/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef __T4_ADAPTER_H__ #define __T4_ADAPTER_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "offload.h" #include "t4_ioctl.h" #include "common/t4_msg.h" #include "firmware/t4fw_interface.h" #define KTR_CXGBE KTR_SPARE3 MALLOC_DECLARE(M_CXGBE); #define CXGBE_UNIMPLEMENTED(s) \ panic("%s (%s, line %d) not implemented yet.", s, __FILE__, __LINE__) /* * Same as LIST_HEAD from queue.h. This is to avoid conflict with LinuxKPI's * LIST_HEAD when building iw_cxgbe. */ #define CXGBE_LIST_HEAD(name, type) \ struct name { \ struct type *lh_first; /* first element */ \ } #ifndef SYSCTL_ADD_UQUAD #define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD #define sysctl_handle_64 sysctl_handle_quad #define CTLTYPE_U64 CTLTYPE_QUAD #endif SYSCTL_DECL(_hw_cxgbe); struct adapter; typedef struct adapter adapter_t; enum { /* * All ingress queues use this entry size. Note that the firmware event * queue and any iq expecting CPL_RX_PKT in the descriptor needs this to * be at least 64. */ IQ_ESIZE = 64, /* Default queue sizes for all kinds of ingress queues */ FW_IQ_QSIZE = 256, RX_IQ_QSIZE = 1024, /* All egress queues use this entry size */ EQ_ESIZE = 64, /* Default queue sizes for all kinds of egress queues */ CTRL_EQ_QSIZE = 1024, TX_EQ_QSIZE = 1024, #if MJUMPAGESIZE != MCLBYTES SW_ZONE_SIZES = 4, /* cluster, jumbop, jumbo9k, jumbo16k */ #else SW_ZONE_SIZES = 3, /* cluster, jumbo9k, jumbo16k */ #endif CL_METADATA_SIZE = CACHE_LINE_SIZE, SGE_MAX_WR_NDESC = SGE_MAX_WR_LEN / EQ_ESIZE, /* max WR size in desc */ TX_SGL_SEGS = 39, TX_SGL_SEGS_TSO = 38, TX_SGL_SEGS_VM = 38, TX_SGL_SEGS_VM_TSO = 37, TX_SGL_SEGS_EO_TSO = 30, /* XXX: lower for IPv6. */ TX_SGL_SEGS_VXLAN_TSO = 37, TX_WR_FLITS = SGE_MAX_WR_LEN / 8 }; enum { /* adapter intr_type */ INTR_INTX = (1 << 0), INTR_MSI = (1 << 1), INTR_MSIX = (1 << 2) }; enum { XGMAC_MTU = (1 << 0), XGMAC_PROMISC = (1 << 1), XGMAC_ALLMULTI = (1 << 2), XGMAC_VLANEX = (1 << 3), XGMAC_UCADDR = (1 << 4), XGMAC_MCADDRS = (1 << 5), XGMAC_ALL = 0xffff }; enum { /* flags understood by begin_synchronized_op */ HOLD_LOCK = (1 << 0), SLEEP_OK = (1 << 1), INTR_OK = (1 << 2), /* flags understood by end_synchronized_op */ LOCK_HELD = HOLD_LOCK, }; enum { /* adapter flags. synch_op or adapter_lock. */ FULL_INIT_DONE = (1 << 0), FW_OK = (1 << 1), CHK_MBOX_ACCESS = (1 << 2), MASTER_PF = (1 << 3), BUF_PACKING_OK = (1 << 6), IS_VF = (1 << 7), KERN_TLS_ON = (1 << 8), /* HW is configured for KERN_TLS */ CXGBE_BUSY = (1 << 9), /* adapter error_flags. reg_lock for HW_OFF_LIMITS, atomics for the rest. */ ADAP_STOPPED = (1 << 0), /* Adapter has been stopped. */ ADAP_FATAL_ERR = (1 << 1), /* Encountered a fatal error. */ HW_OFF_LIMITS = (1 << 2), /* off limits to all except reset_thread */ ADAP_CIM_ERR = (1 << 3), /* Error was related to FW/CIM. */ /* port flags */ HAS_TRACEQ = (1 << 3), FIXED_IFMEDIA = (1 << 4), /* ifmedia list doesn't change. */ /* VI flags */ VI_DETACHING = (1 << 0), VI_INIT_DONE = (1 << 1), /* 1 << 2 is unused, was VI_SYSCTL_CTX */ TX_USES_VM_WR = (1 << 3), VI_SKIP_STATS = (1 << 4), /* adapter debug_flags */ DF_DUMP_MBOX = (1 << 0), /* Log all mbox cmd/rpl. */ DF_LOAD_FW_ANYTIME = (1 << 1), /* Allow LOAD_FW after init */ DF_DISABLE_TCB_CACHE = (1 << 2), /* Disable TCB cache (T6+) */ DF_DISABLE_CFG_RETRY = (1 << 3), /* Disable fallback config */ DF_VERBOSE_SLOWINTR = (1 << 4), /* Chatty slow intr handler */ }; #define IS_DETACHING(vi) ((vi)->flags & VI_DETACHING) #define SET_DETACHING(vi) do {(vi)->flags |= VI_DETACHING;} while (0) #define CLR_DETACHING(vi) do {(vi)->flags &= ~VI_DETACHING;} while (0) #define IS_BUSY(sc) ((sc)->flags & CXGBE_BUSY) #define SET_BUSY(sc) do {(sc)->flags |= CXGBE_BUSY;} while (0) #define CLR_BUSY(sc) do {(sc)->flags &= ~CXGBE_BUSY;} while (0) struct vi_info { device_t dev; struct port_info *pi; struct adapter *adapter; struct ifnet *ifp; struct pfil_head *pfil; unsigned long flags; int if_flags; uint16_t *rss, *nm_rss; uint16_t viid; /* opaque VI identifier */ uint16_t smt_idx; uint16_t vin; uint8_t vfvld; int16_t xact_addr_filt;/* index of exact MAC address filter */ uint16_t rss_size; /* size of VI's RSS table slice */ uint16_t rss_base; /* start of VI's RSS table slice */ int hashen; int nintr; int first_intr; /* These need to be int as they are used in sysctl */ int ntxq; /* # of tx queues */ int first_txq; /* index of first tx queue */ int rsrv_noflowq; /* Reserve queue 0 for non-flowid packets */ int nrxq; /* # of rx queues */ int first_rxq; /* index of first rx queue */ int nofldtxq; /* # of offload tx queues */ int first_ofld_txq; /* index of first offload tx queue */ int nofldrxq; /* # of offload rx queues */ int first_ofld_rxq; /* index of first offload rx queue */ int nnmtxq; int first_nm_txq; int nnmrxq; int first_nm_rxq; int tmr_idx; int ofld_tmr_idx; int pktc_idx; int ofld_pktc_idx; int qsize_rxq; int qsize_txq; struct timeval last_refreshed; struct fw_vi_stats_vf stats; struct mtx tick_mtx; struct callout tick; struct sysctl_ctx_list ctx; struct sysctl_oid *rxq_oid; struct sysctl_oid *txq_oid; struct sysctl_oid *nm_rxq_oid; struct sysctl_oid *nm_txq_oid; struct sysctl_oid *ofld_rxq_oid; struct sysctl_oid *ofld_txq_oid; uint8_t hw_addr[ETHER_ADDR_LEN]; /* factory MAC address, won't change */ u_int txq_rr; u_int rxq_rr; }; struct tx_ch_rl_params { enum fw_sched_params_rate ratemode; /* %port (REL) or kbps (ABS) */ uint32_t maxrate; }; /* CLRL state */ enum clrl_state { CS_UNINITIALIZED = 0, CS_PARAMS_SET, /* sw parameters have been set. */ CS_HW_UPDATE_REQUESTED, /* async HW update requested. */ CS_HW_UPDATE_IN_PROGRESS, /* sync hw update in progress. */ CS_HW_CONFIGURED /* configured in the hardware. */ }; /* CLRL flags */ enum { CF_USER = (1 << 0), /* was configured by driver ioctl. */ }; struct tx_cl_rl_params { enum clrl_state state; int refcount; uint8_t flags; enum fw_sched_params_rate ratemode; /* %port REL or ABS value */ enum fw_sched_params_unit rateunit; /* kbps or pps (when ABS) */ enum fw_sched_params_mode mode; /* aggr or per-flow */ uint32_t maxrate; uint16_t pktsize; uint16_t burstsize; }; /* Tx scheduler parameters for a channel/port */ struct tx_sched_params { /* Channel Rate Limiter */ struct tx_ch_rl_params ch_rl; /* Class WRR */ /* XXX */ /* Class Rate Limiter (including the default pktsize and burstsize). */ int pktsize; int burstsize; struct tx_cl_rl_params cl_rl[]; }; struct port_info { device_t dev; struct adapter *adapter; struct vi_info *vi; int nvi; int up_vis; int uld_vis; bool vxlan_tcam_entry; struct tx_sched_params *sched_params; struct mtx pi_lock; char lockname[16]; unsigned long flags; uint8_t lport; /* associated offload logical port */ int8_t mdio_addr; uint8_t port_type; uint8_t mod_type; uint8_t port_id; uint8_t tx_chan; /* tx TP c-channel */ uint8_t rx_chan; /* rx TP c-channel */ uint8_t mps_bg_map; /* rx MPS buffer group bitmap */ uint8_t rx_e_chan_map; /* rx TP e-channel bitmap */ struct link_config link_cfg; struct ifmedia media; struct port_stats stats; u_int tnl_cong_drops; u_int tx_parse_error; int fcs_reg; uint64_t fcs_base; struct sysctl_ctx_list ctx; }; #define IS_MAIN_VI(vi) ((vi) == &((vi)->pi->vi[0])) struct cluster_metadata { uma_zone_t zone; caddr_t cl; u_int refcount; }; struct fl_sdesc { caddr_t cl; uint16_t nmbuf; /* # of driver originated mbufs with ref on cluster */ int16_t moff; /* offset of metadata from cl */ uint8_t zidx; }; struct tx_desc { __be64 flit[8]; }; struct tx_sdesc { struct mbuf *m; /* m_nextpkt linked chain of frames */ uint8_t desc_used; /* # of hardware descriptors used by the WR */ }; #define IQ_PAD (IQ_ESIZE - sizeof(struct rsp_ctrl) - sizeof(struct rss_header)) struct iq_desc { struct rss_header rss; uint8_t cpl[IQ_PAD]; struct rsp_ctrl rsp; }; #undef IQ_PAD CTASSERT(sizeof(struct iq_desc) == IQ_ESIZE); enum { /* iq type */ IQ_OTHER = FW_IQ_IQTYPE_OTHER, IQ_ETH = FW_IQ_IQTYPE_NIC, IQ_OFLD = FW_IQ_IQTYPE_OFLD, /* iq flags */ IQ_SW_ALLOCATED = (1 << 0), /* sw resources allocated */ IQ_HAS_FL = (1 << 1), /* iq associated with a freelist */ IQ_RX_TIMESTAMP = (1 << 2), /* provide the SGE rx timestamp */ IQ_LRO_ENABLED = (1 << 3), /* iq is an eth rxq with LRO enabled */ IQ_ADJ_CREDIT = (1 << 4), /* hw is off by 1 credit for this iq */ IQ_HW_ALLOCATED = (1 << 5), /* fw/hw resources allocated */ /* iq state */ IQS_DISABLED = 0, IQS_BUSY = 1, IQS_IDLE = 2, /* netmap related flags */ NM_OFF = 0, NM_ON = 1, NM_BUSY = 2, }; enum { CPL_COOKIE_RESERVED = 0, CPL_COOKIE_FILTER, CPL_COOKIE_DDP0, CPL_COOKIE_DDP1, CPL_COOKIE_TOM, CPL_COOKIE_HASHFILTER, CPL_COOKIE_ETHOFLD, CPL_COOKIE_KERN_TLS, NUM_CPL_COOKIES = 8 /* Limited by M_COOKIE. Do not increase. */ }; struct sge_iq; struct rss_header; typedef int (*cpl_handler_t)(struct sge_iq *, const struct rss_header *, struct mbuf *); typedef int (*an_handler_t)(struct sge_iq *, const struct rsp_ctrl *); typedef int (*fw_msg_handler_t)(struct adapter *, const __be64 *); /* * Ingress Queue: T4 is producer, driver is consumer. */ struct sge_iq { uint16_t flags; uint8_t qtype; volatile int state; struct adapter *adapter; struct iq_desc *desc; /* KVA of descriptor ring */ int8_t intr_pktc_idx; /* packet count threshold index */ uint8_t gen; /* generation bit */ uint8_t intr_params; /* interrupt holdoff parameters */ int8_t cong_drop; /* congestion drop settings for the queue */ uint16_t qsize; /* size (# of entries) of the queue */ uint16_t sidx; /* index of the entry with the status page */ uint16_t cidx; /* consumer index */ uint16_t cntxt_id; /* SGE context id for the iq */ uint16_t abs_id; /* absolute SGE id for the iq */ int16_t intr_idx; /* interrupt used by the queue */ STAILQ_ENTRY(sge_iq) link; bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; /* bus address of descriptor ring */ }; enum { /* eq type */ EQ_CTRL = 1, EQ_ETH = 2, EQ_OFLD = 3, /* eq flags */ EQ_SW_ALLOCATED = (1 << 0), /* sw resources allocated */ EQ_HW_ALLOCATED = (1 << 1), /* hw/fw resources allocated */ EQ_ENABLED = (1 << 3), /* open for business */ EQ_QFLUSH = (1 << 4), /* if_qflush in progress */ }; /* Listed in order of preference. Update t4_sysctls too if you change these */ enum {DOORBELL_UDB, DOORBELL_WCWR, DOORBELL_UDBWC, DOORBELL_KDB}; /* * Egress Queue: driver is producer, T4 is consumer. * * Note: A free list is an egress queue (driver produces the buffers and T4 * consumes them) but it's special enough to have its own struct (see sge_fl). */ struct sge_eq { unsigned int flags; /* MUST be first */ unsigned int cntxt_id; /* SGE context id for the eq */ unsigned int abs_id; /* absolute SGE id for the eq */ uint8_t type; /* EQ_CTRL/EQ_ETH/EQ_OFLD */ uint8_t doorbells; uint8_t port_id; /* port_id of the port associated with the eq */ uint8_t tx_chan; /* tx channel used by the eq */ struct mtx eq_lock; struct tx_desc *desc; /* KVA of descriptor ring */ volatile uint32_t *udb; /* KVA of doorbell (lies within BAR2) */ u_int udb_qid; /* relative qid within the doorbell page */ uint16_t sidx; /* index of the entry with the status page */ uint16_t cidx; /* consumer idx (desc idx) */ uint16_t pidx; /* producer idx (desc idx) */ uint16_t equeqidx; /* EQUEQ last requested at this pidx */ uint16_t dbidx; /* pidx of the most recent doorbell */ uint16_t iqid; /* cached iq->cntxt_id (see iq below) */ volatile u_int equiq; /* EQUIQ outstanding */ struct sge_iq *iq; /* iq that receives egr_update for the eq */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; /* bus address of descriptor ring */ char lockname[16]; }; struct rx_buf_info { uma_zone_t zone; /* zone that this cluster comes from */ uint16_t size1; /* same as size of cluster: 2K/4K/9K/16K. * hwsize[hwidx1] = size1. No spare. */ uint16_t size2; /* hwsize[hwidx2] = size2. * spare in cluster = size1 - size2. */ int8_t hwidx1; /* SGE bufsize idx for size1 */ int8_t hwidx2; /* SGE bufsize idx for size2 */ uint8_t type; /* EXT_xxx type of the cluster */ }; enum { NUM_MEMWIN = 3, MEMWIN0_APERTURE = 2048, MEMWIN0_BASE = 0x1b800, MEMWIN1_APERTURE = 32768, MEMWIN1_BASE = 0x28000, MEMWIN2_APERTURE_T4 = 65536, MEMWIN2_BASE_T4 = 0x30000, MEMWIN2_APERTURE_T5 = 128 * 1024, MEMWIN2_BASE_T5 = 0x60000, }; struct memwin { struct rwlock mw_lock __aligned(CACHE_LINE_SIZE); uint32_t mw_base; /* constant after setup_memwin */ uint32_t mw_aperture; /* ditto */ uint32_t mw_curpos; /* protected by mw_lock */ }; enum { FL_STARVING = (1 << 0), /* on the adapter's list of starving fl's */ FL_DOOMED = (1 << 1), /* about to be destroyed */ FL_BUF_PACKING = (1 << 2), /* buffer packing enabled */ FL_BUF_RESUME = (1 << 3), /* resume from the middle of the frame */ }; #define FL_RUNNING_LOW(fl) \ (IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) <= fl->lowat) #define FL_NOT_RUNNING_LOW(fl) \ (IDXDIFF(fl->dbidx * 8, fl->cidx, fl->sidx * 8) >= 2 * fl->lowat) struct sge_fl { struct mtx fl_lock; __be64 *desc; /* KVA of descriptor ring, ptr to addresses */ struct fl_sdesc *sdesc; /* KVA of software descriptor ring */ uint16_t zidx; /* refill zone idx */ uint16_t safe_zidx; uint16_t lowat; /* # of buffers <= this means fl needs help */ int flags; uint16_t buf_boundary; /* The 16b idx all deal with hw descriptors */ uint16_t dbidx; /* hw pidx after last doorbell */ uint16_t sidx; /* index of status page */ volatile uint16_t hw_cidx; /* The 32b idx are all buffer idx, not hardware descriptor idx */ uint32_t cidx; /* consumer index */ uint32_t pidx; /* producer index */ uint32_t dbval; u_int rx_offset; /* offset in fl buf (when buffer packing) */ volatile uint32_t *udb; uint64_t cl_allocated; /* # of clusters allocated */ uint64_t cl_recycled; /* # of clusters recycled */ uint64_t cl_fast_recycled; /* # of clusters recycled (fast) */ /* These 3 are valid when FL_BUF_RESUME is set, stale otherwise. */ struct mbuf *m0; struct mbuf **pnext; u_int remaining; uint16_t qsize; /* # of hw descriptors (status page included) */ uint16_t cntxt_id; /* SGE context id for the freelist */ TAILQ_ENTRY(sge_fl) link; /* All starving freelists */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; char lockname[16]; bus_addr_t ba; /* bus address of descriptor ring */ }; struct mp_ring; struct txpkts { uint8_t wr_type; /* type 0 or type 1 */ uint8_t npkt; /* # of packets in this work request */ uint8_t len16; /* # of 16B pieces used by this work request */ uint8_t score; uint8_t max_npkt; /* maximum number of packets allowed */ uint16_t plen; /* total payload (sum of all packets) */ /* straight from fw_eth_tx_pkts_vm_wr. */ __u8 ethmacdst[6]; __u8 ethmacsrc[6]; __be16 ethtype; __be16 vlantci; struct mbuf *mb[15]; }; /* txq: SGE egress queue + what's needed for Ethernet NIC */ struct sge_txq { struct sge_eq eq; /* MUST be first */ struct ifnet *ifp; /* the interface this txq belongs to */ struct mp_ring *r; /* tx software ring */ struct tx_sdesc *sdesc; /* KVA of software descriptor ring */ struct sglist *gl; __be32 cpl_ctrl0; /* for convenience */ int tc_idx; /* traffic class */ uint64_t last_tx; /* cycle count when eth_tx was last called */ struct txpkts txp; struct task tx_reclaim_task; /* stats for common events first */ uint64_t txcsum; /* # of times hardware assisted with checksum */ uint64_t tso_wrs; /* # of TSO work requests */ uint64_t vlan_insertion;/* # of times VLAN tag was inserted */ uint64_t imm_wrs; /* # of work requests with immediate data */ uint64_t sgl_wrs; /* # of work requests with direct SGL */ uint64_t txpkt_wrs; /* # of txpkt work requests (not coalesced) */ uint64_t txpkts0_wrs; /* # of type0 coalesced tx work requests */ uint64_t txpkts1_wrs; /* # of type1 coalesced tx work requests */ uint64_t txpkts0_pkts; /* # of frames in type0 coalesced tx WRs */ uint64_t txpkts1_pkts; /* # of frames in type1 coalesced tx WRs */ uint64_t txpkts_flush; /* # of times txp had to be sent by tx_update */ uint64_t raw_wrs; /* # of raw work requests (alloc_wr_mbuf) */ uint64_t vxlan_tso_wrs; /* # of VXLAN TSO work requests */ uint64_t vxlan_txcsum; uint64_t kern_tls_records; uint64_t kern_tls_short; uint64_t kern_tls_partial; uint64_t kern_tls_full; uint64_t kern_tls_octets; uint64_t kern_tls_waste; uint64_t kern_tls_options; uint64_t kern_tls_header; uint64_t kern_tls_fin; uint64_t kern_tls_fin_short; uint64_t kern_tls_cbc; uint64_t kern_tls_gcm; /* stats for not-that-common events */ /* Optional scratch space for constructing work requests. */ uint8_t ss[SGE_MAX_WR_LEN] __aligned(16); } __aligned(CACHE_LINE_SIZE); /* rxq: SGE ingress queue + SGE free list + miscellaneous items */ struct sge_rxq { struct sge_iq iq; /* MUST be first */ struct sge_fl fl; /* MUST follow iq */ struct ifnet *ifp; /* the interface this rxq belongs to */ struct lro_ctrl lro; /* LRO state */ /* stats for common events first */ uint64_t rxcsum; /* # of times hardware assisted with checksum */ uint64_t vlan_extraction;/* # of times VLAN tag was extracted */ uint64_t vxlan_rxcsum; /* stats for not-that-common events */ } __aligned(CACHE_LINE_SIZE); static inline struct sge_rxq * iq_to_rxq(struct sge_iq *iq) { return (__containerof(iq, struct sge_rxq, iq)); } /* ofld_rxq: SGE ingress queue + SGE free list + miscellaneous items */ struct sge_ofld_rxq { struct sge_iq iq; /* MUST be first */ struct sge_fl fl; /* MUST follow iq */ counter_u64_t rx_iscsi_ddp_setup_ok; counter_u64_t rx_iscsi_ddp_setup_error; uint64_t rx_iscsi_ddp_pdus; uint64_t rx_iscsi_ddp_octets; uint64_t rx_iscsi_fl_pdus; uint64_t rx_iscsi_fl_octets; uint64_t rx_iscsi_padding_errors; uint64_t rx_iscsi_header_digest_errors; uint64_t rx_iscsi_data_digest_errors; uint64_t rx_aio_ddp_jobs; uint64_t rx_aio_ddp_octets; u_long rx_toe_tls_records; u_long rx_toe_tls_octets; } __aligned(CACHE_LINE_SIZE); static inline struct sge_ofld_rxq * iq_to_ofld_rxq(struct sge_iq *iq) { return (__containerof(iq, struct sge_ofld_rxq, iq)); } struct wrqe { STAILQ_ENTRY(wrqe) link; struct sge_wrq *wrq; int wr_len; char wr[] __aligned(16); }; struct wrq_cookie { TAILQ_ENTRY(wrq_cookie) link; int ndesc; int pidx; }; /* * wrq: SGE egress queue that is given prebuilt work requests. Control queues * are of this type. */ struct sge_wrq { struct sge_eq eq; /* MUST be first */ struct adapter *adapter; struct task wrq_tx_task; /* Tx desc reserved but WR not "committed" yet. */ TAILQ_HEAD(wrq_incomplete_wrs , wrq_cookie) incomplete_wrs; /* List of WRs ready to go out as soon as descriptors are available. */ STAILQ_HEAD(, wrqe) wr_list; u_int nwr_pending; u_int ndesc_needed; /* stats for common events first */ uint64_t tx_wrs_direct; /* # of WRs written directly to desc ring. */ uint64_t tx_wrs_ss; /* # of WRs copied from scratch space. */ uint64_t tx_wrs_copied; /* # of WRs queued and copied to desc ring. */ /* stats for not-that-common events */ /* * Scratch space for work requests that wrap around after reaching the * status page, and some information about the last WR that used it. */ uint16_t ss_pidx; uint16_t ss_len; uint8_t ss[SGE_MAX_WR_LEN]; } __aligned(CACHE_LINE_SIZE); /* ofld_txq: SGE egress queue + miscellaneous items */ struct sge_ofld_txq { struct sge_wrq wrq; counter_u64_t tx_iscsi_pdus; counter_u64_t tx_iscsi_octets; counter_u64_t tx_iscsi_iso_wrs; counter_u64_t tx_aio_jobs; counter_u64_t tx_aio_octets; counter_u64_t tx_toe_tls_records; counter_u64_t tx_toe_tls_octets; } __aligned(CACHE_LINE_SIZE); #define INVALID_NM_RXQ_CNTXT_ID ((uint16_t)(-1)) struct sge_nm_rxq { /* Items used by the driver rx ithread are in this cacheline. */ volatile int nm_state __aligned(CACHE_LINE_SIZE); /* NM_OFF, NM_ON, or NM_BUSY */ u_int nid; /* netmap ring # for this queue */ struct vi_info *vi; struct iq_desc *iq_desc; uint16_t iq_abs_id; uint16_t iq_cntxt_id; uint16_t iq_cidx; uint16_t iq_sidx; uint8_t iq_gen; uint32_t fl_sidx; /* Items used by netmap rxsync are in this cacheline. */ __be64 *fl_desc __aligned(CACHE_LINE_SIZE); uint16_t fl_cntxt_id; uint32_t fl_pidx; uint32_t fl_sidx2; /* copy of fl_sidx */ uint32_t fl_db_val; u_int fl_db_saved; u_int fl_db_threshold; /* in descriptors */ u_int fl_hwidx:4; /* * fl_cidx is used by both the ithread and rxsync, the rest are not used * in the rx fast path. */ uint32_t fl_cidx __aligned(CACHE_LINE_SIZE); bus_dma_tag_t iq_desc_tag; bus_dmamap_t iq_desc_map; bus_addr_t iq_ba; int intr_idx; bus_dma_tag_t fl_desc_tag; bus_dmamap_t fl_desc_map; bus_addr_t fl_ba; }; #define INVALID_NM_TXQ_CNTXT_ID ((u_int)(-1)) struct sge_nm_txq { struct tx_desc *desc; uint16_t cidx; uint16_t pidx; uint16_t sidx; uint16_t equiqidx; /* EQUIQ last requested at this pidx */ uint16_t equeqidx; /* EQUEQ last requested at this pidx */ uint16_t dbidx; /* pidx of the most recent doorbell */ uint8_t doorbells; volatile uint32_t *udb; u_int udb_qid; u_int cntxt_id; __be32 cpl_ctrl0; /* for convenience */ __be32 op_pkd; /* ditto */ u_int nid; /* netmap ring # for this queue */ /* infrequently used items after this */ bus_dma_tag_t desc_tag; bus_dmamap_t desc_map; bus_addr_t ba; int iqidx; } __aligned(CACHE_LINE_SIZE); struct sge { int nrxq; /* total # of Ethernet rx queues */ int ntxq; /* total # of Ethernet tx queues */ int nofldrxq; /* total # of TOE rx queues */ int nofldtxq; /* total # of TOE tx queues */ int nnmrxq; /* total # of netmap rx queues */ int nnmtxq; /* total # of netmap tx queues */ int niq; /* total # of ingress queues */ int neq; /* total # of egress queues */ struct sge_iq fwq; /* Firmware event queue */ struct sge_wrq *ctrlq; /* Control queues */ struct sge_txq *txq; /* NIC tx queues */ struct sge_rxq *rxq; /* NIC rx queues */ struct sge_ofld_txq *ofld_txq; /* TOE tx queues */ struct sge_ofld_rxq *ofld_rxq; /* TOE rx queues */ struct sge_nm_txq *nm_txq; /* netmap tx queues */ struct sge_nm_rxq *nm_rxq; /* netmap rx queues */ uint16_t iq_start; /* first cntxt_id */ uint16_t iq_base; /* first abs_id */ int eq_start; /* first cntxt_id */ int eq_base; /* first abs_id */ int iqmap_sz; int eqmap_sz; struct sge_iq **iqmap; /* iq->cntxt_id to iq mapping */ struct sge_eq **eqmap; /* eq->cntxt_id to eq mapping */ int8_t safe_zidx; struct rx_buf_info rx_buf_info[SW_ZONE_SIZES]; }; struct devnames { const char *nexus_name; const char *ifnet_name; const char *vi_ifnet_name; const char *pf03_drv_name; const char *vf_nexus_name; const char *vf_ifnet_name; }; struct clip_entry; #define CNT_CAL_INFO 3 struct clock_sync { uint64_t hw_cur; uint64_t hw_prev; sbintime_t sbt_cur; sbintime_t sbt_prev; seqc_t gen; }; struct adapter { SLIST_ENTRY(adapter) link; device_t dev; struct cdev *cdev; const struct devnames *names; /* PCIe register resources */ int regs_rid; struct resource *regs_res; int msix_rid; struct resource *msix_res; bus_space_handle_t bh; bus_space_tag_t bt; bus_size_t mmio_len; int udbs_rid; struct resource *udbs_res; volatile uint8_t *udbs_base; unsigned int pf; unsigned int mbox; unsigned int vpd_busy; unsigned int vpd_flag; /* Interrupt information */ int intr_type; int intr_count; struct irq { struct resource *res; int rid; void *tag; struct sge_rxq *rxq; struct sge_nm_rxq *nm_rxq; } __aligned(CACHE_LINE_SIZE) *irq; int sge_gts_reg; int sge_kdoorbell_reg; bus_dma_tag_t dmat; /* Parent DMA tag */ struct sge sge; int lro_timeout; int sc_do_rxcopy; int vxlan_port; u_int vxlan_refcount; int rawf_base; int nrawf; u_int vlan_id; struct taskqueue *tq[MAX_NPORTS]; /* General purpose taskqueues */ struct port_info *port[MAX_NPORTS]; uint8_t chan_map[MAX_NCHAN]; /* channel -> port */ CXGBE_LIST_HEAD(, clip_entry) *clip_table; TAILQ_HEAD(, clip_entry) clip_pending; /* these need hw update. */ u_long clip_mask; int clip_gen; struct timeout_task clip_task; void *tom_softc; /* (struct tom_data *) */ struct tom_tunables tt; struct t4_offload_policy *policy; struct rwlock policy_lock; void *iwarp_softc; /* (struct c4iw_dev *) */ struct iw_tunables iwt; void *iscsi_ulp_softc; /* (struct cxgbei_data *) */ struct l2t_data *l2t; /* L2 table */ struct smt_data *smt; /* Source MAC Table */ struct tid_info tids; vmem_t *key_map; struct tls_tunables tlst; uint8_t doorbells; int offload_map; /* port_id's with IFCAP_TOE enabled */ int bt_map; /* tx_chan's with BASE-T */ int active_ulds; /* ULDs activated on this adapter */ int flags; int debug_flags; int error_flags; /* Used by error handler and live reset. */ char ifp_lockname[16]; struct mtx ifp_lock; struct ifnet *ifp; /* tracer ifp */ struct ifmedia media; int traceq; /* iq used by all tracers, -1 if none */ int tracer_valid; /* bitmap of valid tracers */ int tracer_enabled; /* bitmap of enabled tracers */ char fw_version[16]; char tp_version[16]; char er_version[16]; char bs_version[16]; char cfg_file[32]; u_int cfcsum; struct adapter_params params; const struct chip_params *chip_params; struct t4_virt_res vres; uint16_t nbmcaps; uint16_t linkcaps; uint16_t switchcaps; uint16_t niccaps; uint16_t toecaps; uint16_t rdmacaps; uint16_t cryptocaps; uint16_t iscsicaps; uint16_t fcoecaps; struct sysctl_ctx_list ctx; struct sysctl_oid *ctrlq_oid; struct sysctl_oid *fwq_oid; struct mtx sc_lock; char lockname[16]; /* Starving free lists */ struct mtx sfl_lock; /* same cache-line as sc_lock? but that's ok */ TAILQ_HEAD(, sge_fl) sfl; struct callout sfl_callout; struct callout cal_callout; struct clock_sync cal_info[CNT_CAL_INFO]; int cal_current; int cal_count; uint32_t cal_gen; /* * Driver code that can run when the adapter is suspended must use this * lock or a synchronized_op and check for HW_OFF_LIMITS before * accessing hardware. * * XXX: could be changed to rwlock. wlock in suspend/resume and for * indirect register access, rlock everywhere else. */ struct mtx reg_lock; struct memwin memwin[NUM_MEMWIN]; /* memory windows */ struct mtx tc_lock; struct task tc_task; struct task fatal_error_task; struct task reset_task; const void *reset_thread; int num_resets; int incarnation; const char *last_op; const void *last_op_thr; int last_op_flags; int swintr; int sensor_resets; struct callout ktls_tick; }; #define ADAPTER_LOCK(sc) mtx_lock(&(sc)->sc_lock) #define ADAPTER_UNLOCK(sc) mtx_unlock(&(sc)->sc_lock) #define ADAPTER_LOCK_ASSERT_OWNED(sc) mtx_assert(&(sc)->sc_lock, MA_OWNED) #define ADAPTER_LOCK_ASSERT_NOTOWNED(sc) mtx_assert(&(sc)->sc_lock, MA_NOTOWNED) #define ASSERT_SYNCHRONIZED_OP(sc) \ KASSERT(IS_BUSY(sc) && \ (mtx_owned(&(sc)->sc_lock) || sc->last_op_thr == curthread), \ ("%s: operation not synchronized.", __func__)) #define PORT_LOCK(pi) mtx_lock(&(pi)->pi_lock) #define PORT_UNLOCK(pi) mtx_unlock(&(pi)->pi_lock) #define PORT_LOCK_ASSERT_OWNED(pi) mtx_assert(&(pi)->pi_lock, MA_OWNED) #define PORT_LOCK_ASSERT_NOTOWNED(pi) mtx_assert(&(pi)->pi_lock, MA_NOTOWNED) #define FL_LOCK(fl) mtx_lock(&(fl)->fl_lock) #define FL_TRYLOCK(fl) mtx_trylock(&(fl)->fl_lock) #define FL_UNLOCK(fl) mtx_unlock(&(fl)->fl_lock) #define FL_LOCK_ASSERT_OWNED(fl) mtx_assert(&(fl)->fl_lock, MA_OWNED) #define FL_LOCK_ASSERT_NOTOWNED(fl) mtx_assert(&(fl)->fl_lock, MA_NOTOWNED) #define RXQ_FL_LOCK(rxq) FL_LOCK(&(rxq)->fl) #define RXQ_FL_UNLOCK(rxq) FL_UNLOCK(&(rxq)->fl) #define RXQ_FL_LOCK_ASSERT_OWNED(rxq) FL_LOCK_ASSERT_OWNED(&(rxq)->fl) #define RXQ_FL_LOCK_ASSERT_NOTOWNED(rxq) FL_LOCK_ASSERT_NOTOWNED(&(rxq)->fl) #define EQ_LOCK(eq) mtx_lock(&(eq)->eq_lock) #define EQ_TRYLOCK(eq) mtx_trylock(&(eq)->eq_lock) #define EQ_UNLOCK(eq) mtx_unlock(&(eq)->eq_lock) #define EQ_LOCK_ASSERT_OWNED(eq) mtx_assert(&(eq)->eq_lock, MA_OWNED) #define EQ_LOCK_ASSERT_NOTOWNED(eq) mtx_assert(&(eq)->eq_lock, MA_NOTOWNED) #define TXQ_LOCK(txq) EQ_LOCK(&(txq)->eq) #define TXQ_TRYLOCK(txq) EQ_TRYLOCK(&(txq)->eq) #define TXQ_UNLOCK(txq) EQ_UNLOCK(&(txq)->eq) #define TXQ_LOCK_ASSERT_OWNED(txq) EQ_LOCK_ASSERT_OWNED(&(txq)->eq) #define TXQ_LOCK_ASSERT_NOTOWNED(txq) EQ_LOCK_ASSERT_NOTOWNED(&(txq)->eq) #define for_each_txq(vi, iter, q) \ for (q = &vi->adapter->sge.txq[vi->first_txq], iter = 0; \ iter < vi->ntxq; ++iter, ++q) #define for_each_rxq(vi, iter, q) \ for (q = &vi->adapter->sge.rxq[vi->first_rxq], iter = 0; \ iter < vi->nrxq; ++iter, ++q) #define for_each_ofld_txq(vi, iter, q) \ for (q = &vi->adapter->sge.ofld_txq[vi->first_ofld_txq], iter = 0; \ iter < vi->nofldtxq; ++iter, ++q) #define for_each_ofld_rxq(vi, iter, q) \ for (q = &vi->adapter->sge.ofld_rxq[vi->first_ofld_rxq], iter = 0; \ iter < vi->nofldrxq; ++iter, ++q) #define for_each_nm_txq(vi, iter, q) \ for (q = &vi->adapter->sge.nm_txq[vi->first_nm_txq], iter = 0; \ iter < vi->nnmtxq; ++iter, ++q) #define for_each_nm_rxq(vi, iter, q) \ for (q = &vi->adapter->sge.nm_rxq[vi->first_nm_rxq], iter = 0; \ iter < vi->nnmrxq; ++iter, ++q) #define for_each_vi(_pi, _iter, _vi) \ for ((_vi) = (_pi)->vi, (_iter) = 0; (_iter) < (_pi)->nvi; \ ++(_iter), ++(_vi)) #define IDXINCR(idx, incr, wrap) do { \ idx = wrap - idx > incr ? idx + incr : incr - (wrap - idx); \ } while (0) #define IDXDIFF(head, tail, wrap) \ ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) /* One for errors, one for firmware events */ #define T4_EXTRA_INTR 2 /* One for firmware events */ #define T4VF_EXTRA_INTR 1 static inline int forwarding_intr_to_fwq(struct adapter *sc) { return (sc->intr_count == 1); } /* Works reliably inside a sync_op or with reg_lock held. */ static inline bool hw_off_limits(struct adapter *sc) { int off_limits = atomic_load_int(&sc->error_flags) & HW_OFF_LIMITS; return (__predict_false(off_limits != 0)); } static inline uint32_t t4_read_reg(struct adapter *sc, uint32_t reg) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); return bus_space_read_4(sc->bt, sc->bh, reg); } static inline void t4_write_reg(struct adapter *sc, uint32_t reg, uint32_t val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); bus_space_write_4(sc->bt, sc->bh, reg, val); } static inline uint64_t t4_read_reg64(struct adapter *sc, uint32_t reg) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); #ifdef __LP64__ return bus_space_read_8(sc->bt, sc->bh, reg); #else return (uint64_t)bus_space_read_4(sc->bt, sc->bh, reg) + ((uint64_t)bus_space_read_4(sc->bt, sc->bh, reg + 4) << 32); #endif } static inline void t4_write_reg64(struct adapter *sc, uint32_t reg, uint64_t val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); #ifdef __LP64__ bus_space_write_8(sc->bt, sc->bh, reg, val); #else bus_space_write_4(sc->bt, sc->bh, reg, val); bus_space_write_4(sc->bt, sc->bh, reg + 4, val>> 32); #endif } static inline void t4_os_pci_read_cfg1(struct adapter *sc, int reg, uint8_t *val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); *val = pci_read_config(sc->dev, reg, 1); } static inline void t4_os_pci_write_cfg1(struct adapter *sc, int reg, uint8_t val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); pci_write_config(sc->dev, reg, val, 1); } static inline void t4_os_pci_read_cfg2(struct adapter *sc, int reg, uint16_t *val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); *val = pci_read_config(sc->dev, reg, 2); } static inline void t4_os_pci_write_cfg2(struct adapter *sc, int reg, uint16_t val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); pci_write_config(sc->dev, reg, val, 2); } static inline void t4_os_pci_read_cfg4(struct adapter *sc, int reg, uint32_t *val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); *val = pci_read_config(sc->dev, reg, 4); } static inline void t4_os_pci_write_cfg4(struct adapter *sc, int reg, uint32_t val) { if (hw_off_limits(sc)) MPASS(curthread == sc->reset_thread); pci_write_config(sc->dev, reg, val, 4); } static inline struct port_info * adap2pinfo(struct adapter *sc, int idx) { return (sc->port[idx]); } static inline void t4_os_set_hw_addr(struct port_info *pi, uint8_t hw_addr[]) { bcopy(hw_addr, pi->vi[0].hw_addr, ETHER_ADDR_LEN); } static inline int tx_resume_threshold(struct sge_eq *eq) { /* not quite the same as qsize / 4, but this will do. */ return (eq->sidx / 4); } static inline int t4_use_ldst(struct adapter *sc) { #ifdef notyet return (sc->flags & FW_OK || !sc->use_bd); #else return (0); #endif } static inline void CH_DUMP_MBOX(struct adapter *sc, int mbox, const int reg, const char *msg, const __be64 *const p, const bool err) { if (!(sc->debug_flags & DF_DUMP_MBOX) && !err) return; if (p != NULL) { log(err ? LOG_ERR : LOG_DEBUG, "%s: mbox %u %s %016llx %016llx %016llx %016llx " "%016llx %016llx %016llx %016llx\n", device_get_nameunit(sc->dev), mbox, msg, (long long)be64_to_cpu(p[0]), (long long)be64_to_cpu(p[1]), (long long)be64_to_cpu(p[2]), (long long)be64_to_cpu(p[3]), (long long)be64_to_cpu(p[4]), (long long)be64_to_cpu(p[5]), (long long)be64_to_cpu(p[6]), (long long)be64_to_cpu(p[7])); } else { log(err ? LOG_ERR : LOG_DEBUG, "%s: mbox %u %s %016llx %016llx %016llx %016llx " "%016llx %016llx %016llx %016llx\n", device_get_nameunit(sc->dev), mbox, msg, (long long)t4_read_reg64(sc, reg), (long long)t4_read_reg64(sc, reg + 8), (long long)t4_read_reg64(sc, reg + 16), (long long)t4_read_reg64(sc, reg + 24), (long long)t4_read_reg64(sc, reg + 32), (long long)t4_read_reg64(sc, reg + 40), (long long)t4_read_reg64(sc, reg + 48), (long long)t4_read_reg64(sc, reg + 56)); } } /* t4_main.c */ extern int t4_ntxq; extern int t4_nrxq; extern int t4_intr_types; extern int t4_tmr_idx; extern int t4_pktc_idx; extern unsigned int t4_qsize_rxq; extern unsigned int t4_qsize_txq; extern device_method_t cxgbe_methods[]; int t4_os_find_pci_capability(struct adapter *, int); int t4_os_pci_save_state(struct adapter *); int t4_os_pci_restore_state(struct adapter *); void t4_os_portmod_changed(struct port_info *); void t4_os_link_changed(struct port_info *); void t4_iterate(void (*)(struct adapter *, void *), void *); void t4_init_devnames(struct adapter *); void t4_add_adapter(struct adapter *); int t4_detach_common(device_t); int t4_map_bars_0_and_4(struct adapter *); int t4_map_bar_2(struct adapter *); int t4_adj_doorbells(struct adapter *); int t4_setup_intr_handlers(struct adapter *); void t4_sysctls(struct adapter *); int begin_synchronized_op(struct adapter *, struct vi_info *, int, char *); void end_synchronized_op(struct adapter *, int); void begin_vi_detach(struct adapter *, struct vi_info *); void end_vi_detach(struct adapter *, struct vi_info *); int update_mac_settings(struct ifnet *, int); int adapter_init(struct adapter *); int vi_init(struct vi_info *); void vi_sysctls(struct vi_info *); int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int); int alloc_atid(struct adapter *, void *); void *lookup_atid(struct adapter *, int); void free_atid(struct adapter *, int); void release_tid(struct adapter *, int, struct sge_wrq *); int cxgbe_media_change(struct ifnet *); void cxgbe_media_status(struct ifnet *, struct ifmediareq *); void t4_os_cim_err(struct adapter *); #ifdef KERN_TLS /* t6_kern_tls.c */ int t6_tls_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); void t6_tls_tag_free(struct m_snd_tag *); void t6_ktls_modload(void); void t6_ktls_modunload(void); int t6_ktls_try(struct ifnet *, struct socket *, struct ktls_session *); int t6_ktls_parse_pkt(struct mbuf *, int *, int *); int t6_ktls_write_wr(struct sge_txq *, void *, struct mbuf *, u_int, u_int); #endif /* t4_keyctx.c */ struct auth_hash; union authctx; #ifdef KERN_TLS struct ktls_session; struct tls_key_req; struct tls_keyctx; #endif void t4_aes_getdeckey(void *, const void *, unsigned int); void t4_copy_partial_hash(int, union authctx *, void *); void t4_init_gmac_hash(const char *, int, char *); void t4_init_hmac_digest(struct auth_hash *, u_int, const char *, int, char *); #ifdef KERN_TLS u_int t4_tls_key_info_size(const struct ktls_session *); int t4_tls_proto_ver(const struct ktls_session *); int t4_tls_cipher_mode(const struct ktls_session *); int t4_tls_auth_mode(const struct ktls_session *); int t4_tls_hmac_ctrl(const struct ktls_session *); void t4_tls_key_ctx(const struct ktls_session *, int, struct tls_keyctx *); int t4_alloc_tls_keyid(struct adapter *); void t4_free_tls_keyid(struct adapter *, int); void t4_write_tlskey_wr(const struct ktls_session *, int, int, int, int, struct tls_key_req *); #endif #ifdef DEV_NETMAP /* t4_netmap.c */ struct sge_nm_rxq; void cxgbe_nm_attach(struct vi_info *); void cxgbe_nm_detach(struct vi_info *); void service_nm_rxq(struct sge_nm_rxq *); int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int); int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int); int free_nm_txq(struct vi_info *, struct sge_nm_txq *); #endif /* t4_sge.c */ void t4_sge_modload(void); void t4_sge_modunload(void); uint64_t t4_sge_extfree_refs(void); void t4_tweak_chip_settings(struct adapter *); int t4_verify_chip_settings(struct adapter *); void t4_init_rx_buf_info(struct adapter *); int t4_create_dma_tag(struct adapter *); void t4_sge_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid_list *); int t4_destroy_dma_tag(struct adapter *); int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, bus_addr_t *, void **); int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, void *); void free_fl_buffers(struct adapter *, struct sge_fl *); int t4_setup_adapter_queues(struct adapter *); int t4_teardown_adapter_queues(struct adapter *); int t4_setup_vi_queues(struct vi_info *); int t4_teardown_vi_queues(struct vi_info *); void t4_intr_all(void *); void t4_intr(void *); #ifdef DEV_NETMAP void t4_nm_intr(void *); void t4_vi_intr(void *); #endif void t4_intr_err(void *); void t4_intr_evt(void *); void t4_wrq_tx_locked(struct adapter *, struct sge_wrq *, struct wrqe *); void t4_update_fl_bufsize(struct ifnet *); struct mbuf *alloc_wr_mbuf(int, int); int parse_pkt(struct mbuf **, bool); void *start_wrq_wr(struct sge_wrq *, int, struct wrq_cookie *); void commit_wrq_wr(struct sge_wrq *, void *, struct wrq_cookie *); int t4_sge_set_conm_context(struct adapter *, int, int, int); void t4_register_an_handler(an_handler_t); void t4_register_fw_msg_handler(int, fw_msg_handler_t); void t4_register_cpl_handler(int, cpl_handler_t); void t4_register_shared_cpl_handler(int, cpl_handler_t, int); #ifdef RATELIMIT int ethofld_transmit(struct ifnet *, struct mbuf *); void send_etid_flush_wr(struct cxgbe_rate_tag *); #endif /* t4_tracer.c */ struct t4_tracer; void t4_tracer_modload(void); void t4_tracer_modunload(void); void t4_tracer_port_detach(struct adapter *); int t4_get_tracer(struct adapter *, struct t4_tracer *); int t4_set_tracer(struct adapter *, struct t4_tracer *); int t4_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *); int t5_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *); /* t4_sched.c */ int t4_set_sched_class(struct adapter *, struct t4_sched_params *); int t4_set_sched_queue(struct adapter *, struct t4_sched_queue *); int t4_init_tx_sched(struct adapter *); int t4_free_tx_sched(struct adapter *); void t4_update_tx_sched(struct adapter *); int t4_reserve_cl_rl_kbps(struct adapter *, int, u_int, int *); void t4_release_cl_rl(struct adapter *, int, int); int sysctl_tc(SYSCTL_HANDLER_ARGS); int sysctl_tc_params(SYSCTL_HANDLER_ARGS); #ifdef RATELIMIT void t4_init_etid_table(struct adapter *); void t4_free_etid_table(struct adapter *); struct cxgbe_rate_tag *lookup_etid(struct adapter *, int); int cxgbe_rate_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); int cxgbe_rate_tag_modify(struct m_snd_tag *, union if_snd_tag_modify_params *); int cxgbe_rate_tag_query(struct m_snd_tag *, union if_snd_tag_query_params *); void cxgbe_rate_tag_free(struct m_snd_tag *); void cxgbe_rate_tag_free_locked(struct cxgbe_rate_tag *); void cxgbe_ratelimit_query(struct ifnet *, struct if_ratelimit_query_results *); #endif /* t4_filter.c */ int get_filter_mode(struct adapter *, uint32_t *); int set_filter_mode(struct adapter *, uint32_t); int set_filter_mask(struct adapter *, uint32_t); int get_filter(struct adapter *, struct t4_filter *); int set_filter(struct adapter *, struct t4_filter *); int del_filter(struct adapter *, struct t4_filter *); int t4_filter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_hashfilter_ao_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_hashfilter_tcb_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); int t4_del_hashfilter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); void free_hftid_hash(struct tid_info *); static inline struct wrqe * alloc_wrqe(int wr_len, struct sge_wrq *wrq) { int len = offsetof(struct wrqe, wr) + wr_len; struct wrqe *wr; wr = malloc(len, M_CXGBE, M_NOWAIT); if (__predict_false(wr == NULL)) return (NULL); wr->wr_len = wr_len; wr->wrq = wrq; return (wr); } static inline void * wrtod(struct wrqe *wr) { return (&wr->wr[0]); } static inline void free_wrqe(struct wrqe *wr) { free(wr, M_CXGBE); } static inline void t4_wrq_tx(struct adapter *sc, struct wrqe *wr) { struct sge_wrq *wrq = wr->wrq; TXQ_LOCK(wrq); t4_wrq_tx_locked(sc, wrq, wr); TXQ_UNLOCK(wrq); } static inline int read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, int len) { return (rw_via_memwin(sc, idx, addr, val, len, 0)); } static inline int write_via_memwin(struct adapter *sc, int idx, uint32_t addr, const uint32_t *val, int len) { return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1)); } /* Number of len16 -> number of descriptors */ static inline int tx_len16_to_desc(int len16) { return (howmany(len16, EQ_ESIZE / 16)); } #endif