//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // CodeGenMapTable provides functionality for the TableGen to create // relation mapping between instructions. Relation models are defined using // InstrMapping as a base class. This file implements the functionality which // parses these definitions and generates relation maps using the information // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc // file along with the functions to query them. // // A relationship model to relate non-predicate instructions with their // predicated true/false forms can be defined as follows: // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc // file that contains the instructions modeling this relationship. This table // is defined in the function // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)" // that can be used to retrieve the predicated form of the instruction by // passing its opcode value and the predicate sense (true/false) of the desired // instruction as arguments. // // Short description of the algorithm: // // 1) Iterate through all the records that derive from "InstrMapping" class. // 2) For each record, filter out instructions based on the FilterClass value. // 3) Iterate through this set of instructions and insert them into // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the // vector of RowFields values and contains vectors of Records (instructions) as // values. RowFields is a list of fields that are required to have the same // values for all the instructions appearing in the same row of the relation // table. All the instructions in a given row of the relation table have some // sort of relationship with the key instruction defined by the corresponding // relationship model. // // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ] // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for // RowFields. These groups of instructions are later matched against ValueCols // to determine the column they belong to, if any. // // While building the RowInstrMap map, collect all the key instructions in // KeyInstrVec. These are the instructions having the same values as KeyCol // for all the fields listed in ColFields. // // For Example: // // Relate non-predicate instructions with their predicated true/false forms. // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // Here, only instructions that have "none" as PredSense will be selected as key // instructions. // // 4) For each key instruction, get the group of instructions that share the // same key-value as the key instruction from RowInstrMap. Iterate over the list // of columns in ValueCols (it is defined as a list >. Therefore, // it can specify multi-column relationships). For each column, find the // instruction from the group that matches all the values for the column. // Multiple matches are not allowed. // //===----------------------------------------------------------------------===// #include "Common/CodeGenInstruction.h" #include "Common/CodeGenTarget.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" using namespace llvm; typedef std::map> InstrRelMapTy; typedef std::map, std::vector> RowInstrMapTy; namespace { //===----------------------------------------------------------------------===// // This class is used to represent InstrMapping class defined in Target.td file. class InstrMap { private: std::string Name; std::string FilterClass; ListInit *RowFields; ListInit *ColFields; ListInit *KeyCol; std::vector ValueCols; public: InstrMap(Record *MapRec) { Name = std::string(MapRec->getName()); // FilterClass - It's used to reduce the search space only to the // instructions that define the kind of relationship modeled by // this InstrMapping object/record. const RecordVal *Filter = MapRec->getValue("FilterClass"); FilterClass = Filter->getValue()->getAsUnquotedString(); // List of fields/attributes that need to be same across all the // instructions in a row of the relation table. RowFields = MapRec->getValueAsListInit("RowFields"); // List of fields/attributes that are constant across all the instruction // in a column of the relation table. Ex: ColFields = 'predSense' ColFields = MapRec->getValueAsListInit("ColFields"); // Values for the fields/attributes listed in 'ColFields'. // Ex: KeyCol = 'noPred' -- key instruction is non-predicated KeyCol = MapRec->getValueAsListInit("KeyCol"); // List of values for the fields/attributes listed in 'ColFields', one for // each column in the relation table. // // Ex: ValueCols = [['true'],['false']] -- it results two columns in the // table. First column requires all the instructions to have predSense // set to 'true' and second column requires it to be 'false'. ListInit *ColValList = MapRec->getValueAsListInit("ValueCols"); // Each instruction map must specify at least one column for it to be valid. if (ColValList->empty()) PrintFatalError(MapRec->getLoc(), "InstrMapping record `" + MapRec->getName() + "' has empty " + "`ValueCols' field!"); for (Init *I : ColValList->getValues()) { auto *ColI = cast(I); // Make sure that all the sub-lists in 'ValueCols' have same number of // elements as the fields in 'ColFields'. if (ColI->size() != ColFields->size()) PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() + "', field `ValueCols' entries don't match with " + " the entries in 'ColFields'!"); ValueCols.push_back(ColI); } } const std::string &getName() const { return Name; } const std::string &getFilterClass() const { return FilterClass; } ListInit *getRowFields() const { return RowFields; } ListInit *getColFields() const { return ColFields; } ListInit *getKeyCol() const { return KeyCol; } const std::vector &getValueCols() const { return ValueCols; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // class MapTableEmitter : It builds the instruction relation maps using // the information provided in InstrMapping records. It outputs these // relationship maps as tables into XXXGenInstrInfo.inc file along with the // functions to query them. namespace { class MapTableEmitter { private: // std::string TargetName; const CodeGenTarget &Target; // InstrMapDesc - InstrMapping record to be processed. InstrMap InstrMapDesc; // InstrDefs - list of instructions filtered using FilterClass defined // in InstrMapDesc. std::vector InstrDefs; // RowInstrMap - maps RowFields values to the instructions. It's keyed by the // values of the row fields and contains vector of records as values. RowInstrMapTy RowInstrMap; // KeyInstrVec - list of key instructions. std::vector KeyInstrVec; DenseMap> MapTable; public: MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec) : Target(Target), InstrMapDesc(IMRec) { const std::string &FilterClass = InstrMapDesc.getFilterClass(); InstrDefs = Records.getAllDerivedDefinitions(FilterClass); } void buildRowInstrMap(); // Returns true if an instruction is a key instruction, i.e., its ColFields // have same values as KeyCol. bool isKeyColInstr(Record *CurInstr); // Find column instruction corresponding to a key instruction based on the // constraints for that column. Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol); // Find column instructions for each key instruction based // on ValueCols and store them into MapTable. void buildMapTable(); void emitBinSearch(raw_ostream &OS, unsigned TableSize); void emitTablesWithFunc(raw_ostream &OS); unsigned emitBinSearchTable(raw_ostream &OS); // Lookup functions to query binary search tables. void emitMapFuncBody(raw_ostream &OS, unsigned TableSize); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Process all the instructions that model this relation (alreday present in // InstrDefs) and insert them into RowInstrMap which is keyed by the values of // the fields listed as RowFields. It stores vectors of records as values. // All the related instructions have the same values for the RowFields thus are // part of the same key-value pair. //===----------------------------------------------------------------------===// void MapTableEmitter::buildRowInstrMap() { for (Record *CurInstr : InstrDefs) { std::vector KeyValue; ListInit *RowFields = InstrMapDesc.getRowFields(); for (Init *RowField : RowFields->getValues()) { RecordVal *RecVal = CurInstr->getValue(RowField); if (RecVal == nullptr) PrintFatalError(CurInstr->getLoc(), "No value " + RowField->getAsString() + " found in \"" + CurInstr->getName() + "\" instruction description."); Init *CurInstrVal = RecVal->getValue(); KeyValue.push_back(CurInstrVal); } // Collect key instructions into KeyInstrVec. Later, these instructions are // processed to assign column position to the instructions sharing // their KeyValue in RowInstrMap. if (isKeyColInstr(CurInstr)) KeyInstrVec.push_back(CurInstr); RowInstrMap[KeyValue].push_back(CurInstr); } } //===----------------------------------------------------------------------===// // Return true if an instruction is a KeyCol instruction. //===----------------------------------------------------------------------===// bool MapTableEmitter::isKeyColInstr(Record *CurInstr) { ListInit *ColFields = InstrMapDesc.getColFields(); ListInit *KeyCol = InstrMapDesc.getKeyCol(); // Check if the instruction is a KeyCol instruction. bool MatchFound = true; for (unsigned j = 0, endCF = ColFields->size(); (j < endCF) && MatchFound; j++) { RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j)); std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString(); std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString(); MatchFound = (CurInstrVal == KeyColValue); } return MatchFound; } //===----------------------------------------------------------------------===// // Build a map to link key instructions with the column instructions arranged // according to their column positions. //===----------------------------------------------------------------------===// void MapTableEmitter::buildMapTable() { // Find column instructions for a given key based on the ColField // constraints. const std::vector &ValueCols = InstrMapDesc.getValueCols(); unsigned NumOfCols = ValueCols.size(); for (Record *CurKeyInstr : KeyInstrVec) { std::vector ColInstrVec(NumOfCols); // Find the column instruction based on the constraints for the column. for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) { ListInit *CurValueCol = ValueCols[ColIdx]; Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol); ColInstrVec[ColIdx] = ColInstr; } MapTable[CurKeyInstr] = ColInstrVec; } } //===----------------------------------------------------------------------===// // Find column instruction based on the constraints for that column. //===----------------------------------------------------------------------===// Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol) { ListInit *RowFields = InstrMapDesc.getRowFields(); std::vector KeyValue; // Construct KeyValue using KeyInstr's values for RowFields. for (Init *RowField : RowFields->getValues()) { Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue(); KeyValue.push_back(KeyInstrVal); } // Get all the instructions that share the same KeyValue as the KeyInstr // in RowInstrMap. We search through these instructions to find a match // for the current column, i.e., the instruction which has the same values // as CurValueCol for all the fields in ColFields. const std::vector &RelatedInstrVec = RowInstrMap[KeyValue]; ListInit *ColFields = InstrMapDesc.getColFields(); Record *MatchInstr = nullptr; for (llvm::Record *CurInstr : RelatedInstrVec) { bool MatchFound = true; for (unsigned j = 0, endCF = ColFields->size(); (j < endCF) && MatchFound; j++) { Init *ColFieldJ = ColFields->getElement(j); Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue(); std::string CurInstrVal = CurInstrInit->getAsUnquotedString(); Init *ColFieldJVallue = CurValueCol->getElement(j); MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString()); } if (MatchFound) { if (MatchInstr) { // Already had a match // Error if multiple matches are found for a column. std::string KeyValueStr; for (Init *Value : KeyValue) { if (!KeyValueStr.empty()) KeyValueStr += ", "; KeyValueStr += Value->getAsString(); } PrintFatalError("Multiple matches found for `" + KeyInstr->getName() + "', for the relation `" + InstrMapDesc.getName() + "', row fields [" + KeyValueStr + "], column `" + CurValueCol->getAsString() + "'"); } MatchInstr = CurInstr; } } return MatchInstr; } //===----------------------------------------------------------------------===// // Emit one table per relation. Only instructions with a valid relation of a // given type are included in the table sorted by their enum values (opcodes). // Binary search is used for locating instructions in the table. //===----------------------------------------------------------------------===// unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) { ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); StringRef Namespace = Target.getInstNamespace(); const std::vector &ValueCols = InstrMapDesc.getValueCols(); unsigned NumCol = ValueCols.size(); unsigned TotalNumInstr = NumberedInstructions.size(); unsigned TableSize = 0; OS << "static const uint16_t " << InstrMapDesc.getName(); // Number of columns in the table are NumCol+1 because key instructions are // emitted as first column. OS << "Table[][" << NumCol + 1 << "] = {\n"; for (unsigned i = 0; i < TotalNumInstr; i++) { Record *CurInstr = NumberedInstructions[i]->TheDef; std::vector ColInstrs = MapTable[CurInstr]; std::string OutStr; unsigned RelExists = 0; if (!ColInstrs.empty()) { for (unsigned j = 0; j < NumCol; j++) { if (ColInstrs[j] != nullptr) { RelExists = 1; OutStr += ", "; OutStr += Namespace; OutStr += "::"; OutStr += ColInstrs[j]->getName(); } else { OutStr += ", (uint16_t)-1U"; } } if (RelExists) { OS << " { " << Namespace << "::" << CurInstr->getName(); OS << OutStr << " },\n"; TableSize++; } } } if (!TableSize) { OS << " { " << Namespace << "::" << "INSTRUCTION_LIST_END, "; OS << Namespace << "::" << "INSTRUCTION_LIST_END }"; } OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n"; return TableSize; } //===----------------------------------------------------------------------===// // Emit binary search algorithm as part of the functions used to query // relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) { OS << " unsigned mid;\n"; OS << " unsigned start = 0;\n"; OS << " unsigned end = " << TableSize << ";\n"; OS << " while (start < end) {\n"; OS << " mid = start + (end - start) / 2;\n"; OS << " if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n"; OS << " break;\n"; OS << " }\n"; OS << " if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n"; OS << " end = mid;\n"; OS << " else\n"; OS << " start = mid + 1;\n"; OS << " }\n"; OS << " if (start == end)\n"; OS << " return -1; // Instruction doesn't exist in this table.\n\n"; } //===----------------------------------------------------------------------===// // Emit functions to query relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitMapFuncBody(raw_ostream &OS, unsigned TableSize) { ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector &ValueCols = InstrMapDesc.getValueCols(); // Emit binary search algorithm to locate instructions in the // relation table. If found, return opcode value from the appropriate column // of the table. emitBinSearch(OS, TableSize); if (ValueCols.size() > 1) { for (unsigned i = 0, e = ValueCols.size(); i < e; i++) { ListInit *ColumnI = ValueCols[i]; OS << " if ("; for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) { std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); OS << "in" << ColName; OS << " == "; OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString(); if (j < ColumnI->size() - 1) OS << " && "; } OS << ")\n"; OS << " return " << InstrMapDesc.getName(); OS << "Table[mid][" << i + 1 << "];\n"; } OS << " return -1;"; } else OS << " return " << InstrMapDesc.getName() << "Table[mid][1];\n"; OS << "}\n\n"; } //===----------------------------------------------------------------------===// // Emit relation tables and the functions to query them. //===----------------------------------------------------------------------===// void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) { // Emit function name and the input parameters : mostly opcode value of the // current instruction. However, if a table has multiple columns (more than 2 // since first column is used for the key instructions), then we also need // to pass another input to indicate the column to be selected. ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector &ValueCols = InstrMapDesc.getValueCols(); OS << "// " << InstrMapDesc.getName() << "\nLLVM_READONLY\n"; OS << "int " << InstrMapDesc.getName() << "(uint16_t Opcode"; if (ValueCols.size() > 1) { for (Init *CF : ColFields->getValues()) { std::string ColName = CF->getAsUnquotedString(); OS << ", enum " << ColName << " in" << ColName; } } OS << ") {\n"; // Emit map table. unsigned TableSize = emitBinSearchTable(OS); // Emit rest of the function body. emitMapFuncBody(OS, TableSize); } //===----------------------------------------------------------------------===// // Emit enums for the column fields across all the instruction maps. //===----------------------------------------------------------------------===// static void emitEnums(raw_ostream &OS, RecordKeeper &Records) { std::vector InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); std::map> ColFieldValueMap; // Iterate over all InstrMapping records and create a map between column // fields and their possible values across all records. for (Record *CurMap : InstrMapVec) { ListInit *ColFields; ColFields = CurMap->getValueAsListInit("ColFields"); ListInit *List = CurMap->getValueAsListInit("ValueCols"); std::vector ValueCols; unsigned ListSize = List->size(); for (unsigned j = 0; j < ListSize; j++) { auto *ListJ = cast(List->getElement(j)); if (ListJ->size() != ColFields->size()) PrintFatalError("Record `" + CurMap->getName() + "', field " "`ValueCols' entries don't match with the entries in " "'ColFields' !"); ValueCols.push_back(ListJ); } for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) { for (unsigned k = 0; k < ListSize; k++) { std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j)); } } } for (auto &Entry : ColFieldValueMap) { std::vector FieldValues = Entry.second; // Delete duplicate entries from ColFieldValueMap for (unsigned i = 0; i < FieldValues.size() - 1; i++) { Init *CurVal = FieldValues[i]; for (unsigned j = i + 1; j < FieldValues.size(); j++) { if (CurVal == FieldValues[j]) { FieldValues.erase(FieldValues.begin() + j); --j; } } } // Emit enumerated values for the column fields. OS << "enum " << Entry.first << " {\n"; for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) { OS << "\t" << Entry.first << "_" << FieldValues[i]->getAsUnquotedString(); if (i != endFV - 1) OS << ",\n"; else OS << "\n};\n\n"; } } } namespace llvm { //===----------------------------------------------------------------------===// // Parse 'InstrMapping' records and use the information to form relationship // between instructions. These relations are emitted as a tables along with the // functions to query them. //===----------------------------------------------------------------------===// void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) { CodeGenTarget Target(Records); StringRef NameSpace = Target.getInstNamespace(); std::vector InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); if (InstrMapVec.empty()) return; OS << "#ifdef GET_INSTRMAP_INFO\n"; OS << "#undef GET_INSTRMAP_INFO\n"; OS << "namespace llvm {\n\n"; OS << "namespace " << NameSpace << " {\n\n"; // Emit coulumn field names and their values as enums. emitEnums(OS, Records); // Iterate over all instruction mapping records and construct relationship // maps based on the information specified there. // for (Record *CurMap : InstrMapVec) { MapTableEmitter IMap(Target, Records, CurMap); // Build RowInstrMap to group instructions based on their values for // RowFields. In the process, also collect key instructions into // KeyInstrVec. IMap.buildRowInstrMap(); // Build MapTable to map key instructions with the corresponding column // instructions. IMap.buildMapTable(); // Emit map tables and the functions to query them. IMap.emitTablesWithFunc(OS); } OS << "} // end namespace " << NameSpace << "\n"; OS << "} // end namespace llvm\n"; OS << "#endif // GET_INSTRMAP_INFO\n\n"; } } // namespace llvm