreshold); DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) goto done; if (vap->iv_flags & IEEE80211_F_PRIVACY) { error = ipw_setwepkeys(sc); if (error != 0) goto done; if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { data = htole32(vap->iv_def_txkey); DPRINTF(("Setting wep tx key index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, sizeof data); if (error != 0) goto done; } } data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); if (error != 0) goto done; error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); if (error != 0) goto done; error = ipw_setbssid(sc, ni->ni_bssid); if (error != 0) goto done; if (vap->iv_appie_wpa != NULL) { struct ieee80211_appie *ie = vap->iv_appie_wpa; error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); if (error != 0) goto done; } if (ic->ic_opmode == IEEE80211_M_IBSS) { error = ipw_setchannel(sc, ni->ni_chan); if (error != 0) goto done; } /* lock scan to ap's channel and enable associate */ error = ipw_setscanopts(sc, 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); if (error != 0) goto done; error = ipw_enable(sc); /* finally, enable adapter */ if (error == 0) sc->flags |= IPW_FLAG_ASSOCIATING; done: IPW_UNLOCK(sc); } static void ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) { struct ieee80211_node *ni = vap->iv_bss; struct ipw_softc *sc = ic->ic_softc; IPW_LOCK(sc); DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); /* * NB: don't try to do this if ipw_stop_master has * shutdown the firmware and disabled interrupts. */ if (sc->flags & IPW_FLAG_FW_INITED) { sc->flags &= ~IPW_FLAG_ASSOCIATED; /* * NB: firmware currently ignores bssid parameter, but * supply it in case this changes (follow linux driver). */ (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, ni->ni_bssid, IEEE80211_ADDR_LEN); } IPW_UNLOCK(sc); } /* * Handler for sc_init_task. This is a simple wrapper around ipw_init(). * It is called on firmware panics or on watchdog timeouts. */ static void ipw_init_task(void *context, int pending) { ipw_init(context); } static void ipw_init(void *priv) { struct ipw_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; IPW_LOCK(sc); ipw_init_locked(sc); IPW_UNLOCK(sc); if (sc->flags & IPW_FLAG_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void ipw_init_locked(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); const struct firmware *fp; const struct ipw_firmware_hdr *hdr; const char *fw; IPW_LOCK_ASSERT(sc); DPRINTF(("%s: state %s flags 0x%x\n", __func__, ieee80211_state_name[vap->iv_state], sc->flags)); /* * Avoid re-entrant calls. We need to release the mutex in ipw_init() * when loading the firmware and we don't want to be called during this * operation. */ if (sc->flags & IPW_FLAG_INIT_LOCKED) return; sc->flags |= IPW_FLAG_INIT_LOCKED; ipw_stop_locked(sc); if (ipw_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } if (sc->sc_firmware == NULL) { device_printf(sc->sc_dev, "no firmware\n"); goto fail; } /* NB: consistency already checked on load */ fp = sc->sc_firmware; hdr = (const struct ipw_firmware_hdr *)fp->data; DPRINTF(("Loading firmware image '%s'\n", fp->name)); fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { device_printf(sc->sc_dev, "could not load microcode\n"); goto fail; } ipw_stop_master(sc); /* * Setup tx, rx and status rings. */ sc->txold = IPW_NTBD - 1; sc->txcur = 0; sc->txfree = IPW_NTBD - 2; sc->rxcur = IPW_NRBD - 1; CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); fw = (const char *)fp->data + sizeof *hdr; if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { device_printf(sc->sc_dev, "could not load firmware\n"); goto fail; } sc->flags |= IPW_FLAG_FW_INITED; /* retrieve information tables base addresses */ sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); ipw_write_table1(sc, IPW_INFO_LOCK, 0); if (ipw_config(sc) != 0) { device_printf(sc->sc_dev, "device configuration failed\n"); goto fail; } callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); sc->flags |= IPW_FLAG_RUNNING; sc->flags &= ~IPW_FLAG_INIT_LOCKED; return; fail: ipw_stop_locked(sc); sc->flags &= ~IPW_FLAG_INIT_LOCKED; } static int ipw_config(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ipw_configuration config; uint32_t data; int error; error = ipw_disable(sc); if (error != 0) return error; switch (ic->ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: case IEEE80211_M_WDS: /* XXX */ data = htole32(IPW_MODE_BSS); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: data = htole32(IPW_MODE_IBSS); break; case IEEE80211_M_MONITOR: data = htole32(IPW_MODE_MONITOR); break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); return EINVAL; } DPRINTF(("Setting mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR) { error = ipw_setchannel(sc, ic->ic_curchan); if (error != 0) return error; } if (ic->ic_opmode == IEEE80211_M_MONITOR) return ipw_enable(sc); config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); if (ic->ic_opmode == IEEE80211_M_IBSS) config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); if (ic->ic_promisc > 0) config.flags |= htole32(IPW_CFG_PROMISCUOUS); config.bss_chan = htole32(0x3fff); /* channels 1-14 */ config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); if (error != 0) return error; data = htole32(0xf); /* 1, 2, 5.5, 11 */ DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); if (error != 0) return error; /* Use the same rate set */ DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); if (error != 0) return error; /* Use the same rate set */ DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(IPW_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(32); /* default value */ DPRINTF(("Setting tx power index to %u\n", le32toh(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, sizeof data); if (error != 0) return error; } return 0; } static void ipw_stop(void *priv) { struct ipw_softc *sc = priv; IPW_LOCK(sc); ipw_stop_locked(sc); IPW_UNLOCK(sc); } static void ipw_stop_locked(struct ipw_softc *sc) { int i; IPW_LOCK_ASSERT(sc); callout_stop(&sc->sc_wdtimer); ipw_stop_master(sc); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); /* * Release tx buffers. */ for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); sc->sc_tx_timer = 0; sc->flags &= ~IPW_FLAG_RUNNING; } static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct ipw_softc *sc = arg1; uint32_t i, size, buf[256]; memset(buf, 0, sizeof buf); if (!(sc->flags & IPW_FLAG_FW_INITED)) return SYSCTL_OUT(req, buf, sizeof buf); CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); for (i = 1; i < size; i++) buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); return SYSCTL_OUT(req, buf, size); } static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct ipw_softc *sc = arg1; int val; val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); return SYSCTL_OUT(req, &val, sizeof val); } static uint32_t ipw_read_table1(struct ipw_softc *sc, uint32_t off) { return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); } static void ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) { MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); } #if 0 static int ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) { uint32_t addr, info; uint16_t count, size; uint32_t total; /* addr[4] + count[2] + size[2] */ addr = MEM_READ_4(sc, sc->table2_base + off); info = MEM_READ_4(sc, sc->table2_base + off + 4); count = info >> 16; size = info & 0xffff; total = count * size; if (total > *len) { *len = total; return EINVAL; } *len = total; ipw_read_mem_1(sc, addr, buf, total); return 0; } static void ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); } } #endif static void ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); } } static void ipw_scan_start(struct ieee80211com *ic) { struct ipw_softc *sc = ic->ic_softc; IPW_LOCK(sc); ipw_scan(sc); IPW_UNLOCK(sc); } static void ipw_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct ipw_softc *sc = ic->ic_softc; uint8_t bands[IEEE80211_MODE_BYTES]; int i; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); for (i = 1; i < 16; i++) { if (sc->chanmask & (1 << i)) { ieee80211_add_channel(chans, maxchans, nchans, i, 0, 0, 0, bands); } } } static void ipw_set_channel(struct ieee80211com *ic) { struct ipw_softc *sc = ic->ic_softc; IPW_LOCK(sc); if (ic->ic_opmode == IEEE80211_M_MONITOR) { ipw_disable(sc); ipw_setchannel(sc, ic->ic_curchan); ipw_enable(sc); } IPW_UNLOCK(sc); } static void ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { /* NB: all channels are scanned at once */ } static void ipw_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void ipw_scan_end(struct ieee80211com *ic) { struct ipw_softc *sc = ic->ic_softc; IPW_LOCK(sc); sc->flags &= ~IPW_FLAG_SCANNING; IPW_UNLOCK(sc); }