/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Sepherosa Ziehau * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $ */ #include #include "opt_inet.h" #include "opt_bwi.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #include #include #include #include struct bwi_clock_freq { u_int clkfreq_min; u_int clkfreq_max; }; struct bwi_myaddr_bssid { uint8_t myaddr[IEEE80211_ADDR_LEN]; uint8_t bssid[IEEE80211_ADDR_LEN]; } __packed; static struct ieee80211vap *bwi_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void bwi_vap_delete(struct ieee80211vap *); static void bwi_init(struct bwi_softc *); static void bwi_parent(struct ieee80211com *); static int bwi_transmit(struct ieee80211com *, struct mbuf *); static void bwi_start_locked(struct bwi_softc *); static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void bwi_watchdog(void *); static void bwi_scan_start(struct ieee80211com *); static void bwi_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static void bwi_set_channel(struct ieee80211com *); static void bwi_scan_end(struct ieee80211com *); static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void bwi_updateslot(struct ieee80211com *); static void bwi_calibrate(void *); static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *); static int bwi_calc_noise(struct bwi_softc *); static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype); static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *, struct bwi_rxbuf_hdr *, const void *, int, int, int); static void bwi_restart(void *, int); static void bwi_init_statechg(struct bwi_softc *, int); static void bwi_stop(struct bwi_softc *, int); static void bwi_stop_locked(struct bwi_softc *, int); static int bwi_newbuf(struct bwi_softc *, int, int); static int bwi_encap(struct bwi_softc *, int, struct mbuf *, struct ieee80211_node *); static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t, bus_addr_t, int, int); static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t); static int bwi_init_tx_ring32(struct bwi_softc *, int); static int bwi_init_rx_ring32(struct bwi_softc *); static int bwi_init_txstats32(struct bwi_softc *); static void bwi_free_tx_ring32(struct bwi_softc *, int); static void bwi_free_rx_ring32(struct bwi_softc *); static void bwi_free_txstats32(struct bwi_softc *); static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int); static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *, int, bus_addr_t, int); static int bwi_rxeof32(struct bwi_softc *); static void bwi_start_tx32(struct bwi_softc *, uint32_t, int); static void bwi_txeof_status32(struct bwi_softc *); static int bwi_init_tx_ring64(struct bwi_softc *, int); static int bwi_init_rx_ring64(struct bwi_softc *); static int bwi_init_txstats64(struct bwi_softc *); static void bwi_free_tx_ring64(struct bwi_softc *, int); static void bwi_free_rx_ring64(struct bwi_softc *); static void bwi_free_txstats64(struct bwi_softc *); static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int); static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *, int, bus_addr_t, int); static int bwi_rxeof64(struct bwi_softc *); static void bwi_start_tx64(struct bwi_softc *, uint32_t, int); static void bwi_txeof_status64(struct bwi_softc *); static int bwi_rxeof(struct bwi_softc *, int); static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int); static void bwi_txeof(struct bwi_softc *); static void bwi_txeof_status(struct bwi_softc *, int); static void bwi_enable_intrs(struct bwi_softc *, uint32_t); static void bwi_disable_intrs(struct bwi_softc *, uint32_t); static int bwi_dma_alloc(struct bwi_softc *); static void bwi_dma_free(struct bwi_softc *); static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t, struct bwi_ring_data *, bus_size_t, uint32_t); static int bwi_dma_mbuf_create(struct bwi_softc *); static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int); static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t); static void bwi_dma_txstats_free(struct bwi_softc *); static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int); static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int, bus_size_t, int); static void bwi_power_on(struct bwi_softc *, int); static int bwi_power_off(struct bwi_softc *, int); static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode); static int bwi_set_clock_delay(struct bwi_softc *); static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *); static int bwi_get_pwron_delay(struct bwi_softc *sc); static void bwi_set_addr_filter(struct bwi_softc *, uint16_t, const uint8_t *); static void bwi_set_bssid(struct bwi_softc *, const uint8_t *); static void bwi_get_card_flags(struct bwi_softc *); static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *); static int bwi_bus_attach(struct bwi_softc *); static int bwi_bbp_attach(struct bwi_softc *); static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode); static void bwi_bbp_power_off(struct bwi_softc *); static const char *bwi_regwin_name(const struct bwi_regwin *); static uint32_t bwi_regwin_disable_bits(struct bwi_softc *); static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *); static int bwi_regwin_select(struct bwi_softc *, int); static void bwi_led_attach(struct bwi_softc *); static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state); static void bwi_led_event(struct bwi_softc *, int); static void bwi_led_blink_start(struct bwi_softc *, int, int); static void bwi_led_blink_next(void *); static void bwi_led_blink_end(void *); static const struct { uint16_t did_min; uint16_t did_max; uint16_t bbp_id; } bwi_bbpid_map[] = { { 0x4301, 0x4301, 0x4301 }, { 0x4305, 0x4307, 0x4307 }, { 0x4402, 0x4403, 0x4402 }, { 0x4610, 0x4615, 0x4610 }, { 0x4710, 0x4715, 0x4710 }, { 0x4720, 0x4725, 0x4309 } }; static const struct { uint16_t bbp_id; int nregwin; } bwi_regwin_count[] = { { 0x4301, 5 }, { 0x4306, 6 }, { 0x4307, 5 }, { 0x4310, 8 }, { 0x4401, 3 }, { 0x4402, 3 }, { 0x4610, 9 }, { 0x4704, 9 }, { 0x4710, 9 }, { 0x5365, 7 } }; #define CLKSRC(src) \ [BWI_CLKSRC_ ## src] = { \ .freq_min = BWI_CLKSRC_ ##src## _FMIN, \ .freq_max = BWI_CLKSRC_ ##src## _FMAX \ } static const struct { u_int freq_min; u_int freq_max; } bwi_clkfreq[BWI_CLKSRC_MAX] = { CLKSRC(LP_OSC), CLKSRC(CS_OSC), CLKSRC(PCI) }; #undef CLKSRC #define VENDOR_LED_ACT(vendor) \ { \ .vid = PCI_VENDOR_##vendor, \ .led_act = { BWI_VENDOR_LED_ACT_##vendor } \ } static const struct { #define PCI_VENDOR_COMPAQ 0x0e11 #define PCI_VENDOR_LINKSYS 0x1737 uint16_t vid; uint8_t led_act[BWI_LED_MAX]; } bwi_vendor_led_act[] = { VENDOR_LED_ACT(COMPAQ), VENDOR_LED_ACT(LINKSYS) #undef PCI_VENDOR_LINKSYS #undef PCI_VENDOR_COMPAQ }; static const uint8_t bwi_default_led_act[BWI_LED_MAX] = { BWI_VENDOR_LED_ACT_DEFAULT }; #undef VENDOR_LED_ACT static const struct { int on_dur; int off_dur; } bwi_led_duration[109] = { [0] = { 400, 100 }, [2] = { 150, 75 }, [4] = { 90, 45 }, [11] = { 66, 34 }, [12] = { 53, 26 }, [18] = { 42, 21 }, [22] = { 35, 17 }, [24] = { 32, 16 }, [36] = { 21, 10 }, [48] = { 16, 8 }, [72] = { 11, 5 }, [96] = { 9, 4 }, [108] = { 7, 3 } }; #ifdef BWI_DEBUG #ifdef BWI_DEBUG_VERBOSE static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER; #else static uint32_t bwi_debug; #endif TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug); #endif /* BWI_DEBUG */ static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN]; uint16_t bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs) { return CSR_READ_2(sc, ofs + BWI_SPROM_START); } static __inline void bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array, int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, int tx) { struct bwi_desc32 *desc = &desc_array[desc_idx]; uint32_t ctrl, addr, addr_hi, addr_lo; addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK); addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK); addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) | __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK); ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) | __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK); if (desc_idx == ndesc - 1) ctrl |= BWI_DESC32_C_EOR; if (tx) { /* XXX */ ctrl |= BWI_DESC32_C_FRAME_START | BWI_DESC32_C_FRAME_END | BWI_DESC32_C_INTR; } desc->addr = htole32(addr); desc->ctrl = htole32(ctrl); } int bwi_attach(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; device_t dev = sc->sc_dev; struct bwi_mac *mac; struct bwi_phy *phy; int i, error; BWI_LOCK_INIT(sc); /* * Initialize taskq and various tasks */ sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)); TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc); callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* * Initialize sysctl variables */ sc->sc_fw_version = BWI_FW_VERSION3; sc->sc_led_idle = (2350 * hz) / 1000; sc->sc_led_ticks = ticks - sc->sc_led_idle; sc->sc_led_blink = 1; sc->sc_txpwr_calib = 1; #ifdef BWI_DEBUG sc->sc_debug = bwi_debug; #endif bwi_power_on(sc, 1); error = bwi_bbp_attach(sc); if (error) goto fail; error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); if (error) goto fail; if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) { error = bwi_set_clock_delay(sc); if (error) goto fail; error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST); if (error) goto fail; error = bwi_get_pwron_delay(sc); if (error) goto fail; } error = bwi_bus_attach(sc); if (error) goto fail; bwi_get_card_flags(sc); bwi_led_attach(sc); for (i = 0; i < sc->sc_nmac; ++i) { struct bwi_regwin *old; mac = &sc->sc_mac[i]; error = bwi_regwin_switch(sc, &mac->mac_regwin, &old); if (error) goto fail; error = bwi_mac_lateattach(mac); if (error) goto fail; error = bwi_regwin_switch(sc, old, NULL); if (error) goto fail; } /* * XXX First MAC is known to exist * TODO2 */ mac = &sc->sc_mac[0]; phy = &mac->mac_phy; bwi_bbp_power_off(sc); error = bwi_dma_alloc(sc); if (error) goto fail; error = bwi_mac_fw_alloc(mac); if (error) goto fail; callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0); /* * Setup ratesets, phytype, channels and get MAC address */ if (phy->phy_mode == IEEE80211_MODE_11B || phy->phy_mode == IEEE80211_MODE_11G) { if (phy->phy_mode == IEEE80211_MODE_11B) { ic->ic_phytype = IEEE80211_T_DS; } else { ic->ic_phytype = IEEE80211_T_OFDM; } bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr); if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr); if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { device_printf(dev, "invalid MAC address: %6D\n", ic->ic_macaddr, ":"); } } } else if (phy->phy_mode == IEEE80211_MODE_11A) { /* TODO:11A */ error = ENXIO; goto fail; } else { panic("unknown phymode %d\n", phy->phy_mode); } /* Get locale */ sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO), BWI_SPROM_CARD_INFO_LOCALE); DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale); /* XXX use locale */ ic->ic_softc = sc; bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); ic->ic_name = device_get_nameunit(dev); ic->ic_caps = IEEE80211_C_STA | IEEE80211_C_SHSLOT | IEEE80211_C_SHPREAMBLE | IEEE80211_C_WPA | IEEE80211_C_BGSCAN | IEEE80211_C_MONITOR; ic->ic_opmode = IEEE80211_M_STA; ieee80211_ifattach(ic); ic->ic_headroom = sizeof(struct bwi_txbuf_hdr); /* override default methods */ ic->ic_vap_create = bwi_vap_create; ic->ic_vap_delete = bwi_vap_delete; ic->ic_raw_xmit = bwi_raw_xmit; ic->ic_updateslot = bwi_updateslot; ic->ic_scan_start = bwi_scan_start; ic->ic_scan_end = bwi_scan_end; ic->ic_getradiocaps = bwi_getradiocaps; ic->ic_set_channel = bwi_set_channel; ic->ic_transmit = bwi_transmit; ic->ic_parent = bwi_parent; sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan); ieee80211_radiotap_attach(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), BWI_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), BWI_RX_RADIOTAP_PRESENT); /* * Add sysctl nodes */ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0, "Firmware version"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0, "# ticks before LED enters idle state"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0, "Allow LED to blink"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0, "Enable software TX power calibration"); #ifdef BWI_DEBUG SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); #endif if (bootverbose) ieee80211_announce(ic); return (0); fail: BWI_LOCK_DESTROY(sc); return (error); } int bwi_detach(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int i; bwi_stop(sc, 1); callout_drain(&sc->sc_led_blink_ch); callout_drain(&sc->sc_calib_ch); callout_drain(&sc->sc_watchdog_timer); ieee80211_ifdetach(ic); for (i = 0; i < sc->sc_nmac; ++i) bwi_mac_detach(&sc->sc_mac[i]); bwi_dma_free(sc); taskqueue_free(sc->sc_tq); mbufq_drain(&sc->sc_snd); BWI_LOCK_DESTROY(sc); return (0); } static struct ieee80211vap * bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct bwi_vap *bvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &bvp->bv_vap; /* enable s/w bmiss handling for sta mode */ ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid); /* override default methods */ bvp->bv_newstate = vap->iv_newstate; vap->iv_newstate = bwi_newstate; #if 0 vap->iv_update_beacon = bwi_beacon_update; #endif ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void bwi_vap_delete(struct ieee80211vap *vap) { struct bwi_vap *bvp = BWI_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(bvp, M_80211_VAP); } void bwi_suspend(struct bwi_softc *sc) { bwi_stop(sc, 1); } void bwi_resume(struct bwi_softc *sc) { if (sc->sc_ic.ic_nrunning > 0) bwi_init(sc); } int bwi_shutdown(struct bwi_softc *sc) { bwi_stop(sc, 1); return 0; } static void bwi_power_on(struct bwi_softc *sc, int with_pll) { uint32_t gpio_in, gpio_out, gpio_en; uint16_t status; gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); if (gpio_in & BWI_PCIM_GPIO_PWR_ON) goto back; gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); gpio_out |= BWI_PCIM_GPIO_PWR_ON; gpio_en |= BWI_PCIM_GPIO_PWR_ON; if (with_pll) { /* Turn off PLL first */ gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; } pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); DELAY(1000); if (with_pll) { /* Turn on PLL */ gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF; pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); DELAY(5000); } back: /* Clear "Signaled Target Abort" */ status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); status &= ~PCIM_STATUS_STABORT; pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); } static int bwi_power_off(struct bwi_softc *sc, int with_pll) { uint32_t gpio_out, gpio_en; pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */ gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); gpio_out &= ~BWI_PCIM_GPIO_PWR_ON; gpio_en |= BWI_PCIM_GPIO_PWR_ON; if (with_pll) { gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; } pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); return 0; } int bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw, struct bwi_regwin **old_rw) { int error; if (old_rw != NULL) *old_rw = NULL; if (!BWI_REGWIN_EXIST(rw)) return EINVAL; if (sc->sc_cur_regwin != rw) { error = bwi_regwin_select(sc, rw->rw_id); if (error) { device_printf(sc->sc_dev, "can't select regwin %d\n", rw->rw_id); return error; } } if (old_rw != NULL) *old_rw = sc->sc_cur_regwin; sc->sc_cur_regwin = rw; return 0; } static int bwi_regwin_select(struct bwi_softc *sc, int id) { uint32_t win = BWI_PCIM_REGWIN(id); int i; #define RETRY_MAX 50 for (i = 0; i < RETRY_MAX; ++i) { pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4); if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win) return 0; DELAY(10); } #undef RETRY_MAX return ENXIO; } static void bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev) { uint32_t val; val = CSR_READ_4(sc, BWI_ID_HI); *type = BWI_ID_HI_REGWIN_TYPE(val); *rev = BWI_ID_HI_REGWIN_REV(val); DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, " "vendor 0x%04x\n", *type, *rev, __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK)); } static int bwi_bbp_attach(struct bwi_softc *sc) { uint16_t bbp_id, rw_type; uint8_t rw_rev; uint32_t info; int error, nregwin, i; /* * Get 0th regwin information * NOTE: 0th regwin should exist */ error = bwi_regwin_select(sc, 0); if (error) { device_printf(sc->sc_dev, "can't select regwin 0\n"); return error; } bwi_regwin_info(sc, &rw_type, &rw_rev); /* * Find out BBP id */ bbp_id = 0; info = 0; if (rw_type == BWI_REGWIN_T_COM) { info = CSR_READ_4(sc, BWI_INFO); bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK); BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev); sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY); } else { for (i = 0; i < nitems(bwi_bbpid_map); ++i) { if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min && sc->sc_pci_did <= bwi_bbpid_map[i].did_max) { bbp_id = bwi_bbpid_map[i].bbp_id; break; } } if (bbp_id == 0) { device_printf(sc->sc_dev, "no BBP id for device id " "0x%04x\n", sc->sc_pci_did); return ENXIO; } info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) | __SHIFTIN(0, BWI_INFO_BBPPKG_MASK); } /* * Find out number of regwins */ nregwin = 0; if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) { nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK); } else { for (i = 0; i < nitems(bwi_regwin_count); ++i) { if (bwi_regwin_count[i].bbp_id == bbp_id) { nregwin = bwi_regwin_count[i].nregwin; break; } } if (nregwin == 0) { device_printf(sc->sc_dev, "no number of win for " "BBP id 0x%04x\n", bbp_id); return ENXIO; } } /* Record BBP id/rev for later using */ sc->sc_bbp_id = bbp_id; sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK); sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK); device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n", sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg); DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n", nregwin, sc->sc_cap); /* * Create rest of the regwins */ /* Don't re-create common regwin, if it is already created */ i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0; for (; i < nregwin; ++i) { /* * Get regwin information */ error = bwi_regwin_select(sc, i); if (error) { device_printf(sc->sc_dev, "can't select regwin %d\n", i); return error; } bwi_regwin_info(sc, &rw_type, &rw_rev); /* * Try attach: * 1) Bus (PCI/PCIE) regwin * 2) MAC regwin * Ignore rest types of regwin */ if (rw_type == BWI_REGWIN_T_BUSPCI || rw_type == BWI_REGWIN_T_BUSPCIE) { if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { device_printf(sc->sc_dev, "bus regwin already exists\n"); } else { BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i, rw_type, rw_rev); } } else if (rw_type == BWI_REGWIN_T_MAC) { /* XXX ignore return value */ bwi_mac_attach(sc, i, rw_rev); } } /* At least one MAC shold exist */ if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) { device_printf(sc->sc_dev, "no MAC was found\n"); return ENXIO; } KASSERT(sc->sc_nmac > 0, ("no mac's")); /* Bus regwin must exist */ if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { device_printf(sc->sc_dev, "no bus regwin was found\n"); return ENXIO; } /* Start with first MAC */ error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL); if (error) return error; return 0; } int bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac) { struct bwi_regwin *old, *bus; uint32_t val; int error; bus = &sc->sc_bus_regwin; KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin")); /* * Tell bus to generate requested interrupts */ if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) { /* * NOTE: Read BWI_FLAGS from MAC regwin */ val = CSR_READ_4(sc, BWI_FLAGS); error = bwi_regwin_switch(sc, bus, &old); if (error) return error; CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK)); } else { uint32_t mac_mask; mac_mask = 1 << mac->mac_id; error = bwi_regwin_switch(sc, bus, &old); if (error) return error; val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4); val |= mac_mask << 8; pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4); } if (sc->sc_flags & BWI_F_BUS_INITED) goto back; if (bus->rw_type == BWI_REGWIN_T_BUSPCI) { /* * Enable prefetch and burst */ CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST); if (bus->rw_rev < 5) { struct bwi_regwin *com = &sc->sc_com_regwin; /* * Configure timeouts for bus operation */ /* * Set service timeout and request timeout */ CSR_SETBITS_4(sc, BWI_CONF_LO, __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) | __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK)); /* * If there is common regwin, we switch to that regwin * and switch back to bus regwin once we have done. */ if (BWI_REGWIN_EXIST(com)) { error = bwi_regwin_switch(sc, com, NULL); if (error) return error; } /* Let bus know what we have changed */ CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC); CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */ CSR_WRITE_4(sc, BWI_BUS_DATA, 0); CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */ if (BWI_REGWIN_EXIST(com)) { error = bwi_regwin_switch(sc, bus, NULL); if (error) return error; } } else if (bus->rw_rev >= 11) { /* * Enable memory read multiple */ CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM); } } else { /* TODO:PCIE */ } sc->sc_flags |= BWI_F_BUS_INITED; back: return bwi_regwin_switch(sc, old, NULL); } static void bwi_get_card_flags(struct bwi_softc *sc) { #define PCI_VENDOR_APPLE 0x106b #define PCI_VENDOR_DELL 0x1028 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS); if (sc->sc_card_flags == 0xffff) sc->sc_card_flags = 0; if (sc->sc_pci_subvid == PCI_VENDOR_DELL && sc->sc_bbp_id == BWI_BBPID_BCM4301 && sc->sc_pci_revid == 0x74) sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST; if (sc->sc_pci_subvid == PCI_VENDOR_APPLE && sc->sc_pci_subdid == 0x4e && /* XXX */ sc->sc_pci_revid > 0x40) sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9; DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags); #undef PCI_VENDOR_DELL #undef PCI_VENDOR_APPLE } static void bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr) { int i; for (i = 0; i < 3; ++i) { *((uint16_t *)eaddr + i) = htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i)); } } static void bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq) { struct bwi_regwin *com; uint32_t val; u_int div; int src; bzero(freq, sizeof(*freq)); com = &sc->sc_com_regwin; KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist")); KASSERT(sc->sc_cur_regwin == com, ("wrong regwin")); KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode")); /* * Calculate clock frequency */ src = -1; div = 0; if (com->rw_rev < 6) { val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); if (val & BWI_PCIM_GPIO_OUT_CLKSRC) { src = BWI_CLKSRC_PCI; div = 64; } else { src = BWI_CLKSRC_CS_OSC; div = 32; } } else if (com->rw_rev < 10) { val = CSR_READ_4(sc, BWI_CLOCK_CTRL); src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC); if (src == BWI_CLKSRC_LP_OSC) { div = 1; } else { div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2; /* Unknown source */ if (src >= BWI_CLKSRC_MAX) src = BWI_CLKSRC_CS_OSC; } } else { val = CSR_READ_4(sc, BWI_CLOCK_INFO); src = BWI_CLKSRC_CS_OSC; div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2; } KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src)); KASSERT(div != 0, ("div zero")); DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n", src == BWI_CLKSRC_PCI ? "PCI" : (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC")); freq->clkfreq_min = bwi_clkfreq[src].freq_min / div; freq->clkfreq_max = bwi_clkfreq[src].freq_max / div; DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n", freq->clkfreq_min, freq->clkfreq_max); } static int bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) { struct bwi_regwin *old, *com; uint32_t clk_ctrl, clk_src; int error, pwr_off = 0; com = &sc->sc_com_regwin; if (!BWI_REGWIN_EXIST(com)) return 0; if (com->rw_rev >= 10 || com->rw_rev < 6) return 0; /* * For common regwin whose rev is [6, 10), the chip * must be capable to change clock mode. */ if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; if (clk_mode == BWI_CLOCK_MODE_FAST) bwi_power_on(sc, 0); /* Don't turn on PLL */ clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL); clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC); switch (clk_mode) { case BWI_CLOCK_MODE_FAST: clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW; clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL; break; case BWI_CLOCK_MODE_SLOW: clk_ctrl |= BWI_CLOCK_CTRL_SLOW; break; case BWI_CLOCK_MODE_DYN: clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW | BWI_CLOCK_CTRL_IGNPLL | BWI_CLOCK_CTRL_NODYN); if (clk_src != BWI_CLKSRC_CS_OSC) { clk_ctrl |= BWI_CLOCK_CTRL_NODYN; pwr_off = 1; } break; } CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl); if (pwr_off) bwi_power_off(sc, 0); /* Leave PLL as it is */ return bwi_regwin_switch(sc, old, NULL); } static int bwi_set_clock_delay(struct bwi_softc *sc) { struct bwi_regwin *old, *com; int error; com = &sc->sc_com_regwin; if (!BWI_REGWIN_EXIST(com)) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; if (sc->sc_bbp_id == BWI_BBPID_BCM4321) { if (sc->sc_bbp_rev == 0) CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0); else if (sc->sc_bbp_rev == 1) CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1); } if (sc->sc_cap & BWI_CAP_CLKMODE) { if (com->rw_rev >= 10) { CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000); } else { struct bwi_clock_freq freq; bwi_get_clock_freq(sc, &freq); CSR_WRITE_4(sc, BWI_PLL_ON_DELAY, howmany(freq.clkfreq_max * 150, 1000000)); CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY, howmany(freq.clkfreq_max * 15, 1000000)); } } return bwi_regwin_switch(sc, old, NULL); } static void bwi_init(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; BWI_LOCK(sc); bwi_init_statechg(sc, 1); BWI_UNLOCK(sc); if (sc->sc_flags & BWI_F_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void bwi_init_statechg(struct bwi_softc *sc, int statechg) { struct bwi_mac *mac; int error; BWI_ASSERT_LOCKED(sc); bwi_stop_locked(sc, statechg); bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); /* TODO: 2 MAC */ mac = &sc->sc_mac[0]; error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL); if (error) { device_printf(sc->sc_dev, "%s: error %d on regwin switch\n", __func__, error); goto bad; } error = bwi_mac_init(mac); if (error) { device_printf(sc->sc_dev, "%s: error %d on MAC init\n", __func__, error); goto bad; } bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN); bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */ bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr); bwi_mac_reset_hwkeys(mac); if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) { int i; #define NRETRY 1000 /* * Drain any possible pending TX status */ for (i = 0; i < NRETRY; ++i) { if ((CSR_READ_4(sc, BWI_TXSTATUS0) & BWI_TXSTATUS0_VALID) == 0) break; CSR_READ_4(sc, BWI_TXSTATUS1); } if (i == NRETRY) device_printf(sc->sc_dev, "%s: can't drain TX status\n", __func__); #undef NRETRY } if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G) bwi_mac_updateslot(mac, 1); /* Start MAC */ error = bwi_mac_start(mac); if (error) { device_printf(sc->sc_dev, "%s: error %d starting MAC\n", __func__, error); goto bad; } /* Clear stop flag before enabling interrupt */ sc->sc_flags &= ~BWI_F_STOP; sc->sc_flags |= BWI_F_RUNNING; callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); /* Enable intrs */ bwi_enable_intrs(sc, BWI_INIT_INTRS); return; bad: bwi_stop_locked(sc, 1); } static void bwi_parent(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; int startall = 0; BWI_LOCK(sc); if (ic->ic_nrunning > 0) { struct bwi_mac *mac; int promisc = -1; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) { promisc = 1; sc->sc_flags |= BWI_F_PROMISC; } else if (ic->ic_promisc == 0 && (sc->sc_flags & BWI_F_PROMISC) != 0) { promisc = 0; sc->sc_flags &= ~BWI_F_PROMISC; } if (promisc >= 0) bwi_mac_set_promisc(mac, promisc); } if (ic->ic_nrunning > 0) { if ((sc->sc_flags & BWI_F_RUNNING) == 0) { bwi_init_statechg(sc, 1); startall = 1; } } else if (sc->sc_flags & BWI_F_RUNNING) bwi_stop_locked(sc, 1); BWI_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int bwi_transmit(struct ieee80211com *ic, struct mbuf *m) { struct bwi_softc *sc = ic->ic_softc; int error; BWI_LOCK(sc); if ((sc->sc_flags & BWI_F_RUNNING) == 0) { BWI_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { BWI_UNLOCK(sc); return (error); } bwi_start_locked(sc); BWI_UNLOCK(sc); return (0); } static void bwi_start_locked(struct bwi_softc *sc) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; int trans, idx; BWI_ASSERT_LOCKED(sc); trans = 0; idx = tbd->tbd_idx; while (tbd->tbd_buf[idx].tb_mbuf == NULL && tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 && ieee80211_crypto_encap(ni, m) == NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); m_freem(m); continue; } if (bwi_encap(sc, idx, m, ni) != 0) { /* 'm' is freed in bwi_encap() if we reach here */ if (ni != NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } else counter_u64_add(sc->sc_ic.ic_oerrors, 1); continue; } trans = 1; tbd->tbd_used++; idx = (idx + 1) % BWI_TX_NDESC; } tbd->tbd_idx = idx; if (trans) sc->sc_tx_timer = 5; } static int bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct bwi_softc *sc = ic->ic_softc; /* XXX wme? */ struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; int idx, error; if ((sc->sc_flags & BWI_F_RUNNING) == 0) { m_freem(m); return ENETDOWN; } BWI_LOCK(sc); idx = tbd->tbd_idx; KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx)); if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = bwi_encap(sc, idx, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = bwi_encap_raw(sc, idx, m, ni, params); } if (error == 0) { tbd->tbd_used++; tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC; sc->sc_tx_timer = 5; } BWI_UNLOCK(sc); return error; } static void bwi_watchdog(void *arg) { struct bwi_softc *sc; sc = arg; BWI_ASSERT_LOCKED(sc); if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "watchdog timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); } callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); } static void bwi_stop(struct bwi_softc *sc, int statechg) { BWI_LOCK(sc); bwi_stop_locked(sc, statechg); BWI_UNLOCK(sc); } static void bwi_stop_locked(struct bwi_softc *sc, int statechg) { struct bwi_mac *mac; int i, error, pwr_off = 0; BWI_ASSERT_LOCKED(sc); callout_stop(&sc->sc_calib_ch); callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; sc->sc_flags |= BWI_F_STOP; if (sc->sc_flags & BWI_F_RUNNING) { KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_disable_intrs(sc, BWI_ALL_INTRS); CSR_READ_4(sc, BWI_MAC_INTR_MASK); bwi_mac_stop(mac); } for (i = 0; i < sc->sc_nmac; ++i) { struct bwi_regwin *old_rw; mac = &sc->sc_mac[i]; if ((mac->mac_flags & BWI_MAC_F_INITED) == 0) continue; error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw); if (error) continue; bwi_mac_shutdown(mac); pwr_off = 1; bwi_regwin_switch(sc, old_rw, NULL); } if (pwr_off) bwi_bbp_power_off(sc); sc->sc_tx_timer = 0; callout_stop(&sc->sc_watchdog_timer); sc->sc_flags &= ~BWI_F_RUNNING; } void bwi_intr(void *xsc) { struct bwi_softc *sc = xsc; struct bwi_mac *mac; uint32_t intr_status; uint32_t txrx_intr_status[BWI_TXRX_NRING]; int i, txrx_error, tx = 0, rx_data = -1; BWI_LOCK(sc); if ((sc->sc_flags & BWI_F_RUNNING) == 0 || (sc->sc_flags & BWI_F_STOP)) { BWI_UNLOCK(sc); return; } /* * Get interrupt status */ intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS); if (intr_status == 0xffffffff) { /* Not for us */ BWI_UNLOCK(sc); return; } DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status); intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK); if (intr_status == 0) { /* Nothing is interesting */ BWI_UNLOCK(sc); return; } KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; txrx_error = 0; DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr"); for (i = 0; i < BWI_TXRX_NRING; ++i) { uint32_t mask; if (BWI_TXRX_IS_RX(i)) mask = BWI_TXRX_RX_INTRS; else mask = BWI_TXRX_TX_INTRS; txrx_intr_status[i] = CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask; _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x", i, txrx_intr_status[i]); if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) { device_printf(sc->sc_dev, "%s: intr fatal TX/RX (%d) error 0x%08x\n", __func__, i, txrx_intr_status[i]); txrx_error = 1; } } _DPRINTF(sc, BWI_DBG_INTR, "%s\n", ""); /* * Acknowledge interrupt */ CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status); for (i = 0; i < BWI_TXRX_NRING; ++i) CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]); /* Disable all interrupts */ bwi_disable_intrs(sc, BWI_ALL_INTRS); /* * http://bcm-specs.sipsolutions.net/Interrupts * Says for this bit (0x800): * "Fatal Error * * We got this one while testing things when by accident the * template ram wasn't set to big endian when it should have * been after writing the initial values. It keeps on being * triggered, the only way to stop it seems to shut down the * chip." * * Suggesting that we should never get it and if we do we're not * feeding TX packets into the MAC correctly if we do... Apparently, * it is valid only on mac version 5 and higher, but I couldn't * find a reference for that... Since I see them from time to time * on my card, this suggests an error in the tx path still... */ if (intr_status & BWI_INTR_PHY_TXERR) { if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) { device_printf(sc->sc_dev, "%s: intr PHY TX error\n", __func__); taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); BWI_UNLOCK(sc); return; } } if (txrx_error) { /* TODO: reset device */ } if (intr_status & BWI_INTR_TBTT) bwi_mac_config_ps(mac); if (intr_status & BWI_INTR_EO_ATIM) device_printf(sc->sc_dev, "EO_ATIM\n"); if (intr_status & BWI_INTR_PMQ) { for (;;) { if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0) break; } CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2); } if (intr_status & BWI_INTR_NOISE) device_printf(sc->sc_dev, "intr noise\n"); if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) { rx_data = sc->sc_rxeof(sc); if (sc->sc_flags & BWI_F_STOP) { BWI_UNLOCK(sc); return; } } if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) { sc->sc_txeof_status(sc); tx = 1; } if (intr_status & BWI_INTR_TX_DONE) { bwi_txeof(sc); tx = 1; } /* Re-enable interrupts */ bwi_enable_intrs(sc, BWI_INIT_INTRS); if (sc->sc_blink_led != NULL && sc->sc_led_blink) { int evt = BWI_LED_EVENT_NONE; if (tx && rx_data > 0) { if (sc->sc_rx_rate > sc->sc_tx_rate) evt = BWI_LED_EVENT_RX; else evt = BWI_LED_EVENT_TX; } else if (tx) { evt = BWI_LED_EVENT_TX; } else if (rx_data > 0) { evt = BWI_LED_EVENT_RX; } else if (rx_data == 0) { evt = BWI_LED_EVENT_POLL; } if (evt != BWI_LED_EVENT_NONE) bwi_led_event(sc, evt); } BWI_UNLOCK(sc); } static void bwi_scan_start(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; BWI_LOCK(sc); /* Enable MAC beacon promiscuity */ CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); BWI_UNLOCK(sc); } static void bwi_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct bwi_softc *sc = ic->ic_softc; struct bwi_mac *mac; struct bwi_phy *phy; uint8_t bands[IEEE80211_MODE_BYTES]; /* * XXX First MAC is known to exist * TODO2 */ mac = &sc->sc_mac[0]; phy = &mac->mac_phy; memset(bands, 0, sizeof(bands)); switch (phy->phy_mode) { case IEEE80211_MODE_11G: setbit(bands, IEEE80211_MODE_11G); /* FALLTHROUGH */ case IEEE80211_MODE_11B: setbit(bands, IEEE80211_MODE_11B); break; case IEEE80211_MODE_11A: /* TODO:11A */ setbit(bands, IEEE80211_MODE_11A); device_printf(sc->sc_dev, "no 11a support\n"); return; default: panic("unknown phymode %d\n", phy->phy_mode); } ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); } static void bwi_set_channel(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; struct ieee80211_channel *c = ic->ic_curchan; struct bwi_mac *mac; BWI_LOCK(sc); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0); sc->sc_rates = ieee80211_get_ratetable(c); BWI_UNLOCK(sc); } static void bwi_scan_end(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; BWI_LOCK(sc); CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); BWI_UNLOCK(sc); } static int bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct bwi_vap *bvp = BWI_VAP(vap); struct ieee80211com *ic= vap->iv_ic; struct bwi_softc *sc = ic->ic_softc; enum ieee80211_state ostate = vap->iv_state; struct bwi_mac *mac; int error; BWI_LOCK(sc); callout_stop(&sc->sc_calib_ch); if (nstate == IEEE80211_S_INIT) sc->sc_txpwrcb_type = BWI_TXPWR_INIT; bwi_led_newstate(sc, nstate); error = bvp->bv_newstate(vap, nstate, arg); if (error != 0) goto back; /* * Clear the BSSID when we stop a STA */ if (vap->iv_opmode == IEEE80211_M_STA) { if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { /* * Clear out the BSSID. If we reassociate to * the same AP, this will reinialize things * correctly... */ if (ic->ic_opmode == IEEE80211_M_STA && !(sc->sc_flags & BWI_F_STOP)) bwi_set_bssid(sc, bwi_zero_addr); } } if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Nothing to do */ } else if (nstate == IEEE80211_S_RUN) { bwi_set_bssid(sc, vap->iv_bss->ni_bssid); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; /* Initial TX power calibration */ bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT); #ifdef notyet sc->sc_txpwrcb_type = BWI_TXPWR_FORCE; #else sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; #endif callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc); } back: BWI_UNLOCK(sc); return error; } static int bwi_dma_alloc(struct bwi_softc *sc) { int error, i, has_txstats; bus_addr_t lowaddr = 0; bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0; uint32_t txrx_ctrl_step = 0; has_txstats = 0; for (i = 0; i < sc->sc_nmac; ++i) { if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) { has_txstats = 1; break; } } switch (sc->sc_bus_space) { case BWI_BUS_SPACE_30BIT: case BWI_BUS_SPACE_32BIT: if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) lowaddr = BWI_BUS_SPACE_MAXADDR; else lowaddr = BUS_SPACE_MAXADDR_32BIT; desc_sz = sizeof(struct bwi_desc32); txrx_ctrl_step = 0x20; sc->sc_init_tx_ring = bwi_init_tx_ring32; sc->sc_free_tx_ring = bwi_free_tx_ring32; sc->sc_init_rx_ring = bwi_init_rx_ring32; sc->sc_free_rx_ring = bwi_free_rx_ring32; sc->sc_setup_rxdesc = bwi_setup_rx_desc32; sc->sc_setup_txdesc = bwi_setup_tx_desc32; sc->sc_rxeof = bwi_rxeof32; sc->sc_start_tx = bwi_start_tx32; if (has_txstats) { sc->sc_init_txstats = bwi_init_txstats32; sc->sc_free_txstats = bwi_free_txstats32; sc->sc_txeof_status = bwi_txeof_status32; } break; case BWI_BUS_SPACE_64BIT: lowaddr = BUS_SPACE_MAXADDR; /* XXX */ desc_sz = sizeof(struct bwi_desc64); txrx_ctrl_step = 0x40; sc->sc_init_tx_ring = bwi_init_tx_ring64; sc->sc_free_tx_ring = bwi_free_tx_ring64; sc->sc_init_rx_ring = bwi_init_rx_ring64; sc->sc_free_rx_ring = bwi_free_rx_ring64; sc->sc_setup_rxdesc = bwi_setup_rx_desc64; sc->sc_setup_txdesc = bwi_setup_tx_desc64; sc->sc_rxeof = bwi_rxeof64; sc->sc_start_tx = bwi_start_tx64; if (has_txstats) { sc->sc_init_txstats = bwi_init_txstats64; sc->sc_free_txstats = bwi_free_txstats64; sc->sc_txeof_status = bwi_txeof_status64; } break; } KASSERT(lowaddr != 0, ("lowaddr zero")); KASSERT(desc_sz != 0, ("desc_sz zero")); KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero")); tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN); rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN); /* * Create top level DMA tag */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ BWI_ALIGN, 0, /* alignment, bounds */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sc_parent_dtag); if (error) { device_printf(sc->sc_dev, "can't create parent DMA tag\n"); return error; } #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step) /* * Create TX ring DMA stuffs */ error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, tx_ring_sz, 1, tx_ring_sz, 0, NULL, NULL, &sc->sc_txring_dtag); if (error) { device_printf(sc->sc_dev, "can't create TX ring DMA tag\n"); return error; } for (i = 0; i < BWI_TX_NRING; ++i) { error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag, &sc->sc_tx_rdata[i], tx_ring_sz, TXRX_CTRL(i)); if (error) { device_printf(sc->sc_dev, "%dth TX ring " "DMA alloc failed\n", i); return error; } } /* * Create RX ring DMA stuffs */ error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rx_ring_sz, 1, rx_ring_sz, 0, NULL, NULL, &sc->sc_rxring_dtag); if (error) { device_printf(sc->sc_dev, "can't create RX ring DMA tag\n"); return error; } error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata, rx_ring_sz, TXRX_CTRL(0)); if (error) { device_printf(sc->sc_dev, "RX ring DMA alloc failed\n"); return error; } if (has_txstats) { error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz); if (error) { device_printf(sc->sc_dev, "TX stats DMA alloc failed\n"); return error; } } #undef TXRX_CTRL return bwi_dma_mbuf_create(sc); } static void bwi_dma_free(struct bwi_softc *sc) { if (sc->sc_txring_dtag != NULL) { int i; for (i = 0; i < BWI_TX_NRING; ++i) { struct bwi_ring_data *rd = &sc->sc_tx_rdata[i]; if (rd->rdata_desc != NULL) { bus_dmamap_unload(sc->sc_txring_dtag, rd->rdata_dmap); bus_dmamem_free(sc->sc_txring_dtag, rd->rdata_desc, rd->rdata_dmap); } } bus_dma_tag_destroy(sc->sc_txring_dtag); } if (sc->sc_rxring_dtag != NULL) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; if (rd->rdata_desc != NULL) { bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap); bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc, rd->rdata_dmap); } bus_dma_tag_destroy(sc->sc_rxring_dtag); } bwi_dma_txstats_free(sc); bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1); if (sc->sc_parent_dtag != NULL) bus_dma_tag_destroy(sc->sc_parent_dtag); } static int bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag, struct bwi_ring_data *rd, bus_size_t size, uint32_t txrx_ctrl) { int error; error = bus_dmamem_alloc(dtag, &rd->rdata_desc, BUS_DMA_WAITOK | BUS_DMA_ZERO, &rd->rdata_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate DMA mem\n"); return error; } error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size, bwi_dma_ring_addr, &rd->rdata_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load DMA mem\n"); bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap); rd->rdata_desc = NULL; return error; } rd->rdata_txrx_ctrl = txrx_ctrl; return 0; } static int bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base, bus_size_t desc_sz) { struct bwi_txstats_data *st; bus_size_t dma_size; int error; st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO); if (st == NULL) { device_printf(sc->sc_dev, "can't allocate txstats data\n"); return ENOMEM; } sc->sc_txstats = st; /* * Create TX stats descriptor DMA stuffs */ dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN); error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, dma_size, 1, dma_size, 0, NULL, NULL, &st->stats_ring_dtag); if (error) { device_printf(sc->sc_dev, "can't create txstats ring " "DMA tag\n"); return error; } error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO, &st->stats_ring_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate txstats ring " "DMA mem\n"); bus_dma_tag_destroy(st->stats_ring_dtag); st->stats_ring_dtag = NULL; return error; } error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap, st->stats_ring, dma_size, bwi_dma_ring_addr, &st->stats_ring_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n"); bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, st->stats_ring_dmap); bus_dma_tag_destroy(st->stats_ring_dtag); st->stats_ring_dtag = NULL; return error; } /* * Create TX stats DMA stuffs */ dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC, BWI_ALIGN); error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, dma_size, 1, dma_size, 0, NULL, NULL, &st->stats_dtag); if (error) { device_printf(sc->sc_dev, "can't create txstats DMA tag\n"); return error; } error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats, BUS_DMA_WAITOK | BUS_DMA_ZERO, &st->stats_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n"); bus_dma_tag_destroy(st->stats_dtag); st->stats_dtag = NULL; return error; } error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats, dma_size, bwi_dma_ring_addr, &st->stats_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load txstats DMA mem\n"); bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); bus_dma_tag_destroy(st->stats_dtag); st->stats_dtag = NULL; return error; } st->stats_ctrl_base = ctrl_base; return 0; } static void bwi_dma_txstats_free(struct bwi_softc *sc) { struct bwi_txstats_data *st; if (sc->sc_txstats == NULL) return; st = sc->sc_txstats; if (st->stats_ring_dtag != NULL) { bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap); bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, st->stats_ring_dmap); bus_dma_tag_destroy(st->stats_ring_dtag); } if (st->stats_dtag != NULL) { bus_dmamap_unload(st->stats_dtag, st->stats_dmap); bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); bus_dma_tag_destroy(st->stats_dtag); } free(st, M_DEVBUF); } static void bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) { KASSERT(nseg == 1, ("too many segments\n")); *((bus_addr_t *)arg) = seg->ds_addr; } static int bwi_dma_mbuf_create(struct bwi_softc *sc) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; int i, j, k, ntx, error; /* * Create TX/RX mbuf DMA tag */ error = bus_dma_tag_create(sc->sc_parent_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_buf_dtag); if (error) { device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); return error; } ntx = 0; /* * Create TX mbuf DMA map */ for (i = 0; i < BWI_TX_NRING; ++i) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; for (j = 0; j < BWI_TX_NDESC; ++j) { error = bus_dmamap_create(sc->sc_buf_dtag, 0, &tbd->tbd_buf[j].tb_dmap); if (error) { device_printf(sc->sc_dev, "can't create " "%dth tbd, %dth DMA map\n", i, j); ntx = i; for (k = 0; k < j; ++k) { bus_dmamap_destroy(sc->sc_buf_dtag, tbd->tbd_buf[k].tb_dmap); } goto fail; } } } ntx = BWI_TX_NRING; /* * Create RX mbuf DMA map and a spare DMA map */ error = bus_dmamap_create(sc->sc_buf_dtag, 0, &rbd->rbd_tmp_dmap); if (error) { device_printf(sc->sc_dev, "can't create spare RX buf DMA map\n"); goto fail; } for (j = 0; j < BWI_RX_NDESC; ++j) { error = bus_dmamap_create(sc->sc_buf_dtag, 0, &rbd->rbd_buf[j].rb_dmap); if (error) { device_printf(sc->sc_dev, "can't create %dth " "RX buf DMA map\n", j); for (k = 0; k < j; ++k) { bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_buf[j].rb_dmap); } bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); goto fail; } } return 0; fail: bwi_dma_mbuf_destroy(sc, ntx, 0); return error; } static void bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx) { int i, j; if (sc->sc_buf_dtag == NULL) return; for (i = 0; i < ntx; ++i) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; for (j = 0; j < BWI_TX_NDESC; ++j) { struct bwi_txbuf *tb = &tbd->tbd_buf[j]; if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); } if (tb->tb_ni != NULL) ieee80211_free_node(tb->tb_ni); bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap); } } if (nrx) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); for (j = 0; j < BWI_RX_NDESC; ++j) { struct bwi_rxbuf *rb = &rbd->rbd_buf[j]; if (rb->rb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); m_freem(rb->rb_mbuf); } bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap); } } bus_dma_tag_destroy(sc->sc_buf_dtag); sc->sc_buf_dtag = NULL; } static void bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs) { CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs); } static void bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs) { CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs); } static int bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx) { struct bwi_ring_data *rd; struct bwi_txbuf_data *tbd; uint32_t val, addr_hi, addr_lo; KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); rd = &sc->sc_tx_rdata[ring_idx]; tbd = &sc->sc_tx_bdata[ring_idx]; tbd->tbd_idx = 0; tbd->tbd_used = 0; bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, BWI_TXRX32_RINGINFO_FUNC_MASK); CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val); val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | BWI_TXRX32_CTRL_ENABLE; CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val); return 0; } static void bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base, bus_addr_t paddr, int hdr_size, int ndesc) { uint32_t val, addr_hi, addr_lo; addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, BWI_TXRX32_RINGINFO_FUNC_MASK); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val); val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) | __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | BWI_TXRX32_CTRL_ENABLE; CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, (ndesc - 1) * sizeof(struct bwi_desc32)); } static int bwi_init_rx_ring32(struct bwi_softc *sc) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; int i, error; sc->sc_rx_bdata.rbd_idx = 0; for (i = 0; i < BWI_RX_NDESC; ++i) { error = bwi_newbuf(sc, i, 1); if (error) { device_printf(sc->sc_dev, "can't allocate %dth RX buffer\n", i); return error; } } bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr, sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC); return 0; } static int bwi_init_txstats32(struct bwi_softc *sc) { struct bwi_txstats_data *st = sc->sc_txstats; bus_addr_t stats_paddr; int i; bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats)); bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE); st->stats_idx = 0; stats_paddr = st->stats_paddr; for (i = 0; i < BWI_TXSTATS_NDESC; ++i) { bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i, stats_paddr, sizeof(struct bwi_txstats), 0); stats_paddr += sizeof(struct bwi_txstats); } bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap, BUS_DMASYNC_PREWRITE); bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base, st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC); return 0; } static void bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, int buf_len) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx, paddr, buf_len, 0); } static void bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd, int buf_idx, bus_addr_t paddr, int buf_len) { KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx, paddr, buf_len, 1); } static int bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx) { /* TODO:64 */ return EOPNOTSUPP; } static int bwi_init_rx_ring64(struct bwi_softc *sc) { /* TODO:64 */ return EOPNOTSUPP; } static int bwi_init_txstats64(struct bwi_softc *sc) { /* TODO:64 */ return EOPNOTSUPP; } static void bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, int buf_len) { /* TODO:64 */ } static void bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd, int buf_idx, bus_addr_t paddr, int buf_len) { /* TODO:64 */ } static void bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsz __unused, int error) { if (!error) { KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); *((bus_addr_t *)arg) = seg->ds_addr; } } static int bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx]; struct bwi_rxbuf_hdr *hdr; bus_dmamap_t map; bus_addr_t paddr; struct mbuf *m; int error; KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { error = ENOBUFS; /* * If the NIC is up and running, we need to: * - Clear RX buffer's header. * - Restore RX descriptor settings. */ if (init) return error; else goto back; } m->m_len = m->m_pkthdr.len = MCLBYTES; /* * Try to load RX buf into temporary DMA map */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { m_freem(m); /* * See the comment above */ if (init) return error; else goto back; } if (!init) bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap); rxbuf->rb_mbuf = m; rxbuf->rb_paddr = paddr; /* * Swap RX buf's DMA map with the loaded temporary one */ map = rxbuf->rb_dmap; rxbuf->rb_dmap = rbd->rbd_tmp_dmap; rbd->rbd_tmp_dmap = map; back: /* * Clear RX buf header */ hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *); bzero(hdr, sizeof(*hdr)); bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE); /* * Setup RX buf descriptor */ sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr, rxbuf->rb_mbuf->m_len - sizeof(*hdr)); return error; } static void bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs, const uint8_t *addr) { int i; CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL, BWI_ADDR_FILTER_CTRL_SET | addr_ofs); for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) { uint16_t addr_val; addr_val = (uint16_t)addr[i * 2] | (((uint16_t)addr[(i * 2) + 1]) << 8); CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val); } } static int bwi_rxeof(struct bwi_softc *sc, int end_idx) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; struct ieee80211com *ic = &sc->sc_ic; int idx, rx_data = 0; idx = rbd->rbd_idx; while (idx != end_idx) { struct bwi_rxbuf *rb = &rbd->rbd_buf[idx]; struct bwi_rxbuf_hdr *hdr; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m; uint32_t plcp; uint16_t flags2; int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate; m = rb->rb_mbuf; bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap, BUS_DMASYNC_POSTREAD); if (bwi_newbuf(sc, idx, 0)) { counter_u64_add(ic->ic_ierrors, 1); goto next; } hdr = mtod(m, struct bwi_rxbuf_hdr *); flags2 = le16toh(hdr->rxh_flags2); hdr_extra = 0; if (flags2 & BWI_RXH_F2_TYPE2FRAME) hdr_extra = 2; wh_ofs = hdr_extra + 6; /* XXX magic number */ buflen = le16toh(hdr->rxh_buflen); if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) { device_printf(sc->sc_dev, "%s: zero length data, hdr_extra %d\n", __func__, hdr_extra); counter_u64_add(ic->ic_ierrors, 1); m_freem(m); goto next; } bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp)); rssi = bwi_calc_rssi(sc, hdr); noise = bwi_calc_noise(sc); m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr); m_adj(m, sizeof(*hdr) + wh_ofs); if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM) rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM); else rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK); /* RX radio tap */ if (ieee80211_radiotap_active(ic)) bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise); m_adj(m, -IEEE80211_CRC_LEN); BWI_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame_min *); ni = ieee80211_find_rxnode(ic, wh); if (ni != NULL) { type = ieee80211_input(ni, m, rssi - noise, noise); ieee80211_free_node(ni); } else type = ieee80211_input_all(ic, m, rssi - noise, noise); if (type == IEEE80211_FC0_TYPE_DATA) { rx_data = 1; sc->sc_rx_rate = rate; } BWI_LOCK(sc); next: idx = (idx + 1) % BWI_RX_NDESC; if (sc->sc_flags & BWI_F_STOP) { /* * Take the fast lane, don't do * any damage to softc */ return -1; } } rbd->rbd_idx = idx; bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); return rx_data; } static int bwi_rxeof32(struct bwi_softc *sc) { uint32_t val, rx_ctrl; int end_idx, rx_data; rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl; val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / sizeof(struct bwi_desc32); rx_data = bwi_rxeof(sc, end_idx); if (rx_data >= 0) { CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX, end_idx * sizeof(struct bwi_desc32)); } return rx_data; } static int bwi_rxeof64(struct bwi_softc *sc) { /* TODO:64 */ return 0; } static void bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl) { int i; CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0); #define NRETRY 10 for (i = 0; i < NRETRY; ++i) { uint32_t status; status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) == BWI_RX32_STATUS_STATE_DISABLED) break; DELAY(1000); } if (i == NRETRY) device_printf(sc->sc_dev, "reset rx ring timedout\n"); #undef NRETRY CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0); } static void bwi_free_txstats32(struct bwi_softc *sc) { bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base); } static void bwi_free_rx_ring32(struct bwi_softc *sc) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; int i; bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl); for (i = 0; i < BWI_RX_NDESC; ++i) { struct bwi_rxbuf *rb = &rbd->rbd_buf[i]; if (rb->rb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); m_freem(rb->rb_mbuf); rb->rb_mbuf = NULL; } } } static void bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx) { struct bwi_ring_data *rd; struct bwi_txbuf_data *tbd; uint32_t state, val; int i; KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); rd = &sc->sc_tx_rdata[ring_idx]; tbd = &sc->sc_tx_bdata[ring_idx]; #define NRETRY 10 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); if (state == BWI_TX32_STATUS_STATE_DISABLED || state == BWI_TX32_STATUS_STATE_IDLE || state == BWI_TX32_STATUS_STATE_STOPPED) break; DELAY(1000); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s: wait for TX ring(%d) stable timed out\n", __func__, ring_idx); } CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0); for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); if (state == BWI_TX32_STATUS_STATE_DISABLED) break; DELAY(1000); } if (i == NRETRY) device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n", __func__, ring_idx); #undef NRETRY DELAY(1000); CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0); for (i = 0; i < BWI_TX_NDESC; ++i) { struct bwi_txbuf *tb = &tbd->tbd_buf[i]; if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; } if (tb->tb_ni != NULL) { ieee80211_free_node(tb->tb_ni); tb->tb_ni = NULL; } } } static void bwi_free_txstats64(struct bwi_softc *sc) { /* TODO:64 */ } static void bwi_free_rx_ring64(struct bwi_softc *sc) { /* TODO:64 */ } static void bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx) { /* TODO:64 */ } /* XXX does not belong here */ #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0) #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5) static __inline void bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate) { uint32_t plcp; plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM), IEEE80211_OFDM_PLCP_RATE_MASK) | __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK); *plcp0 = htole32(plcp); } static __inline void bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len, uint8_t rate) { int len, service, pkt_bitlen; pkt_bitlen = pkt_len * NBBY; len = howmany(pkt_bitlen * 2, rate); service = IEEE80211_PLCP_SERVICE_LOCKED; if (rate == (11 * 2)) { int pkt_bitlen1; /* * PLCP service field needs to be adjusted, * if TX rate is 11Mbytes/s */ pkt_bitlen1 = len * 11; if (pkt_bitlen1 - pkt_bitlen >= NBBY) service |= IEEE80211_PLCP_SERVICE_LENEXT7; } plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK); plcp->i_service = service; plcp->i_length = htole16(len); /* NOTE: do NOT touch i_crc */ } static __inline void bwi_plcp_header(const struct ieee80211_rate_table *rt, void *plcp, int pkt_len, uint8_t rate) { enum ieee80211_phytype modtype; /* * Assume caller has zeroed 'plcp' */ modtype = ieee80211_rate2phytype(rt, rate); if (modtype == IEEE80211_T_OFDM) bwi_ofdm_plcp_header(plcp, pkt_len, rate); else if (modtype == IEEE80211_T_DS) bwi_ds_plcp_header(plcp, pkt_len, rate); else panic("unsupport modulation type %u\n", modtype); } static int bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; struct bwi_mac *mac; struct bwi_txbuf_hdr *hdr; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp = ni->ni_txparms; uint8_t rate, rate_fb; uint32_t mac_ctrl; uint16_t phy_ctrl; bus_addr_t paddr; int type, ismcast, pkt_len, error, rix; #if 0 const uint8_t *p; int i; #endif KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Get 802.11 frame len before prepending TX header */ pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* * Find TX rate */ if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) { rate = rate_fb = tp->mgmtrate; } else if (ismcast) { rate = rate_fb = tp->mcastrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = rate_fb = tp->ucastrate; } else { rix = ieee80211_ratectl_rate(ni, NULL, pkt_len); rate = ni->ni_txrate; if (rix > 0) { rate_fb = ni->ni_rates.rs_rates[rix-1] & IEEE80211_RATE_VAL; } else { rate_fb = rate; } } tb->tb_rate[0] = rate; tb->tb_rate[1] = rate_fb; sc->sc_tx_rate = rate; /* * TX radio tap */ if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS && (ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (1 * 2)) { sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; } sc->sc_tx_th.wt_rate = rate; ieee80211_radiotap_tx(vap, m); } /* * Setup the embedded TX header */ M_PREPEND(m, sizeof(*hdr), M_NOWAIT); if (m == NULL) { device_printf(sc->sc_dev, "%s: prepend TX header failed\n", __func__); return ENOBUFS; } hdr = mtod(m, struct bwi_txbuf_hdr *); bzero(hdr, sizeof(*hdr)); bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); if (!ismcast) { uint16_t dur; dur = ieee80211_ack_duration(sc->sc_rates, rate, ic->ic_flags & ~IEEE80211_F_SHPREAMBLE); hdr->txh_fb_duration = htole16(dur); } hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, BWI_TXH_PHY_C_ANTMODE_MASK); if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) phy_ctrl |= BWI_TXH_PHY_C_OFDM; else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1)) phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; if (!ismcast) mac_ctrl |= BWI_TXH_MAC_C_ACK; if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM) mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; hdr->txh_mac_ctrl = htole32(mac_ctrl); hdr->txh_phy_ctrl = htole16(phy_ctrl); /* Catch any further usage */ hdr = NULL; wh = NULL; /* DMA load */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto back; } if (error) { /* error == EFBIG */ struct mbuf *m_new; m_new = m_defrag(m, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); error = ENOBUFS; goto back; } else { m = m_new; } error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (2) %d\n", __func__, error); goto back; } } error = 0; bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); tb->tb_mbuf = m; tb->tb_ni = ni; #if 0 p = mtod(m, const uint8_t *); for (i = 0; i < m->m_pkthdr.len; ++i) { if (i != 0 && i % 8 == 0) printf("\n"); printf("%02x ", p[i]); } printf("\n"); #endif DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", idx, pkt_len, m->m_pkthdr.len); /* Setup TX descriptor */ sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); /* Kick start */ sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); back: if (error) m_freem(m); return error; } static int bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; struct bwi_mac *mac; struct bwi_txbuf_hdr *hdr; struct ieee80211_frame *wh; uint8_t rate, rate_fb; uint32_t mac_ctrl; uint16_t phy_ctrl; bus_addr_t paddr; int ismcast, pkt_len, error; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; wh = mtod(m, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Get 802.11 frame len before prepending TX header */ pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* * Find TX rate */ rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m); return EINVAL; } if (params->ibp_try1 != 0) { rate_fb = params->ibp_rate1; if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) { /* XXX fall back to rate0? */ m_freem(m); return EINVAL; } } else rate_fb = rate; tb->tb_rate[0] = rate; tb->tb_rate[1] = rate_fb; sc->sc_tx_rate = rate; /* * TX radio tap */ if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; /* XXX IEEE80211_BPF_CRYPTO */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; sc->sc_tx_th.wt_rate = rate; ieee80211_radiotap_tx(vap, m); } /* * Setup the embedded TX header */ M_PREPEND(m, sizeof(*hdr), M_NOWAIT); if (m == NULL) { device_printf(sc->sc_dev, "%s: prepend TX header failed\n", __func__); return ENOBUFS; } hdr = mtod(m, struct bwi_txbuf_hdr *); bzero(hdr, sizeof(*hdr)); bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { uint16_t dur; dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0); hdr->txh_fb_duration = htole16(dur); mac_ctrl |= BWI_TXH_MAC_C_ACK; } hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, BWI_TXH_PHY_C_ANTMODE_MASK); if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) { phy_ctrl |= BWI_TXH_PHY_C_OFDM; mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; hdr->txh_mac_ctrl = htole32(mac_ctrl); hdr->txh_phy_ctrl = htole16(phy_ctrl); /* Catch any further usage */ hdr = NULL; wh = NULL; /* DMA load */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0) { struct mbuf *m_new; if (error != EFBIG) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto back; } m_new = m_defrag(m, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); error = ENOBUFS; goto back; } m = m_new; error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (2) %d\n", __func__, error); goto back; } } bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); tb->tb_mbuf = m; tb->tb_ni = ni; DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", idx, pkt_len, m->m_pkthdr.len); /* Setup TX descriptor */ sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); /* Kick start */ sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); back: if (error) m_freem(m); return error; } static void bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) { idx = (idx + 1) % BWI_TX_NDESC; CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX, idx * sizeof(struct bwi_desc32)); } static void bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) { /* TODO:64 */ } static void bwi_txeof_status32(struct bwi_softc *sc) { uint32_t val, ctrl_base; int end_idx; ctrl_base = sc->sc_txstats->stats_ctrl_base; val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS); end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / sizeof(struct bwi_desc32); bwi_txeof_status(sc, end_idx); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, end_idx * sizeof(struct bwi_desc32)); bwi_start_locked(sc); } static void bwi_txeof_status64(struct bwi_softc *sc) { /* TODO:64 */ } static void _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt) { struct bwi_txbuf_data *tbd; struct bwi_txbuf *tb; int ring_idx, buf_idx; struct ieee80211_node *ni; if (tx_id == 0) { device_printf(sc->sc_dev, "%s: zero tx id\n", __func__); return; } ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK); buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK); KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx)); KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); tbd = &sc->sc_tx_bdata[ring_idx]; KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used)); tbd->tbd_used--; tb = &tbd->tbd_buf[buf_idx]; DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, " "acked %d, data_txcnt %d, ni %p\n", buf_idx, acked, data_txcnt, tb->tb_ni); bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); if ((ni = tb->tb_ni) != NULL) { const struct bwi_txbuf_hdr *hdr = mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *); struct ieee80211_ratectl_tx_status txs; /* NB: update rate control only for unicast frames */ if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) { /* * Feed back 'acked and data_txcnt'. Note that the * generic AMRR code only understands one tx rate * and the estimator doesn't handle real retry counts * well so to avoid over-aggressive downshifting we * treat any number of retries as "1". */ txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY; txs.long_retries = acked; if (data_txcnt > 1) txs.status = IEEE80211_RATECTL_TX_SUCCESS; else { txs.status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; } ieee80211_ratectl_tx_complete(ni, &txs); } ieee80211_tx_complete(ni, tb->tb_mbuf, !acked); tb->tb_ni = NULL; } else m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; if (tbd->tbd_used == 0) sc->sc_tx_timer = 0; } static void bwi_txeof_status(struct bwi_softc *sc, int end_idx) { struct bwi_txstats_data *st = sc->sc_txstats; int idx; bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD); idx = st->stats_idx; while (idx != end_idx) { const struct bwi_txstats *stats = &st->stats[idx]; if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) { int data_txcnt; data_txcnt = __SHIFTOUT(stats->txs_txcnt, BWI_TXS_TXCNT_DATA); _bwi_txeof(sc, le16toh(stats->txs_id), stats->txs_flags & BWI_TXS_F_ACKED, data_txcnt); } idx = (idx + 1) % BWI_TXSTATS_NDESC; } st->stats_idx = idx; } static void bwi_txeof(struct bwi_softc *sc) { for (;;) { uint32_t tx_status0, tx_status1; uint16_t tx_id; int data_txcnt; tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0); if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0) break; tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1); tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK); data_txcnt = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_DATA_TXCNT_MASK); if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING)) continue; _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED, data_txcnt); } bwi_start_locked(sc); } static int bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) { bwi_power_on(sc, 1); return bwi_set_clock_mode(sc, clk_mode); } static void bwi_bbp_power_off(struct bwi_softc *sc) { bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW); bwi_power_off(sc, 1); } static int bwi_get_pwron_delay(struct bwi_softc *sc) { struct bwi_regwin *com, *old; struct bwi_clock_freq freq; uint32_t val; int error; com = &sc->sc_com_regwin; KASSERT(BWI_REGWIN_EXIST(com), ("no regwin")); if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; bwi_get_clock_freq(sc, &freq); val = CSR_READ_4(sc, BWI_PLL_ON_DELAY); sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min); DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay); return bwi_regwin_switch(sc, old, NULL); } static int bwi_bus_attach(struct bwi_softc *sc) { struct bwi_regwin *bus, *old; int error; bus = &sc->sc_bus_regwin; error = bwi_regwin_switch(sc, bus, &old); if (error) return error; if (!bwi_regwin_is_enabled(sc, bus)) bwi_regwin_enable(sc, bus, 0); /* Disable interripts */ CSR_WRITE_4(sc, BWI_INTRVEC, 0); return bwi_regwin_switch(sc, old, NULL); } static const char * bwi_regwin_name(const struct bwi_regwin *rw) { switch (rw->rw_type) { case BWI_REGWIN_T_COM: return "COM"; case BWI_REGWIN_T_BUSPCI: return "PCI"; case BWI_REGWIN_T_MAC: return "MAC"; case BWI_REGWIN_T_BUSPCIE: return "PCIE"; } panic("unknown regwin type 0x%04x\n", rw->rw_type); return NULL; } static uint32_t bwi_regwin_disable_bits(struct bwi_softc *sc) { uint32_t busrev; /* XXX cache this */ busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK); DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC, "bus rev %u\n", busrev); if (busrev == BWI_BUSREV_0) return BWI_STATE_LO_DISABLE1; else if (busrev == BWI_BUSREV_1) return BWI_STATE_LO_DISABLE2; else return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2); } int bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw) { uint32_t val, disable_bits; disable_bits = bwi_regwin_disable_bits(sc); val = CSR_READ_4(sc, BWI_STATE_LO); if ((val & (BWI_STATE_LO_CLOCK | BWI_STATE_LO_RESET | disable_bits)) == BWI_STATE_LO_CLOCK) { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n", bwi_regwin_name(rw)); return 1; } else { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n", bwi_regwin_name(rw)); return 0; } } void bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) { uint32_t state_lo, disable_bits; int i; state_lo = CSR_READ_4(sc, BWI_STATE_LO); /* * If current regwin is in 'reset' state, it was already disabled. */ if (state_lo & BWI_STATE_LO_RESET) { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s was already disabled\n", bwi_regwin_name(rw)); return; } disable_bits = bwi_regwin_disable_bits(sc); /* * Disable normal clock */ state_lo = BWI_STATE_LO_CLOCK | disable_bits; CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* * Wait until normal clock is disabled */ #define NRETRY 1000 for (i = 0; i < NRETRY; ++i) { state_lo = CSR_READ_4(sc, BWI_STATE_LO); if (state_lo & disable_bits) break; DELAY(10); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s disable clock timeout\n", bwi_regwin_name(rw)); } for (i = 0; i < NRETRY; ++i) { uint32_t state_hi; state_hi = CSR_READ_4(sc, BWI_STATE_HI); if ((state_hi & BWI_STATE_HI_BUSY) == 0) break; DELAY(10); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n", bwi_regwin_name(rw)); } #undef NRETRY /* * Reset and disable regwin with gated clock */ state_lo = BWI_STATE_LO_RESET | disable_bits | BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); /* Reset and disable regwin */ state_lo = BWI_STATE_LO_RESET | disable_bits | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); } void bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) { uint32_t state_lo, state_hi, imstate; bwi_regwin_disable(sc, rw, flags); /* Reset regwin with gated clock */ state_lo = BWI_STATE_LO_RESET | BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); state_hi = CSR_READ_4(sc, BWI_STATE_HI); if (state_hi & BWI_STATE_HI_SERROR) CSR_WRITE_4(sc, BWI_STATE_HI, 0); imstate = CSR_READ_4(sc, BWI_IMSTATE); if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) { imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT); CSR_WRITE_4(sc, BWI_IMSTATE, imstate); } /* Enable regwin with gated clock */ state_lo = BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); /* Enable regwin with normal clock */ state_lo = BWI_STATE_LO_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); } static void bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid) { struct bwi_mac *mac; struct bwi_myaddr_bssid buf; const uint8_t *p; uint32_t val; int n, i; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid); bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr)); bcopy(bssid, buf.bssid, sizeof(buf.bssid)); n = sizeof(buf) / sizeof(val); p = (const uint8_t *)&buf; for (i = 0; i < n; ++i) { int j; val = 0; for (j = 0; j < sizeof(val); ++j) val |= ((uint32_t)(*p++)) << (j * 8); TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val); } } static void bwi_updateslot(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; struct bwi_mac *mac; BWI_LOCK(sc); if (sc->sc_flags & BWI_F_RUNNING) { DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT)); } BWI_UNLOCK(sc); } static void bwi_calibrate(void *xsc) { struct bwi_softc *sc = xsc; struct bwi_mac *mac; BWI_ASSERT_LOCKED(sc); KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR, ("opmode %d", sc->sc_ic.ic_opmode)); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type); sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; /* XXX 15 seconds */ callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc); } static int bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr) { struct bwi_mac *mac; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; return bwi_rf_calc_rssi(mac, hdr); } static int bwi_calc_noise(struct bwi_softc *sc) { struct bwi_mac *mac; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; return bwi_rf_calc_noise(mac); } static __inline uint8_t bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type) { uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK; return (ieee80211_plcp2rate(plcp, type)); } static void bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m, struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise) { const struct ieee80211_frame_min *wh; sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS; if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; wh = mtod(m, const struct ieee80211_frame_min *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */ sc->sc_rx_th.wr_rate = rate; sc->sc_rx_th.wr_antsignal = rssi; sc->sc_rx_th.wr_antnoise = noise; } static void bwi_led_attach(struct bwi_softc *sc) { const uint8_t *led_act = NULL; uint16_t gpio, val[BWI_LED_MAX]; int i; for (i = 0; i < nitems(bwi_vendor_led_act); ++i) { if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) { led_act = bwi_vendor_led_act[i].led_act; break; } } if (led_act == NULL) led_act = bwi_default_led_act; gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01); val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0); val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1); gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23); val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2); val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3); for (i = 0; i < BWI_LED_MAX; ++i) { struct bwi_led *led = &sc->sc_leds[i]; if (val[i] == 0xff) { led->l_act = led_act[i]; } else { if (val[i] & BWI_LED_ACT_LOW) led->l_flags |= BWI_LED_F_ACTLOW; led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK); } led->l_mask = (1 << i); if (led->l_act == BWI_LED_ACT_BLINK_SLOW || led->l_act == BWI_LED_ACT_BLINK_POLL || led->l_act == BWI_LED_ACT_BLINK) { led->l_flags |= BWI_LED_F_BLINK; if (led->l_act == BWI_LED_ACT_BLINK_POLL) led->l_flags |= BWI_LED_F_POLLABLE; else if (led->l_act == BWI_LED_ACT_BLINK_SLOW) led->l_flags |= BWI_LED_F_SLOW; if (sc->sc_blink_led == NULL) { sc->sc_blink_led = led; if (led->l_flags & BWI_LED_F_SLOW) BWI_LED_SLOWDOWN(sc->sc_led_idle); } } DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH, "%dth led, act %d, lowact %d\n", i, led->l_act, led->l_flags & BWI_LED_F_ACTLOW); } callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); } static __inline uint16_t bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on) { if (led->l_flags & BWI_LED_F_ACTLOW) on = !on; if (on) val |= led->l_mask; else val &= ~led->l_mask; return val; } static void bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int i; if (nstate == IEEE80211_S_INIT) { callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; } if ((sc->sc_flags & BWI_F_RUNNING) == 0) return; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); for (i = 0; i < BWI_LED_MAX; ++i) { struct bwi_led *led = &sc->sc_leds[i]; int on; if (led->l_act == BWI_LED_ACT_UNKN || led->l_act == BWI_LED_ACT_NULL) continue; if ((led->l_flags & BWI_LED_F_BLINK) && nstate != IEEE80211_S_INIT) continue; switch (led->l_act) { case BWI_LED_ACT_ON: /* Always on */ on = 1; break; case BWI_LED_ACT_OFF: /* Always off */ case BWI_LED_ACT_5GHZ: /* TODO: 11A */ on = 0; break; default: on = 1; switch (nstate) { case IEEE80211_S_INIT: on = 0; break; case IEEE80211_S_RUN: if (led->l_act == BWI_LED_ACT_11G && ic->ic_curmode != IEEE80211_MODE_11G) on = 0; break; default: if (led->l_act == BWI_LED_ACT_ASSOC) on = 0; break; } break; } val = bwi_led_onoff(led, val, on); } CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); } static void bwi_led_event(struct bwi_softc *sc, int event) { struct bwi_led *led = sc->sc_blink_led; int rate; if (event == BWI_LED_EVENT_POLL) { if ((led->l_flags & BWI_LED_F_POLLABLE) == 0) return; if (ticks - sc->sc_led_ticks < sc->sc_led_idle) return; } sc->sc_led_ticks = ticks; if (sc->sc_led_blinking) return; switch (event) { case BWI_LED_EVENT_RX: rate = sc->sc_rx_rate; break; case BWI_LED_EVENT_TX: rate = sc->sc_tx_rate; break; case BWI_LED_EVENT_POLL: rate = 0; break; default: panic("unknown LED event %d\n", event); break; } bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur, bwi_led_duration[rate].off_dur); } static void bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur) { struct bwi_led *led = sc->sc_blink_led; uint16_t val; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); val = bwi_led_onoff(led, val, 1); CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); if (led->l_flags & BWI_LED_F_SLOW) { BWI_LED_SLOWDOWN(on_dur); BWI_LED_SLOWDOWN(off_dur); } sc->sc_led_blinking = 1; sc->sc_led_blink_offdur = off_dur; callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc); } static void bwi_led_blink_next(void *xsc) { struct bwi_softc *sc = xsc; uint16_t val; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); val = bwi_led_onoff(sc->sc_blink_led, val, 0); CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, bwi_led_blink_end, sc); } static void bwi_led_blink_end(void *xsc) { struct bwi_softc *sc = xsc; sc->sc_led_blinking = 0; } static void bwi_restart(void *xsc, int pending) { struct bwi_softc *sc = xsc; device_printf(sc->sc_dev, "%s begin, help!\n", __func__); BWI_LOCK(sc); bwi_init_statechg(sc, 0); #if 0 bwi_start_locked(sc); #endif BWI_UNLOCK(sc); }