/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2024, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "ice_common.h" #define ICE_CQ_INIT_REGS(qinfo, prefix) \ do { \ (qinfo)->sq.head = prefix##_ATQH; \ (qinfo)->sq.tail = prefix##_ATQT; \ (qinfo)->sq.len = prefix##_ATQLEN; \ (qinfo)->sq.bah = prefix##_ATQBAH; \ (qinfo)->sq.bal = prefix##_ATQBAL; \ (qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M; \ (qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M; \ (qinfo)->sq.len_crit_mask = prefix##_ATQLEN_ATQCRIT_M; \ (qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M; \ (qinfo)->rq.head = prefix##_ARQH; \ (qinfo)->rq.tail = prefix##_ARQT; \ (qinfo)->rq.len = prefix##_ARQLEN; \ (qinfo)->rq.bah = prefix##_ARQBAH; \ (qinfo)->rq.bal = prefix##_ARQBAL; \ (qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M; \ (qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M; \ (qinfo)->rq.len_crit_mask = prefix##_ARQLEN_ARQCRIT_M; \ (qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M; \ } while (0) /** * ice_adminq_init_regs - Initialize AdminQ registers * @hw: pointer to the hardware structure * * This assumes the alloc_sq and alloc_rq functions have already been called */ static void ice_adminq_init_regs(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->adminq; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); ICE_CQ_INIT_REGS(cq, PF_FW); } /** * ice_mailbox_init_regs - Initialize Mailbox registers * @hw: pointer to the hardware structure * * This assumes the alloc_sq and alloc_rq functions have already been called */ static void ice_mailbox_init_regs(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->mailboxq; ICE_CQ_INIT_REGS(cq, PF_MBX); } /** * ice_check_sq_alive * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * * Returns true if Queue is enabled else false. */ bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq) { /* check both queue-length and queue-enable fields */ if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask) return (rd32(hw, cq->sq.len) & (cq->sq.len_mask | cq->sq.len_ena_mask)) == (cq->num_sq_entries | cq->sq.len_ena_mask); return false; } /** * ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq) { size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc); cq->sq.desc_buf.va = ice_alloc_dma_mem(hw, &cq->sq.desc_buf, size); if (!cq->sq.desc_buf.va) return ICE_ERR_NO_MEMORY; return ICE_SUCCESS; } /** * ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq) { size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc); cq->rq.desc_buf.va = ice_alloc_dma_mem(hw, &cq->rq.desc_buf, size); if (!cq->rq.desc_buf.va) return ICE_ERR_NO_MEMORY; return ICE_SUCCESS; } /** * ice_free_cq_ring - Free control queue ring * @hw: pointer to the hardware structure * @ring: pointer to the specific control queue ring * * This assumes the posted buffers have already been cleaned * and de-allocated */ static void ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring) { ice_free_dma_mem(hw, &ring->desc_buf); } /** * ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { int i; /* We'll be allocating the buffer info memory first, then we can * allocate the mapped buffers for the event processing */ cq->rq.dma_head = ice_calloc(hw, cq->num_rq_entries, sizeof(cq->rq.desc_buf)); if (!cq->rq.dma_head) return ICE_ERR_NO_MEMORY; cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head; /* allocate the mapped buffers */ for (i = 0; i < cq->num_rq_entries; i++) { struct ice_aq_desc *desc; struct ice_dma_mem *bi; bi = &cq->rq.r.rq_bi[i]; bi->va = ice_alloc_dma_mem(hw, bi, cq->rq_buf_size); if (!bi->va) goto unwind_alloc_rq_bufs; /* now configure the descriptors for use */ desc = ICE_CTL_Q_DESC(cq->rq, i); desc->flags = CPU_TO_LE16(ICE_AQ_FLAG_BUF); if (cq->rq_buf_size > ICE_AQ_LG_BUF) desc->flags |= CPU_TO_LE16(ICE_AQ_FLAG_LB); desc->opcode = 0; /* This is in accordance with control queue design, there is no * register for buffer size configuration */ desc->datalen = CPU_TO_LE16(bi->size); desc->retval = 0; desc->cookie_high = 0; desc->cookie_low = 0; desc->params.generic.addr_high = CPU_TO_LE32(ICE_HI_DWORD(bi->pa)); desc->params.generic.addr_low = CPU_TO_LE32(ICE_LO_DWORD(bi->pa)); desc->params.generic.param0 = 0; desc->params.generic.param1 = 0; } return ICE_SUCCESS; unwind_alloc_rq_bufs: /* don't try to free the one that failed... */ i--; for (; i >= 0; i--) ice_free_dma_mem(hw, &cq->rq.r.rq_bi[i]); cq->rq.r.rq_bi = NULL; ice_free(hw, cq->rq.dma_head); cq->rq.dma_head = NULL; return ICE_ERR_NO_MEMORY; } /** * ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ static enum ice_status ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { int i; /* No mapped memory needed yet, just the buffer info structures */ cq->sq.dma_head = ice_calloc(hw, cq->num_sq_entries, sizeof(cq->sq.desc_buf)); if (!cq->sq.dma_head) return ICE_ERR_NO_MEMORY; cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head; /* allocate the mapped buffers */ for (i = 0; i < cq->num_sq_entries; i++) { struct ice_dma_mem *bi; bi = &cq->sq.r.sq_bi[i]; bi->va = ice_alloc_dma_mem(hw, bi, cq->sq_buf_size); if (!bi->va) goto unwind_alloc_sq_bufs; } return ICE_SUCCESS; unwind_alloc_sq_bufs: /* don't try to free the one that failed... */ i--; for (; i >= 0; i--) ice_free_dma_mem(hw, &cq->sq.r.sq_bi[i]); cq->sq.r.sq_bi = NULL; ice_free(hw, cq->sq.dma_head); cq->sq.dma_head = NULL; return ICE_ERR_NO_MEMORY; } static enum ice_status ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring, u16 num_entries) { /* Clear Head and Tail */ wr32(hw, ring->head, 0); wr32(hw, ring->tail, 0); /* set starting point */ wr32(hw, ring->len, (num_entries | ring->len_ena_mask)); wr32(hw, ring->bal, ICE_LO_DWORD(ring->desc_buf.pa)); wr32(hw, ring->bah, ICE_HI_DWORD(ring->desc_buf.pa)); /* Check one register to verify that config was applied */ if (rd32(hw, ring->bal) != ICE_LO_DWORD(ring->desc_buf.pa)) return ICE_ERR_AQ_ERROR; return ICE_SUCCESS; } /** * ice_cfg_sq_regs - configure Control ATQ registers * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * Configure base address and length registers for the transmit queue */ static enum ice_status ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries); } /** * ice_cfg_rq_regs - configure Control ARQ register * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * Configure base address and length registers for the receive (event queue) */ static enum ice_status ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status status; status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries); if (status) return status; /* Update tail in the HW to post pre-allocated buffers */ wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1)); return ICE_SUCCESS; } #define ICE_FREE_CQ_BUFS(hw, qi, ring) \ do { \ /* free descriptors */ \ if ((qi)->ring.r.ring##_bi) { \ int i; \ \ for (i = 0; i < (qi)->num_##ring##_entries; i++) \ if ((qi)->ring.r.ring##_bi[i].pa) \ ice_free_dma_mem((hw), \ &(qi)->ring.r.ring##_bi[i]); \ } \ /* free DMA head */ \ ice_free(hw, (qi)->ring.dma_head); \ } while (0) /** * ice_init_sq - main initialization routine for Control ATQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * This is the main initialization routine for the Control Send Queue * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_sq_entries * - cq->sq_buf_size * * Do *NOT* hold the lock when calling this as the memory allocation routines * called are not going to be atomic context safe */ static enum ice_status ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (cq->sq.count > 0) { /* queue already initialized */ ret_code = ICE_ERR_NOT_READY; goto init_ctrlq_exit; } /* verify input for valid configuration */ if (!cq->num_sq_entries || !cq->sq_buf_size) { ret_code = ICE_ERR_CFG; goto init_ctrlq_exit; } cq->sq.next_to_use = 0; cq->sq.next_to_clean = 0; /* allocate the ring memory */ ret_code = ice_alloc_ctrlq_sq_ring(hw, cq); if (ret_code) goto init_ctrlq_exit; /* allocate buffers in the rings */ ret_code = ice_alloc_sq_bufs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* initialize base registers */ ret_code = ice_cfg_sq_regs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* success! */ cq->sq.count = cq->num_sq_entries; goto init_ctrlq_exit; init_ctrlq_free_rings: ICE_FREE_CQ_BUFS(hw, cq, sq); ice_free_cq_ring(hw, &cq->sq); init_ctrlq_exit: return ret_code; } /** * ice_init_rq - initialize receive side of a control queue * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main initialization routine for Receive side of a control queue. * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_rq_entries * - cq->rq_buf_size * * Do *NOT* hold the lock when calling this as the memory allocation routines * called are not going to be atomic context safe */ static enum ice_status ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (cq->rq.count > 0) { /* queue already initialized */ ret_code = ICE_ERR_NOT_READY; goto init_ctrlq_exit; } /* verify input for valid configuration */ if (!cq->num_rq_entries || !cq->rq_buf_size) { ret_code = ICE_ERR_CFG; goto init_ctrlq_exit; } cq->rq.next_to_use = 0; cq->rq.next_to_clean = 0; /* allocate the ring memory */ ret_code = ice_alloc_ctrlq_rq_ring(hw, cq); if (ret_code) goto init_ctrlq_exit; /* allocate buffers in the rings */ ret_code = ice_alloc_rq_bufs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* initialize base registers */ ret_code = ice_cfg_rq_regs(hw, cq); if (ret_code) goto init_ctrlq_free_rings; /* success! */ cq->rq.count = cq->num_rq_entries; goto init_ctrlq_exit; init_ctrlq_free_rings: ICE_FREE_CQ_BUFS(hw, cq, rq); ice_free_cq_ring(hw, &cq->rq); init_ctrlq_exit: return ret_code; } /** * ice_shutdown_sq - shutdown the transmit side of a control queue * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main shutdown routine for the Control Transmit Queue */ static enum ice_status ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code = ICE_SUCCESS; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); ice_acquire_lock(&cq->sq_lock); if (!cq->sq.count) { ret_code = ICE_ERR_NOT_READY; goto shutdown_sq_out; } /* Stop processing of the control queue */ wr32(hw, cq->sq.head, 0); wr32(hw, cq->sq.tail, 0); wr32(hw, cq->sq.len, 0); wr32(hw, cq->sq.bal, 0); wr32(hw, cq->sq.bah, 0); cq->sq.count = 0; /* to indicate uninitialized queue */ /* free ring buffers and the ring itself */ ICE_FREE_CQ_BUFS(hw, cq, sq); ice_free_cq_ring(hw, &cq->sq); shutdown_sq_out: ice_release_lock(&cq->sq_lock); return ret_code; } /** * ice_aq_ver_check - Check the reported AQ API version * @hw: pointer to the hardware structure * * Checks if the driver should load on a given AQ API version. * * Return: 'true' iff the driver should attempt to load. 'false' otherwise. */ static bool ice_aq_ver_check(struct ice_hw *hw) { if (hw->api_maj_ver > EXP_FW_API_VER_MAJOR) { /* Major API version is newer than expected, don't load */ ice_warn(hw, "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); return false; } else if (hw->api_maj_ver == EXP_FW_API_VER_MAJOR) { if (hw->api_min_ver > (EXP_FW_API_VER_MINOR + 2)) ice_info(hw, "The driver for the device detected a newer version (%u.%u) of the NVM image than expected (%u.%u). Please install the most recent version of the network driver.\n", hw->api_maj_ver, hw->api_min_ver, EXP_FW_API_VER_MAJOR, EXP_FW_API_VER_MINOR); else if ((hw->api_min_ver + 2) < EXP_FW_API_VER_MINOR) ice_info(hw, "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n", hw->api_maj_ver, hw->api_min_ver, EXP_FW_API_VER_MAJOR, EXP_FW_API_VER_MINOR); } else { /* Major API version is older than expected, log a warning */ ice_info(hw, "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n", hw->api_maj_ver, hw->api_min_ver, EXP_FW_API_VER_MAJOR, EXP_FW_API_VER_MINOR); } return true; } /** * ice_shutdown_rq - shutdown Control ARQ * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * The main shutdown routine for the Control Receive Queue */ static enum ice_status ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { enum ice_status ret_code = ICE_SUCCESS; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); ice_acquire_lock(&cq->rq_lock); if (!cq->rq.count) { ret_code = ICE_ERR_NOT_READY; goto shutdown_rq_out; } /* Stop Control Queue processing */ wr32(hw, cq->rq.head, 0); wr32(hw, cq->rq.tail, 0); wr32(hw, cq->rq.len, 0); wr32(hw, cq->rq.bal, 0); wr32(hw, cq->rq.bah, 0); /* set rq.count to 0 to indicate uninitialized queue */ cq->rq.count = 0; /* free ring buffers and the ring itself */ ICE_FREE_CQ_BUFS(hw, cq, rq); ice_free_cq_ring(hw, &cq->rq); shutdown_rq_out: ice_release_lock(&cq->rq_lock); return ret_code; } /** * ice_idle_aq - stop ARQ/ATQ processing momentarily * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue */ void ice_idle_aq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { wr32(hw, cq->sq.len, 0); wr32(hw, cq->rq.len, 0); ice_msec_delay(2, false); } /** * ice_init_check_adminq - Check version for Admin Queue to know if its alive * @hw: pointer to the hardware structure */ static enum ice_status ice_init_check_adminq(struct ice_hw *hw) { struct ice_ctl_q_info *cq = &hw->adminq; enum ice_status status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); status = ice_aq_get_fw_ver(hw, NULL); if (status) goto init_ctrlq_free_rq; if (!ice_aq_ver_check(hw)) { status = ICE_ERR_FW_API_VER; goto init_ctrlq_free_rq; } return ICE_SUCCESS; init_ctrlq_free_rq: ice_shutdown_rq(hw, cq); ice_shutdown_sq(hw, cq); return status; } /** * ice_init_ctrlq - main initialization routine for any control Queue * @hw: pointer to the hardware structure * @q_type: specific Control queue type * * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * NOTE: this function does not initialize the controlq locks */ static enum ice_status ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type) { struct ice_ctl_q_info *cq; enum ice_status ret_code; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); switch (q_type) { case ICE_CTL_Q_ADMIN: ice_adminq_init_regs(hw); cq = &hw->adminq; break; case ICE_CTL_Q_MAILBOX: ice_mailbox_init_regs(hw); cq = &hw->mailboxq; break; default: return ICE_ERR_PARAM; } cq->qtype = q_type; /* verify input for valid configuration */ if (!cq->num_rq_entries || !cq->num_sq_entries || !cq->rq_buf_size || !cq->sq_buf_size) { return ICE_ERR_CFG; } /* setup SQ command write back timeout */ cq->sq_cmd_timeout = ICE_CTL_Q_SQ_CMD_TIMEOUT; /* allocate the ATQ */ ret_code = ice_init_sq(hw, cq); if (ret_code) return ret_code; /* allocate the ARQ */ ret_code = ice_init_rq(hw, cq); if (ret_code) goto init_ctrlq_free_sq; /* success! */ return ICE_SUCCESS; init_ctrlq_free_sq: ice_shutdown_sq(hw, cq); return ret_code; } /** * ice_shutdown_ctrlq - shutdown routine for any control queue * @hw: pointer to the hardware structure * @q_type: specific Control queue type * @unloading: is the driver unloading itself * * NOTE: this function does not destroy the control queue locks. */ static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type, bool unloading) { struct ice_ctl_q_info *cq; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); switch (q_type) { case ICE_CTL_Q_ADMIN: cq = &hw->adminq; if (ice_check_sq_alive(hw, cq)) ice_aq_q_shutdown(hw, unloading); break; case ICE_CTL_Q_MAILBOX: cq = &hw->mailboxq; break; default: return; } ice_shutdown_sq(hw, cq); ice_shutdown_rq(hw, cq); } /** * ice_shutdown_all_ctrlq - shutdown routine for all control queues * @hw: pointer to the hardware structure * @unloading: is the driver unloading itself * * NOTE: this function does not destroy the control queue locks. The driver * may call this at runtime to shutdown and later restart control queues, such * as in response to a reset event. */ void ice_shutdown_all_ctrlq(struct ice_hw *hw, bool unloading) { ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Shutdown FW admin queue */ ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, unloading); /* Shutdown PF-VF Mailbox */ ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX, unloading); } /** * ice_init_all_ctrlq - main initialization routine for all control queues * @hw: pointer to the hardware structure * * Prior to calling this function, the driver MUST* set the following fields * in the cq->structure for all control queues: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * NOTE: this function does not initialize the controlq locks. */ enum ice_status ice_init_all_ctrlq(struct ice_hw *hw) { enum ice_status status; u32 retry = 0; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); /* Init FW admin queue */ do { status = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN); if (status) return status; status = ice_init_check_adminq(hw); if (status != ICE_ERR_AQ_FW_CRITICAL) break; ice_debug(hw, ICE_DBG_AQ_MSG, "Retry Admin Queue init due to FW critical error\n"); ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, true); ice_msec_delay(ICE_CTL_Q_ADMIN_INIT_MSEC, true); } while (retry++ < ICE_CTL_Q_ADMIN_INIT_TIMEOUT); if (status) return status; /* Init Mailbox queue */ return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX); } /** * ice_init_ctrlq_locks - Initialize locks for a control queue * @cq: pointer to the control queue * * Initializes the send and receive queue locks for a given control queue. */ static void ice_init_ctrlq_locks(struct ice_ctl_q_info *cq) { ice_init_lock(&cq->sq_lock); ice_init_lock(&cq->rq_lock); } /** * ice_create_all_ctrlq - main initialization routine for all control queues * @hw: pointer to the hardware structure * * Prior to calling this function, the driver *MUST* set the following fields * in the cq->structure for all control queues: * - cq->num_sq_entries * - cq->num_rq_entries * - cq->rq_buf_size * - cq->sq_buf_size * * This function creates all the control queue locks and then calls * ice_init_all_ctrlq. It should be called once during driver load. If the * driver needs to re-initialize control queues at run time it should call * ice_init_all_ctrlq instead. */ enum ice_status ice_create_all_ctrlq(struct ice_hw *hw) { ice_init_ctrlq_locks(&hw->adminq); ice_init_ctrlq_locks(&hw->mailboxq); return ice_init_all_ctrlq(hw); } /** * ice_destroy_ctrlq_locks - Destroy locks for a control queue * @cq: pointer to the control queue * * Destroys the send and receive queue locks for a given control queue. */ static void ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq) { ice_destroy_lock(&cq->sq_lock); ice_destroy_lock(&cq->rq_lock); } /** * ice_destroy_all_ctrlq - exit routine for all control queues * @hw: pointer to the hardware structure * * This function shuts down all the control queues and then destroys the * control queue locks. It should be called once during driver unload. The * driver should call ice_shutdown_all_ctrlq if it needs to shut down and * reinitialize control queues, such as in response to a reset event. */ void ice_destroy_all_ctrlq(struct ice_hw *hw) { /* shut down all the control queues first */ ice_shutdown_all_ctrlq(hw, true); ice_destroy_ctrlq_locks(&hw->adminq); ice_destroy_ctrlq_locks(&hw->mailboxq); } /** * ice_clean_sq - cleans send side of a control queue * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * * returns the number of free desc */ static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq) { struct ice_ctl_q_ring *sq = &cq->sq; u16 ntc = sq->next_to_clean; struct ice_aq_desc *desc; desc = ICE_CTL_Q_DESC(*sq, ntc); while (rd32(hw, cq->sq.head) != ntc) { ice_debug(hw, ICE_DBG_AQ_MSG, "ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head)); ice_memset(desc, 0, sizeof(*desc), ICE_DMA_MEM); ntc++; if (ntc == sq->count) ntc = 0; desc = ICE_CTL_Q_DESC(*sq, ntc); } sq->next_to_clean = ntc; return ICE_CTL_Q_DESC_UNUSED(sq); } /** * ice_ctl_q_str - Convert control queue type to string * @qtype: the control queue type * * Returns: A string name for the given control queue type. */ static const char *ice_ctl_q_str(enum ice_ctl_q qtype) { switch (qtype) { case ICE_CTL_Q_UNKNOWN: return "Unknown CQ"; case ICE_CTL_Q_ADMIN: return "AQ"; case ICE_CTL_Q_MAILBOX: return "MBXQ"; default: return "Unrecognized CQ"; } } /** * ice_debug_cq * @hw: pointer to the hardware structure * @cq: pointer to the specific Control queue * @desc: pointer to control queue descriptor * @buf: pointer to command buffer * @buf_len: max length of buf * @response: true if this is the writeback response * * Dumps debug log about control command with descriptor contents. */ static void ice_debug_cq(struct ice_hw *hw, struct ice_ctl_q_info *cq, void *desc, void *buf, u16 buf_len, bool response) { struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc; u16 datalen, flags; if (!((ICE_DBG_AQ_DESC | ICE_DBG_AQ_DESC_BUF) & hw->debug_mask)) return; if (!desc) return; datalen = LE16_TO_CPU(cq_desc->datalen); flags = LE16_TO_CPU(cq_desc->flags); ice_debug(hw, ICE_DBG_AQ_DESC, "%s %s: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", ice_ctl_q_str(cq->qtype), response ? "Response" : "Command", LE16_TO_CPU(cq_desc->opcode), flags, datalen, LE16_TO_CPU(cq_desc->retval)); ice_debug(hw, ICE_DBG_AQ_DESC, "\tcookie (h,l) 0x%08X 0x%08X\n", LE32_TO_CPU(cq_desc->cookie_high), LE32_TO_CPU(cq_desc->cookie_low)); ice_debug(hw, ICE_DBG_AQ_DESC, "\tparam (0,1) 0x%08X 0x%08X\n", LE32_TO_CPU(cq_desc->params.generic.param0), LE32_TO_CPU(cq_desc->params.generic.param1)); ice_debug(hw, ICE_DBG_AQ_DESC, "\taddr (h,l) 0x%08X 0x%08X\n", LE32_TO_CPU(cq_desc->params.generic.addr_high), LE32_TO_CPU(cq_desc->params.generic.addr_low)); /* Dump buffer iff 1) one exists and 2) is either a response indicated * by the DD and/or CMP flag set or a command with the RD flag set. */ if (buf && cq_desc->datalen != 0 && (flags & (ICE_AQ_FLAG_DD | ICE_AQ_FLAG_CMP) || flags & ICE_AQ_FLAG_RD)) { ice_debug(hw, ICE_DBG_AQ_DESC_BUF, "Buffer:\n"); ice_debug_array(hw, ICE_DBG_AQ_DESC_BUF, 16, 1, (u8 *)buf, MIN_T(u16, buf_len, datalen)); } } /** * ice_sq_done - check if the last send on a control queue has completed * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * * Returns: true if all the descriptors on the send side of a control queue * are finished processing, false otherwise. */ bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq) { /* control queue designers suggest use of head for better * timing reliability than DD bit */ return rd32(hw, cq->sq.head) == cq->sq.next_to_use; } /** * ice_sq_send_cmd_nolock - send command to a control queue * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * @desc: prefilled descriptor describing the command (non DMA mem) * @buf: buffer to use for indirect commands (or NULL for direct commands) * @buf_size: size of buffer for indirect commands (or 0 for direct commands) * @cd: pointer to command details structure * * This is the main send command routine for a control queue. It prepares the * command into a descriptor, bumps the send queue tail, waits for the command * to complete, captures status and data for the command, etc. */ static enum ice_status ice_sq_send_cmd_nolock(struct ice_hw *hw, struct ice_ctl_q_info *cq, struct ice_aq_desc *desc, void *buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_dma_mem *dma_buf = NULL; struct ice_aq_desc *desc_on_ring; bool cmd_completed = false; enum ice_status status = ICE_SUCCESS; u32 total_delay = 0; u16 retval = 0; u32 val = 0; /* if reset is in progress return a soft error */ if (hw->reset_ongoing) return ICE_ERR_RESET_ONGOING; cq->sq_last_status = ICE_AQ_RC_OK; if (!cq->sq.count) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send queue not initialized.\n"); status = ICE_ERR_AQ_EMPTY; goto sq_send_command_error; } if ((buf && !buf_size) || (!buf && buf_size)) { status = ICE_ERR_PARAM; goto sq_send_command_error; } if (buf) { if (buf_size > cq->sq_buf_size) { ice_debug(hw, ICE_DBG_AQ_MSG, "Invalid buffer size for Control Send queue: %d.\n", buf_size); status = ICE_ERR_INVAL_SIZE; goto sq_send_command_error; } desc->flags |= CPU_TO_LE16(ICE_AQ_FLAG_BUF); if (buf_size > ICE_AQ_LG_BUF) desc->flags |= CPU_TO_LE16(ICE_AQ_FLAG_LB); } val = rd32(hw, cq->sq.head); if (val >= cq->num_sq_entries) { ice_debug(hw, ICE_DBG_AQ_MSG, "head overrun at %d in the Control Send Queue ring\n", val); status = ICE_ERR_AQ_EMPTY; goto sq_send_command_error; } /* Call clean and check queue available function to reclaim the * descriptors that were processed by FW/MBX; the function returns the * number of desc available. The clean function called here could be * called in a separate thread in case of asynchronous completions. */ if (ice_clean_sq(hw, cq) == 0) { ice_debug(hw, ICE_DBG_AQ_MSG, "Error: Control Send Queue is full.\n"); status = ICE_ERR_AQ_FULL; goto sq_send_command_error; } /* initialize the temp desc pointer with the right desc */ desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use); /* if the desc is available copy the temp desc to the right place */ ice_memcpy(desc_on_ring, desc, sizeof(*desc_on_ring), ICE_NONDMA_TO_DMA); /* if buf is not NULL assume indirect command */ if (buf) { dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use]; /* copy the user buf into the respective DMA buf */ ice_memcpy(dma_buf->va, buf, buf_size, ICE_NONDMA_TO_DMA); desc_on_ring->datalen = CPU_TO_LE16(buf_size); /* Update the address values in the desc with the pa value * for respective buffer */ desc_on_ring->params.generic.addr_high = CPU_TO_LE32(ICE_HI_DWORD(dma_buf->pa)); desc_on_ring->params.generic.addr_low = CPU_TO_LE32(ICE_LO_DWORD(dma_buf->pa)); } /* Debug desc and buffer */ ice_debug(hw, ICE_DBG_AQ_DESC, "ATQ: Control Send queue desc and buffer:\n"); ice_debug_cq(hw, cq, (void *)desc_on_ring, buf, buf_size, false); (cq->sq.next_to_use)++; if (cq->sq.next_to_use == cq->sq.count) cq->sq.next_to_use = 0; wr32(hw, cq->sq.tail, cq->sq.next_to_use); ice_flush(hw); /* Wait a short time before initial ice_sq_done() check, to allow * hardware time for completion. */ ice_usec_delay(5, false); do { if (ice_sq_done(hw, cq)) break; ice_usec_delay(10, false); total_delay++; } while (total_delay < cq->sq_cmd_timeout); /* if ready, copy the desc back to temp */ if (ice_sq_done(hw, cq)) { ice_memcpy(desc, desc_on_ring, sizeof(*desc), ICE_DMA_TO_NONDMA); if (buf) { /* get returned length to copy */ u16 copy_size = LE16_TO_CPU(desc->datalen); if (copy_size > buf_size) { ice_debug(hw, ICE_DBG_AQ_MSG, "Return len %d > than buf len %d\n", copy_size, buf_size); status = ICE_ERR_AQ_ERROR; } else { ice_memcpy(buf, dma_buf->va, copy_size, ICE_DMA_TO_NONDMA); } } retval = LE16_TO_CPU(desc->retval); if (retval) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue command 0x%04X completed with error 0x%X\n", LE16_TO_CPU(desc->opcode), retval); /* strip off FW internal code */ retval &= 0xff; } cmd_completed = true; if (!status && retval != ICE_AQ_RC_OK) status = ICE_ERR_AQ_ERROR; cq->sq_last_status = (enum ice_aq_err)retval; } ice_debug(hw, ICE_DBG_AQ_MSG, "ATQ: desc and buffer writeback:\n"); ice_debug_cq(hw, cq, (void *)desc, buf, buf_size, true); /* save writeback AQ if requested */ if (cd && cd->wb_desc) ice_memcpy(cd->wb_desc, desc_on_ring, sizeof(*cd->wb_desc), ICE_DMA_TO_NONDMA); /* update the error if time out occurred */ if (!cmd_completed) { if (rd32(hw, cq->rq.len) & cq->rq.len_crit_mask || rd32(hw, cq->sq.len) & cq->sq.len_crit_mask) { ice_debug(hw, ICE_DBG_AQ_MSG, "Critical FW error.\n"); status = ICE_ERR_AQ_FW_CRITICAL; } else { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue Writeback timeout.\n"); status = ICE_ERR_AQ_TIMEOUT; } } sq_send_command_error: return status; } /** * ice_sq_send_cmd - send command to a control queue * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * @desc: prefilled descriptor describing the command * @buf: buffer to use for indirect commands (or NULL for direct commands) * @buf_size: size of buffer for indirect commands (or 0 for direct commands) * @cd: pointer to command details structure * * Main command for the transmit side of a control queue. It puts the command * on the queue, bumps the tail, waits for processing of the command, captures * command status and results, etc. */ enum ice_status ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq, struct ice_aq_desc *desc, void *buf, u16 buf_size, struct ice_sq_cd *cd) { enum ice_status status = ICE_SUCCESS; /* if reset is in progress return a soft error */ if (hw->reset_ongoing) return ICE_ERR_RESET_ONGOING; ice_acquire_lock(&cq->sq_lock); status = ice_sq_send_cmd_nolock(hw, cq, desc, buf, buf_size, cd); ice_release_lock(&cq->sq_lock); return status; } /** * ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function * @desc: pointer to the temp descriptor (non DMA mem) * @opcode: the opcode can be used to decide which flags to turn off or on * * Fill the desc with default values */ void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode) { /* zero out the desc */ ice_memset(desc, 0, sizeof(*desc), ICE_NONDMA_MEM); desc->opcode = CPU_TO_LE16(opcode); desc->flags = CPU_TO_LE16(ICE_AQ_FLAG_SI); } /** * ice_clean_rq_elem * @hw: pointer to the HW struct * @cq: pointer to the specific Control queue * @e: event info from the receive descriptor, includes any buffers * @pending: number of events that could be left to process * * Clean one element from the receive side of a control queue. On return 'e' * contains contents of the message, and 'pending' contains the number of * events left to process. */ enum ice_status ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq, struct ice_rq_event_info *e, u16 *pending) { u16 ntc = cq->rq.next_to_clean; enum ice_aq_err rq_last_status; enum ice_status ret_code = ICE_SUCCESS; struct ice_aq_desc *desc; struct ice_dma_mem *bi; u16 desc_idx; u16 datalen; u16 flags; u16 ntu; /* pre-clean the event info */ ice_memset(&e->desc, 0, sizeof(e->desc), ICE_NONDMA_MEM); /* take the lock before we start messing with the ring */ ice_acquire_lock(&cq->rq_lock); if (!cq->rq.count) { ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive queue not initialized.\n"); ret_code = ICE_ERR_AQ_EMPTY; goto clean_rq_elem_err; } /* set next_to_use to head */ ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); if (ntu == ntc) { /* nothing to do - shouldn't need to update ring's values */ ret_code = ICE_ERR_AQ_NO_WORK; goto clean_rq_elem_out; } /* now clean the next descriptor */ desc = ICE_CTL_Q_DESC(cq->rq, ntc); desc_idx = ntc; rq_last_status = (enum ice_aq_err)LE16_TO_CPU(desc->retval); flags = LE16_TO_CPU(desc->flags); if (flags & ICE_AQ_FLAG_ERR) { ret_code = ICE_ERR_AQ_ERROR; ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive Queue Event 0x%04X received with error 0x%X\n", LE16_TO_CPU(desc->opcode), rq_last_status); } ice_memcpy(&e->desc, desc, sizeof(e->desc), ICE_DMA_TO_NONDMA); datalen = LE16_TO_CPU(desc->datalen); e->msg_len = MIN_T(u16, datalen, e->buf_len); if (e->msg_buf && e->msg_len) ice_memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len, ICE_DMA_TO_NONDMA); ice_debug(hw, ICE_DBG_AQ_DESC, "ARQ: desc and buffer:\n"); ice_debug_cq(hw, cq, (void *)desc, e->msg_buf, cq->rq_buf_size, true); /* Restore the original datalen and buffer address in the desc, * FW updates datalen to indicate the event message size */ bi = &cq->rq.r.rq_bi[ntc]; ice_memset(desc, 0, sizeof(*desc), ICE_DMA_MEM); desc->flags = CPU_TO_LE16(ICE_AQ_FLAG_BUF); if (cq->rq_buf_size > ICE_AQ_LG_BUF) desc->flags |= CPU_TO_LE16(ICE_AQ_FLAG_LB); desc->datalen = CPU_TO_LE16(bi->size); desc->params.generic.addr_high = CPU_TO_LE32(ICE_HI_DWORD(bi->pa)); desc->params.generic.addr_low = CPU_TO_LE32(ICE_LO_DWORD(bi->pa)); /* set tail = the last cleaned desc index. */ wr32(hw, cq->rq.tail, ntc); /* ntc is updated to tail + 1 */ ntc++; if (ntc == cq->num_rq_entries) ntc = 0; cq->rq.next_to_clean = ntc; cq->rq.next_to_use = ntu; clean_rq_elem_out: /* Set pending if needed, unlock and return */ if (pending) { /* re-read HW head to calculate actual pending messages */ ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); *pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc)); } clean_rq_elem_err: ice_release_lock(&cq->rq_lock); return ret_code; }