/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2010 Fabien Thomas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Intel Uncore PMCs. */ #include #include #include #include #include #include #include #include #include #include #include #define UCF_PMC_CAPS \ (PMC_CAP_READ | PMC_CAP_WRITE) #define UCP_PMC_CAPS \ (PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \ PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE) #define SELECTSEL(x) \ (((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \ UCP_CB0_EVSEL0 : UCP_EVSEL0) #define SELECTOFF(x) \ (((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \ UCF_OFFSET_SB : UCF_OFFSET) static enum pmc_cputype uncore_cputype; struct uncore_cpu { volatile uint32_t pc_ucfctrl; /* Fixed function control. */ volatile uint64_t pc_globalctrl; /* Global control register. */ struct pmc_hw pc_uncorepmcs[]; }; static struct uncore_cpu **uncore_pcpu; static uint64_t uncore_pmcmask; static int uncore_ucf_ri; /* relative index of fixed counters */ static int uncore_ucf_width; static int uncore_ucf_npmc; static int uncore_ucp_width; static int uncore_ucp_npmc; static int uncore_pcpu_noop(struct pmc_mdep *md, int cpu) { (void) md; (void) cpu; return (0); } static int uncore_pcpu_init(struct pmc_mdep *md, int cpu) { struct pmc_cpu *pc; struct uncore_cpu *cc; struct pmc_hw *phw; int uncore_ri, n, npmc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[ucf,%d] insane cpu number %d", __LINE__, cpu)); PMCDBG1(MDP,INI,1,"uncore-init cpu=%d", cpu); uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri; npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num; npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num; cc = malloc(sizeof(struct uncore_cpu) + npmc * sizeof(struct pmc_hw), M_PMC, M_WAITOK | M_ZERO); uncore_pcpu[cpu] = cc; pc = pmc_pcpu[cpu]; KASSERT(pc != NULL && cc != NULL, ("[uncore,%d] NULL per-cpu structures cpu=%d", __LINE__, cpu)); for (n = 0, phw = cc->pc_uncorepmcs; n < npmc; n++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n + uncore_ri); phw->phw_pmc = NULL; pc->pc_hwpmcs[n + uncore_ri] = phw; } return (0); } static int uncore_pcpu_fini(struct pmc_mdep *md, int cpu) { int uncore_ri, n, npmc; struct pmc_cpu *pc; struct uncore_cpu *cc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] insane cpu number (%d)", __LINE__, cpu)); PMCDBG1(MDP,INI,1,"uncore-pcpu-fini cpu=%d", cpu); if ((cc = uncore_pcpu[cpu]) == NULL) return (0); uncore_pcpu[cpu] = NULL; pc = pmc_pcpu[cpu]; KASSERT(pc != NULL, ("[uncore,%d] NULL per-cpu %d state", __LINE__, cpu)); npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num; uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri; for (n = 0; n < npmc; n++) wrmsr(SELECTSEL(uncore_cputype) + n, 0); wrmsr(UCF_CTRL, 0); npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num; for (n = 0; n < npmc; n++) pc->pc_hwpmcs[n + uncore_ri] = NULL; free(cc, M_PMC); return (0); } /* * Fixed function counters. */ static pmc_value_t ucf_perfctr_value_to_reload_count(pmc_value_t v) { /* If the PMC has overflowed, return a reload count of zero. */ if ((v & (1ULL << (uncore_ucf_width - 1))) == 0) return (0); v &= (1ULL << uncore_ucf_width) - 1; return (1ULL << uncore_ucf_width) - v; } static pmc_value_t ucf_reload_count_to_perfctr_value(pmc_value_t rlc) { return (1ULL << uncore_ucf_width) - rlc; } static int ucf_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { uint32_t flags; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU %d", __LINE__, cpu)); PMCDBG2(MDP,ALL,1, "ucf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps); if (ri < 0 || ri > uncore_ucf_npmc) return (EINVAL); if (a->pm_class != PMC_CLASS_UCF) return (EINVAL); flags = UCF_EN; pm->pm_md.pm_ucf.pm_ucf_ctrl = (flags << (ri * 4)); PMCDBG1(MDP,ALL,2, "ucf-allocate config=0x%jx", (uintmax_t) pm->pm_md.pm_ucf.pm_ucf_ctrl); return (0); } static int ucf_config_pmc(int cpu, int ri, struct pmc *pm) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); PMCDBG3(MDP,CFG,1, "ucf-config cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__, cpu)); uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc = pm; return (0); } static int ucf_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { struct pmc_hw *phw; phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri]; snprintf(pi->pm_name, sizeof(pi->pm_name), "UCF-%d", ri); pi->pm_class = PMC_CLASS_UCF; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int ucf_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc; return (0); } static int ucf_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v) { pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); tmp = rdmsr(UCF_CTR0 + ri); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) *v = ucf_perfctr_value_to_reload_count(tmp); else *v = tmp; PMCDBG3(MDP,REA,1, "ucf-read cpu=%d ri=%d -> v=%jx", cpu, ri, *v); return (0); } static int ucf_release_pmc(int cpu, int ri, struct pmc *pmc) { PMCDBG3(MDP,REL,1, "ucf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc == NULL, ("[uncore,%d] PHW pmc non-NULL", __LINE__)); return (0); } static int ucf_start_pmc(int cpu, int ri, struct pmc *pm) { struct uncore_cpu *ucfc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); PMCDBG2(MDP,STA,1,"ucf-start cpu=%d ri=%d", cpu, ri); ucfc = uncore_pcpu[cpu]; ucfc->pc_ucfctrl |= pm->pm_md.pm_ucf.pm_ucf_ctrl; wrmsr(UCF_CTRL, ucfc->pc_ucfctrl); ucfc->pc_globalctrl |= (1ULL << (ri + SELECTOFF(uncore_cputype))); wrmsr(UC_GLOBAL_CTRL, ucfc->pc_globalctrl); PMCDBG4(MDP,STA,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)", ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL), ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL)); return (0); } static int ucf_stop_pmc(int cpu, int ri, struct pmc *pm __unused) { uint32_t fc; struct uncore_cpu *ucfc; PMCDBG2(MDP,STO,1,"ucf-stop cpu=%d ri=%d", cpu, ri); ucfc = uncore_pcpu[cpu]; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); fc = (UCF_MASK << (ri * 4)); ucfc->pc_ucfctrl &= ~fc; PMCDBG1(MDP,STO,1,"ucf-stop ucfctrl=%x", ucfc->pc_ucfctrl); wrmsr(UCF_CTRL, ucfc->pc_ucfctrl); /* Don't need to write UC_GLOBAL_CTRL, one disable is enough. */ PMCDBG4(MDP,STO,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)", ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL), ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL)); return (0); } static int ucf_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v) { struct uncore_cpu *cc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucf_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); cc = uncore_pcpu[cpu]; if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = ucf_reload_count_to_perfctr_value(v); wrmsr(UCF_CTRL, 0); /* Turn off fixed counters */ wrmsr(UCF_CTR0 + ri, v); wrmsr(UCF_CTRL, cc->pc_ucfctrl); PMCDBG4(MDP,WRI,1, "ucf-write cpu=%d ri=%d v=%jx ucfctrl=%jx ", cpu, ri, v, (uintmax_t) rdmsr(UCF_CTRL)); return (0); } static void ucf_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth) { struct pmc_classdep *pcd; KASSERT(md != NULL, ("[ucf,%d] md is NULL", __LINE__)); PMCDBG0(MDP,INI,1, "ucf-initialize"); pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF]; pcd->pcd_caps = UCF_PMC_CAPS; pcd->pcd_class = PMC_CLASS_UCF; pcd->pcd_num = npmc; pcd->pcd_ri = md->pmd_npmc; pcd->pcd_width = pmcwidth; pcd->pcd_allocate_pmc = ucf_allocate_pmc; pcd->pcd_config_pmc = ucf_config_pmc; pcd->pcd_describe = ucf_describe; pcd->pcd_get_config = ucf_get_config; pcd->pcd_get_msr = NULL; pcd->pcd_pcpu_fini = uncore_pcpu_noop; pcd->pcd_pcpu_init = uncore_pcpu_noop; pcd->pcd_read_pmc = ucf_read_pmc; pcd->pcd_release_pmc = ucf_release_pmc; pcd->pcd_start_pmc = ucf_start_pmc; pcd->pcd_stop_pmc = ucf_stop_pmc; pcd->pcd_write_pmc = ucf_write_pmc; md->pmd_npmc += npmc; } /* * Intel programmable PMCs. */ /* * Event descriptor tables. * * For each event id, we track: * * 1. The CPUs that the event is valid for. * * 2. If the event uses a fixed UMASK, the value of the umask field. * If the event doesn't use a fixed UMASK, a mask of legal bits * to check against. */ struct ucp_event_descr { enum pmc_event ucp_ev; unsigned char ucp_evcode; unsigned char ucp_umask; unsigned char ucp_flags; }; #define UCP_F_I7 (1 << 0) /* CPU: Core i7 */ #define UCP_F_WM (1 << 1) /* CPU: Westmere */ #define UCP_F_SB (1 << 2) /* CPU: Sandy Bridge */ #define UCP_F_HW (1 << 3) /* CPU: Haswell */ #define UCP_F_FM (1 << 4) /* Fixed mask */ #define UCP_F_ALLCPUS \ (UCP_F_I7 | UCP_F_WM) #define UCP_F_CMASK 0xFF000000 static pmc_value_t ucp_perfctr_value_to_reload_count(pmc_value_t v) { v &= (1ULL << uncore_ucp_width) - 1; return (1ULL << uncore_ucp_width) - v; } static pmc_value_t ucp_reload_count_to_perfctr_value(pmc_value_t rlc) { return (1ULL << uncore_ucp_width) - rlc; } /* * Counter specific event information for Sandybridge and Haswell */ static int ucp_event_sb_hw_ok_on_counter(uint8_t ev, int ri) { uint32_t mask; switch (ev) { /* * Events valid only on counter 0. */ case 0x80: case 0x83: mask = (1 << 0); break; default: mask = ~0; /* Any row index is ok. */ } return (mask & (1 << ri)); } static int ucp_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { uint8_t ev; const struct pmc_md_ucp_op_pmcallocate *ucp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row-index value %d", __LINE__, ri)); if (a->pm_class != PMC_CLASS_UCP) return (EINVAL); ucp = &a->pm_md.pm_ucp; ev = UCP_EVSEL(ucp->pm_ucp_config); switch (uncore_cputype) { case PMC_CPU_INTEL_HASWELL: case PMC_CPU_INTEL_SANDYBRIDGE: if (ucp_event_sb_hw_ok_on_counter(ev, ri) == 0) return (EINVAL); break; default: break; } pm->pm_md.pm_ucp.pm_ucp_evsel = ucp->pm_ucp_config | UCP_EN; return (0); } static int ucp_config_pmc(int cpu, int ri, struct pmc *pm) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); PMCDBG3(MDP,CFG,1, "ucp-config cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__, cpu)); uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc = pm; return (0); } static int ucp_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { struct pmc_hw *phw; phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri]; snprintf(pi->pm_name, sizeof(pi->pm_name), "UCP-%d", ri); pi->pm_class = PMC_CLASS_UCP; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int ucp_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc; return (0); } static int ucp_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v) { pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); tmp = rdmsr(UCP_PMC0 + ri); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) *v = ucp_perfctr_value_to_reload_count(tmp); else *v = tmp; PMCDBG4(MDP,REA,1, "ucp-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri, ri, *v); return (0); } static int ucp_release_pmc(int cpu, int ri, struct pmc *pm) { (void) pm; PMCDBG3(MDP,REL,1, "ucp-release cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc == NULL, ("[uncore,%d] PHW pmc non-NULL", __LINE__)); return (0); } static int ucp_start_pmc(int cpu, int ri, struct pmc *pm) { uint64_t evsel; struct uncore_cpu *cc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row-index %d", __LINE__, ri)); cc = uncore_pcpu[cpu]; PMCDBG2(MDP,STA,1, "ucp-start cpu=%d ri=%d", cpu, ri); evsel = pm->pm_md.pm_ucp.pm_ucp_evsel; PMCDBG4(MDP,STA,2, "ucp-start/2 cpu=%d ri=%d evselmsr=0x%x evsel=0x%x", cpu, ri, SELECTSEL(uncore_cputype) + ri, evsel); wrmsr(SELECTSEL(uncore_cputype) + ri, evsel); cc->pc_globalctrl |= (1ULL << ri); wrmsr(UC_GLOBAL_CTRL, cc->pc_globalctrl); return (0); } static int ucp_stop_pmc(int cpu, int ri, struct pmc *pm __unused) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row index %d", __LINE__, ri)); PMCDBG2(MDP,STO,1, "ucp-stop cpu=%d ri=%d", cpu, ri); /* stop hw. */ wrmsr(SELECTSEL(uncore_cputype) + ri, 0); /* Don't need to write UC_GLOBAL_CTRL, one disable is enough. */ return (0); } static int ucp_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[uncore,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < uncore_ucp_npmc, ("[uncore,%d] illegal row index %d", __LINE__, ri)); PMCDBG4(MDP,WRI,1, "ucp-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri, UCP_PMC0 + ri, v); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = ucp_reload_count_to_perfctr_value(v); /* * Write the new value to the counter. The counter will be in * a stopped state when the pcd_write() entry point is called. */ wrmsr(UCP_PMC0 + ri, v); return (0); } static void ucp_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth) { struct pmc_classdep *pcd; KASSERT(md != NULL, ("[ucp,%d] md is NULL", __LINE__)); PMCDBG0(MDP,INI,1, "ucp-initialize"); pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP]; pcd->pcd_caps = UCP_PMC_CAPS; pcd->pcd_class = PMC_CLASS_UCP; pcd->pcd_num = npmc; pcd->pcd_ri = md->pmd_npmc; pcd->pcd_width = pmcwidth; pcd->pcd_allocate_pmc = ucp_allocate_pmc; pcd->pcd_config_pmc = ucp_config_pmc; pcd->pcd_describe = ucp_describe; pcd->pcd_get_config = ucp_get_config; pcd->pcd_get_msr = NULL; pcd->pcd_pcpu_fini = uncore_pcpu_fini; pcd->pcd_pcpu_init = uncore_pcpu_init; pcd->pcd_read_pmc = ucp_read_pmc; pcd->pcd_release_pmc = ucp_release_pmc; pcd->pcd_start_pmc = ucp_start_pmc; pcd->pcd_stop_pmc = ucp_stop_pmc; pcd->pcd_write_pmc = ucp_write_pmc; md->pmd_npmc += npmc; } int pmc_uncore_initialize(struct pmc_mdep *md, int maxcpu) { uncore_cputype = md->pmd_cputype; uncore_pmcmask = 0; /* * Initialize programmable counters. */ uncore_ucp_npmc = 8; uncore_ucp_width = 48; uncore_pmcmask |= ((1ULL << uncore_ucp_npmc) - 1); ucp_initialize(md, maxcpu, uncore_ucp_npmc, uncore_ucp_width); /* * Initialize fixed function counters, if present. */ uncore_ucf_ri = uncore_ucp_npmc; uncore_ucf_npmc = 1; uncore_ucf_width = 48; ucf_initialize(md, maxcpu, uncore_ucf_npmc, uncore_ucf_width); uncore_pmcmask |= ((1ULL << uncore_ucf_npmc) - 1) << SELECTOFF(uncore_cputype); PMCDBG2(MDP,INI,1,"uncore-init pmcmask=0x%jx ucfri=%d", uncore_pmcmask, uncore_ucf_ri); uncore_pcpu = malloc(sizeof(*uncore_pcpu) * maxcpu, M_PMC, M_ZERO | M_WAITOK); return (0); } void pmc_uncore_finalize(struct pmc_mdep *md) { PMCDBG0(MDP,INI,1, "uncore-finalize"); free(uncore_pcpu, M_PMC); uncore_pcpu = NULL; }