/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2017 Chelsio Communications, Inc. * Copyright (c) 2017 Conrad Meyer * All rights reserved. * Largely borrowed from ccr(4), Written by: John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include "cryptodev_if.h" #include "ccp.h" #include "ccp_hardware.h" MALLOC_DEFINE(M_CCP, "ccp", "AMD CCP crypto"); /* * Need a global softc available for garbage random_source API, which lacks any * context pointer. It's also handy for debugging. */ struct ccp_softc *g_ccp_softc; bool g_debug_print = false; SYSCTL_BOOL(_hw_ccp, OID_AUTO, debug, CTLFLAG_RWTUN, &g_debug_print, 0, "Set to enable debugging log messages"); static struct pciid { uint32_t devid; const char *desc; } ccp_ids[] = { { 0x14561022, "AMD CCP-5a" }, { 0x14681022, "AMD CCP-5b" }, { 0x15df1022, "AMD CCP-5a" }, }; static struct random_source random_ccp = { .rs_ident = "AMD CCP TRNG", .rs_source = RANDOM_PURE_CCP, .rs_read = random_ccp_read, }; /* * ccp_populate_sglist() generates a scatter/gather list that covers the entire * crypto operation buffer. */ static int ccp_populate_sglist(struct sglist *sg, struct crypto_buffer *cb) { int error; sglist_reset(sg); switch (cb->cb_type) { case CRYPTO_BUF_MBUF: error = sglist_append_mbuf(sg, cb->cb_mbuf); break; case CRYPTO_BUF_SINGLE_MBUF: error = sglist_append_single_mbuf(sg, cb->cb_mbuf); break; case CRYPTO_BUF_UIO: error = sglist_append_uio(sg, cb->cb_uio); break; case CRYPTO_BUF_CONTIG: error = sglist_append(sg, cb->cb_buf, cb->cb_buf_len); break; case CRYPTO_BUF_VMPAGE: error = sglist_append_vmpages(sg, cb->cb_vm_page, cb->cb_vm_page_offset, cb->cb_vm_page_len); break; default: error = EINVAL; } return (error); } static int ccp_probe(device_t dev) { struct pciid *ip; uint32_t id; id = pci_get_devid(dev); for (ip = ccp_ids; ip < &ccp_ids[nitems(ccp_ids)]; ip++) { if (id == ip->devid) { device_set_desc(dev, ip->desc); return (0); } } return (ENXIO); } static void ccp_initialize_queues(struct ccp_softc *sc) { struct ccp_queue *qp; size_t i; for (i = 0; i < nitems(sc->queues); i++) { qp = &sc->queues[i]; qp->cq_softc = sc; qp->cq_qindex = i; mtx_init(&qp->cq_lock, "ccp queue", NULL, MTX_DEF); /* XXX - arbitrarily chosen sizes */ qp->cq_sg_crp = sglist_alloc(32, M_WAITOK); /* Two more SGEs than sg_crp to accommodate ipad. */ qp->cq_sg_ulptx = sglist_alloc(34, M_WAITOK); qp->cq_sg_dst = sglist_alloc(2, M_WAITOK); } } static void ccp_free_queues(struct ccp_softc *sc) { struct ccp_queue *qp; size_t i; for (i = 0; i < nitems(sc->queues); i++) { qp = &sc->queues[i]; mtx_destroy(&qp->cq_lock); sglist_free(qp->cq_sg_crp); sglist_free(qp->cq_sg_ulptx); sglist_free(qp->cq_sg_dst); } } static int ccp_attach(device_t dev) { struct ccp_softc *sc; int error; sc = device_get_softc(dev); sc->dev = dev; sc->cid = crypto_get_driverid(dev, sizeof(struct ccp_session), CRYPTOCAP_F_HARDWARE); if (sc->cid < 0) { device_printf(dev, "could not get crypto driver id\n"); return (ENXIO); } error = ccp_hw_attach(dev); if (error != 0) return (error); mtx_init(&sc->lock, "ccp", NULL, MTX_DEF); ccp_initialize_queues(sc); if (g_ccp_softc == NULL) { g_ccp_softc = sc; if ((sc->hw_features & VERSION_CAP_TRNG) != 0) random_source_register(&random_ccp); } return (0); } static int ccp_detach(device_t dev) { struct ccp_softc *sc; sc = device_get_softc(dev); mtx_lock(&sc->lock); sc->detaching = true; mtx_unlock(&sc->lock); crypto_unregister_all(sc->cid); if (g_ccp_softc == sc && (sc->hw_features & VERSION_CAP_TRNG) != 0) random_source_deregister(&random_ccp); ccp_hw_detach(dev); ccp_free_queues(sc); if (g_ccp_softc == sc) g_ccp_softc = NULL; mtx_destroy(&sc->lock); return (0); } static void ccp_init_hmac_digest(struct ccp_session *s, const char *key, int klen) { union authctx auth_ctx; struct auth_hash *axf; u_int i; /* * If the key is larger than the block size, use the digest of * the key as the key instead. */ axf = s->hmac.auth_hash; if (klen > axf->blocksize) { axf->Init(&auth_ctx); axf->Update(&auth_ctx, key, klen); axf->Final(s->hmac.ipad, &auth_ctx); explicit_bzero(&auth_ctx, sizeof(auth_ctx)); klen = axf->hashsize; } else memcpy(s->hmac.ipad, key, klen); memset(s->hmac.ipad + klen, 0, axf->blocksize - klen); memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize); for (i = 0; i < axf->blocksize; i++) { s->hmac.ipad[i] ^= HMAC_IPAD_VAL; s->hmac.opad[i] ^= HMAC_OPAD_VAL; } } static bool ccp_aes_check_keylen(int alg, int klen) { switch (klen * 8) { case 128: case 192: if (alg == CRYPTO_AES_XTS) return (false); break; case 256: break; case 512: if (alg != CRYPTO_AES_XTS) return (false); break; default: return (false); } return (true); } static void ccp_aes_setkey(struct ccp_session *s, int alg, const void *key, int klen) { unsigned kbits; if (alg == CRYPTO_AES_XTS) kbits = (klen / 2) * 8; else kbits = klen * 8; switch (kbits) { case 128: s->blkcipher.cipher_type = CCP_AES_TYPE_128; break; case 192: s->blkcipher.cipher_type = CCP_AES_TYPE_192; break; case 256: s->blkcipher.cipher_type = CCP_AES_TYPE_256; break; default: panic("should not get here"); } s->blkcipher.key_len = klen; memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len); } static bool ccp_auth_supported(struct ccp_softc *sc, const struct crypto_session_params *csp) { if ((sc->hw_features & VERSION_CAP_SHA) == 0) return (false); switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (csp->csp_auth_key == NULL) return (false); break; default: return (false); } return (true); } static bool ccp_cipher_supported(struct ccp_softc *sc, const struct crypto_session_params *csp) { if ((sc->hw_features & VERSION_CAP_AES) == 0) return (false); switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: if (csp->csp_ivlen != AES_BLOCK_LEN) return (false); break; case CRYPTO_AES_ICM: if (csp->csp_ivlen != AES_BLOCK_LEN) return (false); break; case CRYPTO_AES_XTS: if (csp->csp_ivlen != AES_XTS_IV_LEN) return (false); break; default: return (false); } return (ccp_aes_check_keylen(csp->csp_cipher_alg, csp->csp_cipher_klen)); } static int ccp_probesession(device_t dev, const struct crypto_session_params *csp) { struct ccp_softc *sc; if (csp->csp_flags != 0) return (EINVAL); sc = device_get_softc(dev); switch (csp->csp_mode) { case CSP_MODE_DIGEST: if (!ccp_auth_supported(sc, csp)) return (EINVAL); break; case CSP_MODE_CIPHER: if (!ccp_cipher_supported(sc, csp)) return (EINVAL); break; case CSP_MODE_AEAD: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: if ((sc->hw_features & VERSION_CAP_AES) == 0) return (EINVAL); break; default: return (EINVAL); } break; case CSP_MODE_ETA: if (!ccp_auth_supported(sc, csp) || !ccp_cipher_supported(sc, csp)) return (EINVAL); break; default: return (EINVAL); } return (CRYPTODEV_PROBE_HARDWARE); } static int ccp_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct ccp_softc *sc; struct ccp_session *s; struct auth_hash *auth_hash; enum ccp_aes_mode cipher_mode; unsigned auth_mode; unsigned q; /* XXX reconcile auth_mode with use by ccp_sha */ switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: auth_hash = &auth_hash_hmac_sha1; auth_mode = SHA1; break; case CRYPTO_SHA2_256_HMAC: auth_hash = &auth_hash_hmac_sha2_256; auth_mode = SHA2_256; break; case CRYPTO_SHA2_384_HMAC: auth_hash = &auth_hash_hmac_sha2_384; auth_mode = SHA2_384; break; case CRYPTO_SHA2_512_HMAC: auth_hash = &auth_hash_hmac_sha2_512; auth_mode = SHA2_512; break; default: auth_hash = NULL; auth_mode = 0; break; } switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: cipher_mode = CCP_AES_MODE_CBC; break; case CRYPTO_AES_ICM: cipher_mode = CCP_AES_MODE_CTR; break; case CRYPTO_AES_NIST_GCM_16: cipher_mode = CCP_AES_MODE_GCTR; break; case CRYPTO_AES_XTS: cipher_mode = CCP_AES_MODE_XTS; break; default: cipher_mode = CCP_AES_MODE_ECB; break; } sc = device_get_softc(dev); mtx_lock(&sc->lock); if (sc->detaching) { mtx_unlock(&sc->lock); return (ENXIO); } s = crypto_get_driver_session(cses); /* Just grab the first usable queue for now. */ for (q = 0; q < nitems(sc->queues); q++) if ((sc->valid_queues & (1 << q)) != 0) break; if (q == nitems(sc->queues)) { mtx_unlock(&sc->lock); return (ENXIO); } s->queue = q; switch (csp->csp_mode) { case CSP_MODE_AEAD: s->mode = GCM; break; case CSP_MODE_ETA: s->mode = AUTHENC; break; case CSP_MODE_DIGEST: s->mode = HMAC; break; case CSP_MODE_CIPHER: s->mode = BLKCIPHER; break; } if (s->mode == GCM) { if (csp->csp_auth_mlen == 0) s->gmac.hash_len = AES_GMAC_HASH_LEN; else s->gmac.hash_len = csp->csp_auth_mlen; } else if (auth_hash != NULL) { s->hmac.auth_hash = auth_hash; s->hmac.auth_mode = auth_mode; if (csp->csp_auth_mlen == 0) s->hmac.hash_len = auth_hash->hashsize; else s->hmac.hash_len = csp->csp_auth_mlen; ccp_init_hmac_digest(s, csp->csp_auth_key, csp->csp_auth_klen); } if (cipher_mode != CCP_AES_MODE_ECB) { s->blkcipher.cipher_mode = cipher_mode; if (csp->csp_cipher_key != NULL) ccp_aes_setkey(s, csp->csp_cipher_alg, csp->csp_cipher_key, csp->csp_cipher_klen); } s->active = true; mtx_unlock(&sc->lock); return (0); } static void ccp_freesession(device_t dev, crypto_session_t cses) { struct ccp_session *s; s = crypto_get_driver_session(cses); if (s->pending != 0) device_printf(dev, "session %p freed with %d pending requests\n", s, s->pending); s->active = false; } static int ccp_process(device_t dev, struct cryptop *crp, int hint) { const struct crypto_session_params *csp; struct ccp_softc *sc; struct ccp_queue *qp; struct ccp_session *s; int error; bool qpheld; qpheld = false; qp = NULL; csp = crypto_get_params(crp->crp_session); s = crypto_get_driver_session(crp->crp_session); sc = device_get_softc(dev); mtx_lock(&sc->lock); qp = &sc->queues[s->queue]; mtx_unlock(&sc->lock); error = ccp_queue_acquire_reserve(qp, 1 /* placeholder */, M_NOWAIT); if (error != 0) goto out; qpheld = true; error = ccp_populate_sglist(qp->cq_sg_crp, &crp->crp_buf); if (error != 0) goto out; if (crp->crp_auth_key != NULL) { KASSERT(s->hmac.auth_hash != NULL, ("auth key without HMAC")); ccp_init_hmac_digest(s, crp->crp_auth_key, csp->csp_auth_klen); } if (crp->crp_cipher_key != NULL) ccp_aes_setkey(s, csp->csp_cipher_alg, crp->crp_cipher_key, csp->csp_cipher_klen); switch (s->mode) { case HMAC: if (s->pending != 0) { error = EAGAIN; break; } error = ccp_hmac(qp, s, crp); break; case BLKCIPHER: if (s->pending != 0) { error = EAGAIN; break; } error = ccp_blkcipher(qp, s, crp); break; case AUTHENC: if (s->pending != 0) { error = EAGAIN; break; } error = ccp_authenc(qp, s, crp); break; case GCM: if (s->pending != 0) { error = EAGAIN; break; } error = ccp_gcm(qp, s, crp); break; } if (error == 0) s->pending++; out: if (qpheld) { if (error != 0) { /* * Squash EAGAIN so callers don't uselessly and * expensively retry if the ring was full. */ if (error == EAGAIN) error = ENOMEM; ccp_queue_abort(qp); } else ccp_queue_release(qp); } if (error != 0) { DPRINTF(dev, "%s: early error:%d\n", __func__, error); crp->crp_etype = error; crypto_done(crp); } return (0); } static device_method_t ccp_methods[] = { DEVMETHOD(device_probe, ccp_probe), DEVMETHOD(device_attach, ccp_attach), DEVMETHOD(device_detach, ccp_detach), DEVMETHOD(cryptodev_probesession, ccp_probesession), DEVMETHOD(cryptodev_newsession, ccp_newsession), DEVMETHOD(cryptodev_freesession, ccp_freesession), DEVMETHOD(cryptodev_process, ccp_process), DEVMETHOD_END }; static driver_t ccp_driver = { "ccp", ccp_methods, sizeof(struct ccp_softc) }; static devclass_t ccp_devclass; DRIVER_MODULE(ccp, pci, ccp_driver, ccp_devclass, NULL, NULL); MODULE_VERSION(ccp, 1); MODULE_DEPEND(ccp, crypto, 1, 1, 1); MODULE_DEPEND(ccp, random_device, 1, 1, 1); #if 0 /* There are enough known issues that we shouldn't load automatically */ MODULE_PNP_INFO("W32:vendor/device", pci, ccp, ccp_ids, nitems(ccp_ids)); #endif static int ccp_queue_reserve_space(struct ccp_queue *qp, unsigned n, int mflags) { struct ccp_softc *sc; mtx_assert(&qp->cq_lock, MA_OWNED); sc = qp->cq_softc; if (n < 1 || n >= (1 << sc->ring_size_order)) return (EINVAL); while (true) { if (ccp_queue_get_ring_space(qp) >= n) return (0); if ((mflags & M_WAITOK) == 0) return (EAGAIN); qp->cq_waiting = true; msleep(&qp->cq_tail, &qp->cq_lock, 0, "ccpqfull", 0); } } int ccp_queue_acquire_reserve(struct ccp_queue *qp, unsigned n, int mflags) { int error; mtx_lock(&qp->cq_lock); qp->cq_acq_tail = qp->cq_tail; error = ccp_queue_reserve_space(qp, n, mflags); if (error != 0) mtx_unlock(&qp->cq_lock); return (error); } void ccp_queue_release(struct ccp_queue *qp) { mtx_assert(&qp->cq_lock, MA_OWNED); if (qp->cq_tail != qp->cq_acq_tail) { wmb(); ccp_queue_write_tail(qp); } mtx_unlock(&qp->cq_lock); } void ccp_queue_abort(struct ccp_queue *qp) { unsigned i; mtx_assert(&qp->cq_lock, MA_OWNED); /* Wipe out any descriptors associated with this aborted txn. */ for (i = qp->cq_acq_tail; i != qp->cq_tail; i = (i + 1) % (1 << qp->cq_softc->ring_size_order)) { memset(&qp->desc_ring[i], 0, sizeof(qp->desc_ring[i])); } qp->cq_tail = qp->cq_acq_tail; mtx_unlock(&qp->cq_lock); } #ifdef DDB #define _db_show_lock(lo) LOCK_CLASS(lo)->lc_ddb_show(lo) #define db_show_lock(lk) _db_show_lock(&(lk)->lock_object) static void db_show_ccp_sc(struct ccp_softc *sc) { db_printf("ccp softc at %p\n", sc); db_printf(" cid: %d\n", (int)sc->cid); db_printf(" lock: "); db_show_lock(&sc->lock); db_printf(" detaching: %d\n", (int)sc->detaching); db_printf(" ring_size_order: %u\n", sc->ring_size_order); db_printf(" hw_version: %d\n", (int)sc->hw_version); db_printf(" hw_features: %b\n", (int)sc->hw_features, "\20\24ELFC\23TRNG\22Zip_Compress\16Zip_Decompress\13ECC\12RSA" "\11SHA\0103DES\07AES"); db_printf(" hw status:\n"); db_ccp_show_hw(sc); } static void db_show_ccp_qp(struct ccp_queue *qp) { db_printf(" lock: "); db_show_lock(&qp->cq_lock); db_printf(" cq_qindex: %u\n", qp->cq_qindex); db_printf(" cq_softc: %p\n", qp->cq_softc); db_printf(" head: %u\n", qp->cq_head); db_printf(" tail: %u\n", qp->cq_tail); db_printf(" acq_tail: %u\n", qp->cq_acq_tail); db_printf(" desc_ring: %p\n", qp->desc_ring); db_printf(" completions_ring: %p\n", qp->completions_ring); db_printf(" descriptors (phys): 0x%jx\n", (uintmax_t)qp->desc_ring_bus_addr); db_printf(" hw status:\n"); db_ccp_show_queue_hw(qp); } DB_SHOW_COMMAND(ccp, db_show_ccp) { struct ccp_softc *sc; unsigned unit, qindex; if (!have_addr) goto usage; unit = (unsigned)addr; sc = devclass_get_softc(ccp_devclass, unit); if (sc == NULL) { db_printf("No such device ccp%u\n", unit); goto usage; } if (count == -1) { db_show_ccp_sc(sc); return; } qindex = (unsigned)count; if (qindex >= nitems(sc->queues)) { db_printf("No such queue %u\n", qindex); goto usage; } db_show_ccp_qp(&sc->queues[qindex]); return; usage: db_printf("usage: show ccp [,]\n"); return; } #endif /* DDB */