/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013-2014 Ruslan Bukin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Vybrid Family Clock Controller Module (CCM)
* Chapter 10, Vybrid Reference Manual, Rev. 5, 07/2013
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define CCM_CCR 0x00 /* Control Register */
#define CCM_CSR 0x04 /* Status Register */
#define CCM_CCSR 0x08 /* Clock Switcher Register */
#define CCM_CACRR 0x0C /* ARM Clock Root Register */
#define CCM_CSCMR1 0x10 /* Serial Clock Multiplexer Register 1 */
#define CCM_CSCDR1 0x14 /* Serial Clock Divider Register 1 */
#define CCM_CSCDR2 0x18 /* Serial Clock Divider Register 2 */
#define CCM_CSCDR3 0x1C /* Serial Clock Divider Register 3 */
#define CCM_CSCMR2 0x20 /* Serial Clock Multiplexer Register 2 */
#define CCM_CTOR 0x28 /* Testing Observability Register */
#define CCM_CLPCR 0x2C /* Low Power Control Register */
#define CCM_CISR 0x30 /* Interrupt Status Register */
#define CCM_CIMR 0x34 /* Interrupt Mask Register */
#define CCM_CCOSR 0x38 /* Clock Output Source Register */
#define CCM_CGPR 0x3C /* General Purpose Register */
#define CCM_CCGRN 12
#define CCM_CCGR(n) (0x40 + (n * 0x04)) /* Clock Gating Register */
#define CCM_CMEOR(n) (0x70 + (n * 0x70)) /* Module Enable Override */
#define CCM_CCPGR(n) (0x90 + (n * 0x04)) /* Platform Clock Gating */
#define CCM_CPPDSR 0x88 /* PLL PFD Disable Status Register */
#define CCM_CCOWR 0x8C /* CORE Wakeup Register */
#define PLL3_PFD4_EN (1U << 31)
#define PLL3_PFD3_EN (1 << 30)
#define PLL3_PFD2_EN (1 << 29)
#define PLL3_PFD1_EN (1 << 28)
#define PLL2_PFD4_EN (1 << 15)
#define PLL2_PFD3_EN (1 << 14)
#define PLL2_PFD2_EN (1 << 13)
#define PLL2_PFD1_EN (1 << 12)
#define PLL1_PFD4_EN (1 << 11)
#define PLL1_PFD3_EN (1 << 10)
#define PLL1_PFD2_EN (1 << 9)
#define PLL1_PFD1_EN (1 << 8)
/* CCM_CCR */
#define FIRC_EN (1 << 16)
#define FXOSC_EN (1 << 12)
#define FXOSC_RDY (1 << 5)
/* CCM_CSCDR1 */
#define ENET_TS_EN (1 << 23)
#define RMII_CLK_EN (1 << 24)
#define SAI3_EN (1 << 19)
/* CCM_CSCDR2 */
#define ESAI_EN (1 << 30)
#define ESDHC1_EN (1 << 29)
#define ESDHC0_EN (1 << 28)
#define NFC_EN (1 << 9)
#define ESDHC1_DIV_S 20
#define ESDHC1_DIV_M 0xf
#define ESDHC0_DIV_S 16
#define ESDHC0_DIV_M 0xf
/* CCM_CSCDR3 */
#define DCU0_EN (1 << 19)
#define QSPI1_EN (1 << 12)
#define QSPI1_DIV (1 << 11)
#define QSPI1_X2_DIV (1 << 10)
#define QSPI1_X4_DIV_M 0x3
#define QSPI1_X4_DIV_S 8
#define QSPI0_EN (1 << 4)
#define QSPI0_DIV (1 << 3)
#define QSPI0_X2_DIV (1 << 2)
#define QSPI0_X4_DIV_M 0x3
#define QSPI0_X4_DIV_S 0
#define SAI3_DIV_SHIFT 12
#define SAI3_DIV_MASK 0xf
#define ESAI_DIV_SHIFT 24
#define ESAI_DIV_MASK 0xf
#define PLL4_CLK_DIV_SHIFT 6
#define PLL4_CLK_DIV_MASK 0x7
#define IPG_CLK_DIV_SHIFT 11
#define IPG_CLK_DIV_MASK 0x3
#define ESAI_CLK_SEL_SHIFT 20
#define ESAI_CLK_SEL_MASK 0x3
#define SAI3_CLK_SEL_SHIFT 6
#define SAI3_CLK_SEL_MASK 0x3
#define CKO1_EN (1 << 10)
#define CKO1_DIV_MASK 0xf
#define CKO1_DIV_SHIFT 6
#define CKO1_SEL_MASK 0x3f
#define CKO1_SEL_SHIFT 0
#define CKO1_PLL4_MAIN 0x6
#define CKO1_PLL4_DIVD 0x7
struct clk {
uint32_t reg;
uint32_t enable_reg;
uint32_t div_mask;
uint32_t div_shift;
uint32_t div_val;
uint32_t sel_reg;
uint32_t sel_mask;
uint32_t sel_shift;
uint32_t sel_val;
};
static struct clk ipg_clk = {
.reg = CCM_CACRR,
.enable_reg = 0,
.div_mask = IPG_CLK_DIV_MASK,
.div_shift = IPG_CLK_DIV_SHIFT,
.div_val = 1, /* Divide by 2 */
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
/*
PLL4 clock divider (before switching the clocks should be gated)
000 Divide by 1 (only if PLL frequency less than or equal to 650 MHz)
001 Divide by 4
010 Divide by 6
011 Divide by 8
100 Divide by 10
101 Divide by 12
110 Divide by 14
111 Divide by 16
*/
static struct clk pll4_clk = {
.reg = CCM_CACRR,
.enable_reg = 0,
.div_mask = PLL4_CLK_DIV_MASK,
.div_shift = PLL4_CLK_DIV_SHIFT,
.div_val = 5, /* Divide by 12 */
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk sai3_clk = {
.reg = CCM_CSCDR1,
.enable_reg = SAI3_EN,
.div_mask = SAI3_DIV_MASK,
.div_shift = SAI3_DIV_SHIFT,
.div_val = 1,
.sel_reg = CCM_CSCMR1,
.sel_mask = SAI3_CLK_SEL_MASK,
.sel_shift = SAI3_CLK_SEL_SHIFT,
.sel_val = 0x3, /* Divided PLL4 main clock */
};
static struct clk cko1_clk = {
.reg = CCM_CCOSR,
.enable_reg = CKO1_EN,
.div_mask = CKO1_DIV_MASK,
.div_shift = CKO1_DIV_SHIFT,
.div_val = 1,
.sel_reg = CCM_CCOSR,
.sel_mask = CKO1_SEL_MASK,
.sel_shift = CKO1_SEL_SHIFT,
.sel_val = CKO1_PLL4_DIVD,
};
static struct clk esdhc0_clk = {
.reg = CCM_CSCDR2,
.enable_reg = ESDHC0_EN,
.div_mask = ESDHC0_DIV_M,
.div_shift = ESDHC0_DIV_S,
.div_val = 0x9,
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk esdhc1_clk = {
.reg = CCM_CSCDR2,
.enable_reg = ESDHC1_EN,
.div_mask = ESDHC1_DIV_M,
.div_shift = ESDHC1_DIV_S,
.div_val = 0x9,
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk qspi0_clk = {
.reg = CCM_CSCDR3,
.enable_reg = QSPI0_EN,
.div_mask = 0,
.div_shift = 0,
.div_val = 0,
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk dcu0_clk = {
.reg = CCM_CSCDR3,
.enable_reg = DCU0_EN,
.div_mask = 0x7,
.div_shift = 16, /* DCU0_DIV */
.div_val = 0, /* divide by 1 */
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk enet_clk = {
.reg = CCM_CSCDR1,
.enable_reg = (ENET_TS_EN | RMII_CLK_EN),
.div_mask = 0,
.div_shift = 0,
.div_val = 0,
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
static struct clk nand_clk = {
.reg = CCM_CSCDR2,
.enable_reg = NFC_EN,
.div_mask = 0,
.div_shift = 0,
.div_val = 0,
.sel_reg = 0,
.sel_mask = 0,
.sel_shift = 0,
.sel_val = 0,
};
/*
Divider to generate ESAI clock
0000 Divide by 1
0001 Divide by 2
... ...
1111 Divide by 16
*/
static struct clk esai_clk = {
.reg = CCM_CSCDR2,
.enable_reg = ESAI_EN,
.div_mask = ESAI_DIV_MASK,
.div_shift = ESAI_DIV_SHIFT,
.div_val = 3, /* Divide by 4 */
.sel_reg = CCM_CSCMR1,
.sel_mask = ESAI_CLK_SEL_MASK,
.sel_shift = ESAI_CLK_SEL_SHIFT,
.sel_val = 0x3, /* Divided PLL4 main clock */
};
struct clock_entry {
char *name;
struct clk *clk;
};
static struct clock_entry clock_map[] = {
{"ipg", &ipg_clk},
{"pll4", &pll4_clk},
{"sai3", &sai3_clk},
{"cko1", &cko1_clk},
{"esdhc0", &esdhc0_clk},
{"esdhc1", &esdhc1_clk},
{"qspi0", &qspi0_clk},
{"dcu0", &dcu0_clk},
{"enet", &enet_clk},
{"nand", &nand_clk},
{"esai", &esai_clk},
{NULL, NULL}
};
struct ccm_softc {
struct resource *res[1];
bus_space_tag_t bst;
bus_space_handle_t bsh;
device_t dev;
};
static struct resource_spec ccm_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ -1, 0 }
};
static int
ccm_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fsl,mvf600-ccm"))
return (ENXIO);
device_set_desc(dev, "Vybrid Family CCM Unit");
return (BUS_PROBE_DEFAULT);
}
static int
set_clock(struct ccm_softc *sc, char *name)
{
struct clk *clk;
int reg;
int i;
for (i = 0; clock_map[i].name != NULL; i++) {
if (strcmp(clock_map[i].name, name) == 0) {
#if 0
device_printf(sc->dev, "Configuring %s clk\n", name);
#endif
clk = clock_map[i].clk;
if (clk->sel_reg != 0) {
reg = READ4(sc, clk->sel_reg);
reg &= ~(clk->sel_mask << clk->sel_shift);
reg |= (clk->sel_val << clk->sel_shift);
WRITE4(sc, clk->sel_reg, reg);
}
reg = READ4(sc, clk->reg);
reg |= clk->enable_reg;
reg &= ~(clk->div_mask << clk->div_shift);
reg |= (clk->div_val << clk->div_shift);
WRITE4(sc, clk->reg, reg);
}
}
return (0);
}
static int
ccm_fdt_set(struct ccm_softc *sc)
{
phandle_t child, parent, root;
int len;
char *fdt_config, *name;
root = OF_finddevice("/");
len = 0;
parent = root;
/* Find 'clock_names' prop in the tree */
for (child = OF_child(parent); child != 0; child = OF_peer(child)) {
/* Find a 'leaf'. Start the search from this node. */
while (OF_child(child)) {
parent = child;
child = OF_child(child);
}
if (!ofw_bus_node_status_okay(child))
continue;
if ((len = OF_getproplen(child, "clock_names")) > 0) {
len = OF_getproplen(child, "clock_names");
OF_getprop_alloc(child, "clock_names",
(void **)&fdt_config);
while (len > 0) {
name = fdt_config;
fdt_config += strlen(name) + 1;
len -= strlen(name) + 1;
set_clock(sc, name);
}
}
if (OF_peer(child) == 0) {
/* No more siblings. */
child = parent;
parent = OF_parent(child);
}
}
return (0);
}
static int
ccm_attach(device_t dev)
{
struct ccm_softc *sc;
int reg;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, ccm_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Enable oscillator */
reg = READ4(sc, CCM_CCR);
reg |= (FIRC_EN | FXOSC_EN);
WRITE4(sc, CCM_CCR, reg);
/* Wait 10 times */
for (i = 0; i < 10; i++) {
if (READ4(sc, CCM_CSR) & FXOSC_RDY) {
device_printf(sc->dev, "On board oscillator is ready.\n");
break;
}
cpufunc_nullop();
}
/* Clock is on during all modes, except stop mode. */
for (i = 0; i < CCM_CCGRN; i++) {
WRITE4(sc, CCM_CCGR(i), 0xffffffff);
}
/* Take and apply FDT clocks */
ccm_fdt_set(sc);
return (0);
}
static device_method_t ccm_methods[] = {
DEVMETHOD(device_probe, ccm_probe),
DEVMETHOD(device_attach, ccm_attach),
{ 0, 0 }
};
static driver_t ccm_driver = {
"ccm",
ccm_methods,
sizeof(struct ccm_softc),
};
static devclass_t ccm_devclass;
DRIVER_MODULE(ccm, simplebus, ccm_driver, ccm_devclass, 0, 0);