//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class wraps target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes abort on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenInstruction.h" #include "CodeGenRegisters.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include #include using namespace llvm; cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); static cl::opt AsmParserNum("asmparsernum", cl::init(0), cl::desc("Make -gen-asm-parser emit assembly parser #N"), cl::cat(AsmParserCat)); static cl::opt AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N"), cl::cat(AsmWriterCat)); /// getValueType - Return the MVT::SimpleValueType that the specified TableGen /// record corresponds to. MVT::SimpleValueType llvm::getValueType(const Record *Rec) { return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); } StringRef llvm::getName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "UNKNOWN"; case MVT::iPTR: return "TLI.getPointerTy()"; case MVT::iPTRAny: return "TLI.getPointerTy()"; default: return getEnumName(T); } } StringRef llvm::getEnumName(MVT::SimpleValueType T) { // clang-format off switch (T) { #define GET_VT_ATTR(Ty, N, Sz, Any, Int, FP, Vec, Sc, NElem, EltTy) \ case MVT::Ty: return "MVT::" # Ty; #include "llvm/CodeGen/GenVT.inc" default: llvm_unreachable("ILLEGAL VALUE TYPE!"); } // clang-format on } /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. /// std::string llvm::getQualifiedName(const Record *R) { std::string Namespace; if (R->getValue("Namespace")) Namespace = std::string(R->getValueAsString("Namespace")); if (Namespace.empty()) return std::string(R->getName()); return Namespace + "::" + R->getName().str(); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget(RecordKeeper &records) : Records(records), CGH(records) { std::vector Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) PrintFatalError("No 'Target' subclasses defined!"); if (Targets.size() != 1) PrintFatalError("Multiple subclasses of Target defined!"); TargetRec = Targets[0]; MacroFusions = Records.getAllDerivedDefinitions("Fusion"); } CodeGenTarget::~CodeGenTarget() {} StringRef CodeGenTarget::getName() const { return TargetRec->getName(); } /// getInstNamespace - Find and return the target machine's instruction /// namespace. The namespace is cached because it is requested multiple times. StringRef CodeGenTarget::getInstNamespace() const { if (InstNamespace.empty()) { for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { // We are not interested in the "TargetOpcode" namespace. if (Inst->Namespace != "TargetOpcode") { InstNamespace = Inst->Namespace; break; } } } return InstNamespace; } StringRef CodeGenTarget::getRegNamespace() const { auto &RegClasses = RegBank->getRegClasses(); return RegClasses.size() > 0 ? RegClasses.front().Namespace : ""; } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } bool CodeGenTarget::getAllowRegisterRenaming() const { return TargetRec->getValueAsInt("AllowRegisterRenaming"); } /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *CodeGenTarget::getAsmParser() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); if (AsmParserNum >= LI.size()) PrintFatalError("Target does not have an AsmParser #" + Twine(AsmParserNum) + "!"); return LI[AsmParserNum]; } /// getAsmParserVariant - Return the AssemblyParserVariant definition for /// this target. /// Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); if (i >= LI.size()) PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + "!"); return LI[i]; } /// getAsmParserVariantCount - Return the AssemblyParserVariant definition /// available for this target. /// unsigned CodeGenTarget::getAsmParserVariantCount() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); return LI.size(); } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) PrintFatalError("Target does not have an AsmWriter #" + Twine(AsmWriterNum) + "!"); return LI[AsmWriterNum]; } CodeGenRegBank &CodeGenTarget::getRegBank() const { if (!RegBank) RegBank = std::make_unique(Records, getHwModes()); return *RegBank; } std::optional CodeGenTarget::getSuperRegForSubReg( const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const { std::vector Candidates; auto &RegClasses = RegBank.getRegClasses(); // Try to find a register class which supports ValueTy, and also contains // SubIdx. for (CodeGenRegisterClass &RC : RegClasses) { // Is there a subclass of this class which contains this subregister index? CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); if (!SubClassWithSubReg) continue; // We have a class. Check if it supports this value type. if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy)) continue; // If necessary, check that it is allocatable. if (MustBeAllocatable && !SubClassWithSubReg->Allocatable) continue; // We have a register class which supports both the value type and // subregister index. Remember it. Candidates.push_back(SubClassWithSubReg); } // If we didn't find anything, we're done. if (Candidates.empty()) return std::nullopt; // Find and return the largest of our candidate classes. llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { if (A->getMembers().size() > B->getMembers().size()) return true; if (A->getMembers().size() < B->getMembers().size()) return false; // Order by name as a tie-breaker. return StringRef(A->getName()) < B->getName(); }); return Candidates[0]; } void CodeGenTarget::ReadRegAltNameIndices() const { RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); llvm::sort(RegAltNameIndices, LessRecord()); } /// getRegisterByName - If there is a register with the specific AsmName, /// return it. const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { return getRegBank().getRegistersByName().lookup(Name); } const CodeGenRegisterClass &CodeGenTarget::getRegisterClass(Record *R) const { return *getRegBank().getRegClass(R); } std::vector CodeGenTarget::getRegisterVTs(Record *R) const { const CodeGenRegister *Reg = getRegBank().getReg(R); std::vector Result; for (const auto &RC : getRegBank().getRegClasses()) { if (RC.contains(Reg)) { ArrayRef InVTs = RC.getValueTypes(); llvm::append_range(Result, InVTs); } } // Remove duplicates. llvm::sort(Result); Result.erase(llvm::unique(Result), Result.end()); return Result; } void CodeGenTarget::ReadLegalValueTypes() const { for (const auto &RC : getRegBank().getRegClasses()) llvm::append_range(LegalValueTypes, RC.VTs); // Remove duplicates. llvm::sort(LegalValueTypes); LegalValueTypes.erase(llvm::unique(LegalValueTypes), LegalValueTypes.end()); } CodeGenSchedModels &CodeGenTarget::getSchedModels() const { if (!SchedModels) SchedModels = std::make_unique(Records, *this); return *SchedModels; } void CodeGenTarget::ReadInstructions() const { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) PrintFatalError("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. for (Record *R : Insts) { Instructions[R] = std::make_unique(R); if (Instructions[R]->isVariableLengthEncoding()) HasVariableLengthEncodings = true; } } static const CodeGenInstruction *GetInstByName( const char *Name, const DenseMap> &Insts, RecordKeeper &Records) { const Record *Rec = Records.getDef(Name); const auto I = Insts.find(Rec); if (!Rec || I == Insts.end()) PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); return I->second.get(); } static const char *FixedInstrs[] = { #define HANDLE_TARGET_OPCODE(OPC) #OPC, #include "llvm/Support/TargetOpcodes.def" nullptr}; unsigned CodeGenTarget::getNumFixedInstructions() { return std::size(FixedInstrs) - 1; } /// Return all of the instructions defined by the target, ordered by /// their enum value. void CodeGenTarget::ComputeInstrsByEnum() const { const auto &Insts = getInstructions(); for (const char *const *p = FixedInstrs; *p; ++p) { const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); assert(Instr && "Missing target independent instruction"); assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); InstrsByEnum.push_back(Instr); } unsigned EndOfPredefines = InstrsByEnum.size(); assert(EndOfPredefines == getNumFixedInstructions() && "Missing generic opcode"); for (const auto &I : Insts) { const CodeGenInstruction *CGI = I.second.get(); if (CGI->Namespace != "TargetOpcode") { InstrsByEnum.push_back(CGI); if (CGI->TheDef->getValueAsBit("isPseudo")) ++NumPseudoInstructions; } } assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); // All of the instructions are now in random order based on the map iteration. llvm::sort( InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { const auto &D1 = *Rec1->TheDef; const auto &D2 = *Rec2->TheDef; return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); }); // Assign an enum value to each instruction according to the sorted order. unsigned Num = 0; for (const CodeGenInstruction *Inst : InstrsByEnum) Inst->EnumVal = Num++; } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit /// encodings, reverse the bit order of all instructions. void CodeGenTarget::reverseBitsForLittleEndianEncoding() { if (!isLittleEndianEncoding()) return; std::vector Insts = Records.getAllDerivedDefinitions("InstructionEncoding"); for (Record *R : Insts) { if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); unsigned numBits = BI->getNumBits(); SmallVector NewBits(numBits); for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { unsigned bitSwapIdx = numBits - bit - 1; Init *OrigBit = BI->getBit(bit); Init *BitSwap = BI->getBit(bitSwapIdx); NewBits[bit] = BitSwap; NewBits[bitSwapIdx] = OrigBit; } if (numBits % 2) { unsigned middle = (numBits + 1) / 2; NewBits[middle] = BI->getBit(middle); } BitsInit *NewBI = BitsInit::get(Records, NewBits); // Update the bits in reversed order so that emitInstrOpBits will get the // correct endianness. R->getValue("Inst")->setValue(NewBI); } } /// guessInstructionProperties - Return true if it's OK to guess instruction /// properties instead of raising an error. /// /// This is configurable as a temporary migration aid. It will eventually be /// permanently false. bool CodeGenTarget::guessInstructionProperties() const { return getInstructionSet()->getValueAsBit("guessInstructionProperties"); } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = R->getValueAsDef("Ty"); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = std::string(R->getValueAsString("SelectFunc")); RootNodes = R->getValueAsListOfDefs("RootNodes"); // FIXME: This is a hack to statically increase the priority of patterns which // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best // possible pattern match we'll need to dynamically calculate the complexity // of all patterns a dag can potentially map to. int64_t RawComplexity = R->getValueAsInt("Complexity"); if (RawComplexity == -1) Complexity = NumOperands * 3; else Complexity = RawComplexity; // FIXME: Why is this different from parseSDPatternOperatorProperties? // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else if (PropList[i]->getName() == "SDNPWantRoot") { Properties |= 1 << SDNPWantRoot; } else if (PropList[i]->getName() == "SDNPWantParent") { Properties |= 1 << SDNPWantParent; } else { PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + PropList[i]->getName() + "' on ComplexPattern '" + R->getName() + "'!"); } }