/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2017 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct ofw_compat_data compat_data[] = { {"broadcom,bcm2835-pwm", 1}, {"brcm,bcm2835-pwm", 1}, {NULL, 0} }; struct bcm_pwm_softc { device_t sc_dev; struct resource * sc_mem_res; bus_space_tag_t sc_m_bst; bus_space_handle_t sc_m_bsh; device_t clkman; uint32_t freq; /* shared between channels 1 and 2 */ uint32_t period; /* channel 1 */ uint32_t ratio; uint32_t mode; uint32_t period2; /* channel 2 */ uint32_t ratio2; uint32_t mode2; }; #define BCM_PWM_MEM_WRITE(_sc, _off, _val) \ bus_space_write_4(_sc->sc_m_bst, _sc->sc_m_bsh, _off, _val) #define BCM_PWM_MEM_READ(_sc, _off) \ bus_space_read_4(_sc->sc_m_bst, _sc->sc_m_bsh, _off) #define BCM_PWM_CLK_WRITE(_sc, _off, _val) \ bus_space_write_4(_sc->sc_c_bst, _sc->sc_c_bsh, _off, _val) #define BCM_PWM_CLK_READ(_sc, _off) \ bus_space_read_4(_sc->sc_c_bst, _sc->sc_c_bsh, _off) #define W_CTL(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x00, _val) #define R_CTL(_sc) BCM_PWM_MEM_READ(_sc, 0x00) #define W_STA(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x04, _val) #define R_STA(_sc) BCM_PWM_MEM_READ(_sc, 0x04) #define W_RNG(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x10, _val) #define R_RNG(_sc) BCM_PWM_MEM_READ(_sc, 0x10) #define W_DAT(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x14, _val) #define R_DAT(_sc) BCM_PWM_MEM_READ(_sc, 0x14) #define W_RNG2(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x20, _val) #define R_RNG2(_sc) BCM_PWM_MEM_READ(_sc, 0x20) #define W_DAT2(_sc, _val) BCM_PWM_MEM_WRITE(_sc, 0x24, _val) #define R_DAT2(_sc) BCM_PWM_MEM_READ(_sc, 0x24) static int bcm_pwm_reconf(struct bcm_pwm_softc *sc) { uint32_t u, ctlr; /* Disable PWM */ W_CTL(sc, 0); /* Stop PWM clock */ (void)bcm2835_clkman_set_frequency(sc->clkman, BCM_PWM_CLKSRC, 0); ctlr = 0; /* pre-assign zero, enable bits, write to CTL at end */ if (sc->mode == 0 && sc->mode2 == 0) /* both modes are zero */ return 0; /* device is now off - return */ /* set the PWM clock frequency */ /* TODO: should I only do this if it changes and not stop it first? */ u = bcm2835_clkman_set_frequency(sc->clkman, BCM_PWM_CLKSRC, sc->freq); if (u == 0) return (EINVAL); sc->freq = u; /* control register CTL bits: * (from BCM2835 ARM Peripherals manual, section 9.6) * * 15 MSEN2 chan 2 M/S enable; 0 for PWM algo, 1 for M/S transmission * 14 unused; always reads as 0 * 13 USEF2 chan 2 use FIFO (0 uses data; 1 uses FIFO) * 12 POLA2 chan 2 invert polarity (0 normal, 1 inverted polarity) * 11 SBIT2 chan 2 'Silence' bit (when not transmitting data) * 10 RPTL2 chan 2 FIFO repeat last data (1 repeats, 0 interrupts) * 9 MODE2 chan 2 PWM/Serializer mode (0 PWM, 1 Serializer) * 8 PWEN2 chan 2 enable (0 disable, 1 enable) * 7 MSEN1 chan 1 M/S enable; 0 for PWM algo, 1 for M/S transmission * 6 CLRF1 chan 1 clear FIFO (set 1 to clear; always reads as 0) * 5 USEF1 chan 1 use FIFO (0 uses data; 1 uses FIFO) * 4 POLA1 chan 1 invert polarity (0 normal, 1 inverted polarity) * 3 SBIT1 chan 1 'Silence' bit (when not transmitting data) * 2 RTPL1 chan 1 FIFO repeat last data (1 repeats, 0 interrupts) * 1 MODE1 chan 1 PWM/Serializer mode (0 PWM, 1 Serializer) * 0 PWMEN1 chan 1 enable (0 disable, 1 enable) * * Notes on M/S enable: when this bit is '1', a simple M/S ratio is used. In short, * the value of 'ratio' is the number of 'on' bits, and the total length of the data is * defined by 'period'. So if 'ratio' is 2500 and 'period' is 10000, then the output * remains 'on' for 2500 clocks, and goes 'off' for the remaining 7500 clocks. * When the M/S enable is '0', a more complicated algorithm effectively 'dithers' the * pulses in order to obtain the desired ratio. For details, see section 9.3 of the * BCM2835 ARM Peripherals manual. */ if (sc->mode != 0) { /* Config PWM Channel 1 */ W_RNG(sc, sc->period); if (sc->ratio > sc->period) sc->ratio = sc->period; W_DAT(sc, sc->ratio); /* Start PWM Channel 1 */ if (sc->mode == 1) ctlr |= 0x81; /* chan 1 enable + chan 1 M/S enable */ else ctlr |= 0x1; /* chan 1 enable */ } if (sc->mode2 != 0) { /* Config PWM Channel 2 */ W_RNG2(sc, sc->period2); if (sc->ratio2 > sc->period2) sc->ratio2 = sc->period2; W_DAT2(sc, sc->ratio2); /* Start PWM Channel 2 */ if (sc->mode2 == 1) ctlr |= 0x8100; /* chan 2 enable + chan 2 M/S enable */ else ctlr |= 0x100; /* chan 2 enable */ } /* write CTL register with updated value */ W_CTL(sc, ctlr); return (0); } static int bcm_pwm_pwm_freq_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; if (sc->mode == 1) r = sc->freq / sc->period; else r = 0; error = sysctl_handle_int(oidp, &r, sizeof(r), req); return (error); } static int bcm_pwm_mode_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; r = sc->mode; error = sysctl_handle_int(oidp, &r, sizeof(r), req); if (error != 0 || req->newptr == NULL) return (error); if (r > 2) return (EINVAL); sc->mode = r; return (bcm_pwm_reconf(sc)); } static int bcm_pwm_freq_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; r = sc->freq; error = sysctl_handle_int(oidp, &r, sizeof(r), req); if (error != 0 || req->newptr == NULL) return (error); if (r > 125000000) return (EINVAL); sc->freq = r; return (bcm_pwm_reconf(sc)); } static int bcm_pwm_period_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; int error; sc = (struct bcm_pwm_softc *)arg1; error = sysctl_handle_int(oidp, &sc->period, sizeof(sc->period), req); if (error != 0 || req->newptr == NULL) return (error); return (bcm_pwm_reconf(sc)); } static int bcm_pwm_ratio_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; r = sc->ratio; error = sysctl_handle_int(oidp, &r, sizeof(r), req); if (error != 0 || req->newptr == NULL) return (error); if (r > sc->period) // XXX >= ? return (EINVAL); sc->ratio = r; W_DAT(sc, sc->ratio); return (0); } static int bcm_pwm_pwm_freq2_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; if (sc->mode2 == 1) r = sc->freq / sc->period2; else r = 0; error = sysctl_handle_int(oidp, &r, sizeof(r), req); return (error); } static int bcm_pwm_mode2_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; r = sc->mode2; error = sysctl_handle_int(oidp, &r, sizeof(r), req); if (error != 0 || req->newptr == NULL) return (error); if (r > 2) return (EINVAL); sc->mode2 = r; return (bcm_pwm_reconf(sc)); } static int bcm_pwm_period2_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; int error; sc = (struct bcm_pwm_softc *)arg1; error = sysctl_handle_int(oidp, &sc->period2, sizeof(sc->period2), req); if (error != 0 || req->newptr == NULL) return (error); return (bcm_pwm_reconf(sc)); } static int bcm_pwm_ratio2_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t r; int error; sc = (struct bcm_pwm_softc *)arg1; r = sc->ratio2; error = sysctl_handle_int(oidp, &r, sizeof(r), req); if (error != 0 || req->newptr == NULL) return (error); if (r > sc->period2) // XXX >= ? return (EINVAL); sc->ratio2 = r; W_DAT(sc, sc->ratio2); return (0); } static int bcm_pwm_reg_proc(SYSCTL_HANDLER_ARGS) { struct bcm_pwm_softc *sc; uint32_t reg; int error; sc = (struct bcm_pwm_softc *)arg1; reg = BCM_PWM_MEM_READ(sc, arg2 & 0xff); error = sysctl_handle_int(oidp, ®, sizeof(reg), req); if (error != 0 || req->newptr == NULL) return (error); BCM_PWM_MEM_WRITE(sc, arg2, reg); return (0); } static void bcm_pwm_sysctl_init(struct bcm_pwm_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node; struct sysctl_oid_list *tree; /* * Add system sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->sc_dev); tree_node = device_get_sysctl_tree(sc->sc_dev); tree = SYSCTL_CHILDREN(tree_node); if (bootverbose) { #define RR(x,y) \ SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, y, \ CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, \ sc, 0x##x, \ bcm_pwm_reg_proc, "IU", "Register 0x" #x " " y); RR(24, "DAT2") RR(20, "RNG2") RR(18, "FIF1") RR(14, "DAT1") RR(10, "RNG1") RR(08, "DMAC") RR(04, "STA") RR(00, "CTL") #undef RR } SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "pwm_freq", CTLFLAG_RD | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_pwm_freq_proc, "IU", "PWM frequency ch 1 (Hz)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "period", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_period_proc, "IU", "PWM period ch 1 (#clocks)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "ratio", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_ratio_proc, "IU", "PWM ratio ch 1 (0...period)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "freq", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_freq_proc, "IU", "PWM clock (Hz)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "mode", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_mode_proc, "IU", "PWM mode ch 1 (0=off, 1=pwm, 2=dither)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "pwm_freq2", CTLFLAG_RD | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_pwm_freq2_proc, "IU", "PWM frequency ch 2 (Hz)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "period2", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_period2_proc, "IU", "PWM period ch 2 (#clocks)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "ratio2", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_ratio2_proc, "IU", "PWM ratio ch 2 (0...period)"); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "mode2", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, bcm_pwm_mode2_proc, "IU", "PWM mode ch 2 (0=off, 1=pwm, 2=dither)"); } static int bcm_pwm_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "BCM2708/2835 PWM controller"); return (BUS_PROBE_DEFAULT); } static int bcm_pwm_attach(device_t dev) { struct bcm_pwm_softc *sc; int rid; if (device_get_unit(dev) != 0) { device_printf(dev, "only one PWM controller supported\n"); return (ENXIO); } sc = device_get_softc(dev); sc->sc_dev = dev; sc->clkman = devclass_get_device(devclass_find("bcm2835_clkman"), 0); if (sc->clkman == NULL) { device_printf(dev, "cannot find Clock Manager\n"); return (ENXIO); } rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); return (ENXIO); } sc->sc_m_bst = rman_get_bustag(sc->sc_mem_res); sc->sc_m_bsh = rman_get_bushandle(sc->sc_mem_res); /* Add sysctl nodes. */ bcm_pwm_sysctl_init(sc); sc->freq = 125000000; /* 125 Mhz */ sc->period = 10000; /* 12.5 khz */ sc->ratio = 2500; /* 25% */ sc->period2 = 10000; /* 12.5 khz */ sc->ratio2 = 2500; /* 25% */ return (bus_generic_attach(dev)); } static int bcm_pwm_detach(device_t dev) { struct bcm_pwm_softc *sc; bus_generic_detach(dev); sc = device_get_softc(dev); sc->mode = 0; sc->mode2 = 0; (void)bcm_pwm_reconf(sc); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); return (0); } static phandle_t bcm_pwm_get_node(device_t bus, device_t dev) { return (ofw_bus_get_node(bus)); } static device_method_t bcm_pwm_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bcm_pwm_probe), DEVMETHOD(device_attach, bcm_pwm_attach), DEVMETHOD(device_detach, bcm_pwm_detach), DEVMETHOD(ofw_bus_get_node, bcm_pwm_get_node), DEVMETHOD_END }; static devclass_t bcm_pwm_devclass; static driver_t bcm_pwm_driver = { "pwm", bcm_pwm_methods, sizeof(struct bcm_pwm_softc), }; DRIVER_MODULE(bcm2835_pwm, simplebus, bcm_pwm_driver, bcm_pwm_devclass, 0, 0); MODULE_DEPEND(bcm2835_pwm, bcm2835_clkman, 1, 1, 1);