//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This is the LLVM vectorization plan. It represents a candidate for /// vectorization, allowing to plan and optimize how to vectorize a given loop /// before generating LLVM-IR. /// The vectorizer uses vectorization plans to estimate the costs of potential /// candidates and if profitable to execute the desired plan, generating vector /// LLVM-IR code. /// //===----------------------------------------------------------------------===// #include "VPlan.h" #include "LoopVectorizationPlanner.h" #include "VPlanCFG.h" #include "VPlanDominatorTree.h" #include "VPlanPatternMatch.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopVersioning.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include #include #include using namespace llvm; using namespace llvm::VPlanPatternMatch; namespace llvm { extern cl::opt EnableVPlanNativePath; } #define DEBUG_TYPE "vplan" #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { const VPInstruction *Instr = dyn_cast(&V); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); V.print(OS, SlotTracker); return OS; } #endif Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const { switch (LaneKind) { case VPLane::Kind::ScalableLast: // Lane = RuntimeVF - VF.getKnownMinValue() + Lane return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), Builder.getInt32(VF.getKnownMinValue() - Lane)); case VPLane::Kind::First: return Builder.getInt32(Lane); } llvm_unreachable("Unknown lane kind"); } VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) : SubclassID(SC), UnderlyingVal(UV), Def(Def) { if (Def) Def->addDefinedValue(this); } VPValue::~VPValue() { assert(Users.empty() && "trying to delete a VPValue with remaining users"); if (Def) Def->removeDefinedValue(this); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { if (const VPRecipeBase *R = dyn_cast_or_null(Def)) R->print(OS, "", SlotTracker); else printAsOperand(OS, SlotTracker); } void VPValue::dump() const { const VPRecipeBase *Instr = dyn_cast_or_null(this->Def); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); print(dbgs(), SlotTracker); dbgs() << "\n"; } void VPDef::dump() const { const VPRecipeBase *Instr = dyn_cast_or_null(this); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); print(dbgs(), "", SlotTracker); dbgs() << "\n"; } #endif VPRecipeBase *VPValue::getDefiningRecipe() { return cast_or_null(Def); } const VPRecipeBase *VPValue::getDefiningRecipe() const { return cast_or_null(Def); } // Get the top-most entry block of \p Start. This is the entry block of the // containing VPlan. This function is templated to support both const and non-const blocks template static T *getPlanEntry(T *Start) { T *Next = Start; T *Current = Start; while ((Next = Next->getParent())) Current = Next; SmallSetVector WorkList; WorkList.insert(Current); for (unsigned i = 0; i < WorkList.size(); i++) { T *Current = WorkList[i]; if (Current->getNumPredecessors() == 0) return Current; auto &Predecessors = Current->getPredecessors(); WorkList.insert(Predecessors.begin(), Predecessors.end()); } llvm_unreachable("VPlan without any entry node without predecessors"); } VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } VPBasicBlock *VPBlockBase::getEntryBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } void VPBlockBase::setPlan(VPlan *ParentPlan) { assert( (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && "Can only set plan on its entry or preheader block."); Plan = ParentPlan; } /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExiting(); return cast(Block); } VPBasicBlock *VPBlockBase::getExitingBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExiting(); return cast(Block); } VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { if (!Successors.empty() || !Parent) return this; assert(Parent->getExiting() == this && "Block w/o successors not the exiting block of its parent."); return Parent->getEnclosingBlockWithSuccessors(); } VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { if (!Predecessors.empty() || !Parent) return this; assert(Parent->getEntry() == this && "Block w/o predecessors not the entry of its parent."); return Parent->getEnclosingBlockWithPredecessors(); } void VPBlockBase::deleteCFG(VPBlockBase *Entry) { for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) delete Block; } VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { iterator It = begin(); while (It != end() && It->isPhi()) It++; return It; } VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx) : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { if (Def->isLiveIn()) return Def->getLiveInIRValue(); if (hasScalarValue(Def, Instance)) { return Data .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; } if (!Instance.Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { return Data.PerPartScalars[Def][Instance.Part][0]; } assert(hasVectorValue(Def, Instance.Part)); auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; if (!VecPart->getType()->isVectorTy()) { assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); return VecPart; } // TODO: Cache created scalar values. Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); auto *Extract = Builder.CreateExtractElement(VecPart, Lane); // set(Def, Extract, Instance); return Extract; } Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { if (NeedsScalar) { assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || !vputils::onlyFirstLaneUsed(Def) || (hasScalarValue(Def, VPIteration(Part, 0)) && Data.PerPartScalars[Def][Part].size() == 1)) && "Trying to access a single scalar per part but has multiple scalars " "per part."); return get(Def, VPIteration(Part, 0)); } // If Values have been set for this Def return the one relevant for \p Part. if (hasVectorValue(Def, Part)) return Data.PerPartOutput[Def][Part]; auto GetBroadcastInstrs = [this, Def](Value *V) { bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); if (VF.isScalar()) return V; // Place the code for broadcasting invariant variables in the new preheader. IRBuilder<>::InsertPointGuard Guard(Builder); if (SafeToHoist) { BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast( Plan->getVectorLoopRegion()->getSinglePredecessor())]; if (LoopVectorPreHeader) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); } // Place the code for broadcasting invariant variables in the new preheader. // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); return Shuf; }; if (!hasScalarValue(Def, {Part, 0})) { assert(Def->isLiveIn() && "expected a live-in"); if (Part != 0) return get(Def, 0); Value *IRV = Def->getLiveInIRValue(); Value *B = GetBroadcastInstrs(IRV); set(Def, B, Part); return B; } Value *ScalarValue = get(Def, {Part, 0}); // If we aren't vectorizing, we can just copy the scalar map values over // to the vector map. if (VF.isScalar()) { set(Def, ScalarValue, Part); return ScalarValue; } bool IsUniform = vputils::isUniformAfterVectorization(Def); unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; // Check if there is a scalar value for the selected lane. if (!hasScalarValue(Def, {Part, LastLane})) { // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and // VPExpandSCEVRecipes can also be uniform. assert((isa(Def->getDefiningRecipe()) || isa(Def->getDefiningRecipe()) || isa(Def->getDefiningRecipe())) && "unexpected recipe found to be invariant"); IsUniform = true; LastLane = 0; } auto *LastInst = cast(get(Def, {Part, LastLane})); // Set the insert point after the last scalarized instruction or after the // last PHI, if LastInst is a PHI. This ensures the insertelement sequence // will directly follow the scalar definitions. auto OldIP = Builder.saveIP(); auto NewIP = isa(LastInst) ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) : std::next(BasicBlock::iterator(LastInst)); Builder.SetInsertPoint(&*NewIP); // However, if we are vectorizing, we need to construct the vector values. // If the value is known to be uniform after vectorization, we can just // broadcast the scalar value corresponding to lane zero for each unroll // iteration. Otherwise, we construct the vector values using // insertelement instructions. Since the resulting vectors are stored in // State, we will only generate the insertelements once. Value *VectorValue = nullptr; if (IsUniform) { VectorValue = GetBroadcastInstrs(ScalarValue); set(Def, VectorValue, Part); } else { // Initialize packing with insertelements to start from undef. assert(!VF.isScalable() && "VF is assumed to be non scalable."); Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); set(Def, Undef, Part); for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) packScalarIntoVectorValue(Def, {Part, Lane}); VectorValue = get(Def, Part); } Builder.restoreIP(OldIP); return VectorValue; } BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; } void VPTransformState::addNewMetadata(Instruction *To, const Instruction *Orig) { // If the loop was versioned with memchecks, add the corresponding no-alias // metadata. if (LVer && (isa(Orig) || isa(Orig))) LVer->annotateInstWithNoAlias(To, Orig); } void VPTransformState::addMetadata(Value *To, Instruction *From) { // No source instruction to transfer metadata from? if (!From) return; if (Instruction *ToI = dyn_cast(To)) { propagateMetadata(ToI, From); addNewMetadata(ToI, From); } } void VPTransformState::setDebugLocFrom(DebugLoc DL) { const DILocation *DIL = DL; // When a FSDiscriminator is enabled, we don't need to add the multiply // factors to the discriminators. if (DIL && Builder.GetInsertBlock() ->getParent() ->shouldEmitDebugInfoForProfiling() && !EnableFSDiscriminator) { // FIXME: For scalable vectors, assume vscale=1. auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); if (NewDIL) Builder.SetCurrentDebugLocation(*NewDIL); else LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " << DIL->getFilename() << " Line: " << DIL->getLine()); } else Builder.SetCurrentDebugLocation(DIL); } void VPTransformState::packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance) { Value *ScalarInst = get(Def, Instance); Value *VectorValue = get(Def, Instance.Part); VectorValue = Builder.CreateInsertElement( VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); set(Def, VectorValue, Instance.Part); } BasicBlock * VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. // Pred stands for Predessor. Prev stands for Previous - last visited/created. BasicBlock *PrevBB = CFG.PrevBB; BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), PrevBB->getParent(), CFG.ExitBB); LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); // Hook up the new basic block to its predecessors. for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; assert(PredBB && "Predecessor basic-block not found building successor."); auto *PredBBTerminator = PredBB->getTerminator(); LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); auto *TermBr = dyn_cast(PredBBTerminator); if (isa(PredBBTerminator)) { assert(PredVPSuccessors.size() == 1 && "Predecessor ending w/o branch must have single successor."); DebugLoc DL = PredBBTerminator->getDebugLoc(); PredBBTerminator->eraseFromParent(); auto *Br = BranchInst::Create(NewBB, PredBB); Br->setDebugLoc(DL); } else if (TermBr && !TermBr->isConditional()) { TermBr->setSuccessor(0, NewBB); } else { // Set each forward successor here when it is created, excluding // backedges. A backward successor is set when the branch is created. unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; assert(!TermBr->getSuccessor(idx) && "Trying to reset an existing successor block."); TermBr->setSuccessor(idx, NewBB); } CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); } return NewBB; } void VPIRBasicBlock::execute(VPTransformState *State) { assert(getHierarchicalSuccessors().size() <= 2 && "VPIRBasicBlock can have at most two successors at the moment!"); State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); executeRecipes(State, getIRBasicBlock()); if (getSingleSuccessor()) { assert(isa(getIRBasicBlock()->getTerminator())); auto *Br = State->Builder.CreateBr(getIRBasicBlock()); Br->setOperand(0, nullptr); getIRBasicBlock()->getTerminator()->eraseFromParent(); } for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; assert(PredBB && "Predecessor basic-block not found building successor."); LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); auto *PredBBTerminator = PredBB->getTerminator(); auto *TermBr = cast(PredBBTerminator); // Set each forward successor here when it is created, excluding // backedges. A backward successor is set when the branch is created. const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; assert(!TermBr->getSuccessor(idx) && "Trying to reset an existing successor block."); TermBr->setSuccessor(idx, IRBB); State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); } } void VPBasicBlock::execute(VPTransformState *State) { bool Replica = State->Instance && !State->Instance->isFirstIteration(); VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; VPBlockBase *SingleHPred = nullptr; BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. auto IsLoopRegion = [](VPBlockBase *BB) { auto *R = dyn_cast(BB); return R && !R->isReplicator(); }; // 1. Create an IR basic block. if (PrevVPBB && /* A */ !((SingleHPred = getSingleHierarchicalPredecessor()) && SingleHPred->getExitingBasicBlock() == PrevVPBB && PrevVPBB->getSingleHierarchicalSuccessor() && (SingleHPred->getParent() == getEnclosingLoopRegion() && !IsLoopRegion(SingleHPred))) && /* B */ !(Replica && getPredecessors().empty())) { /* C */ // The last IR basic block is reused, as an optimization, in three cases: // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; // B. when the current VPBB has a single (hierarchical) predecessor which // is PrevVPBB and the latter has a single (hierarchical) successor which // both are in the same non-replicator region; and // C. when the current VPBB is an entry of a region replica - where PrevVPBB // is the exiting VPBB of this region from a previous instance, or the // predecessor of this region. NewBB = createEmptyBasicBlock(State->CFG); State->Builder.SetInsertPoint(NewBB); // Temporarily terminate with unreachable until CFG is rewired. UnreachableInst *Terminator = State->Builder.CreateUnreachable(); // Register NewBB in its loop. In innermost loops its the same for all // BB's. if (State->CurrentVectorLoop) State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); State->Builder.SetInsertPoint(Terminator); State->CFG.PrevBB = NewBB; } // 2. Fill the IR basic block with IR instructions. executeRecipes(State, NewBB); } void VPBasicBlock::dropAllReferences(VPValue *NewValue) { for (VPRecipeBase &R : Recipes) { for (auto *Def : R.definedValues()) Def->replaceAllUsesWith(NewValue); for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) R.setOperand(I, NewValue); } } void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() << " in BB:" << BB->getName() << '\n'); State->CFG.VPBB2IRBB[this] = BB; State->CFG.PrevVPBB = this; for (VPRecipeBase &Recipe : Recipes) Recipe.execute(*State); LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); } VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { assert((SplitAt == end() || SplitAt->getParent() == this) && "can only split at a position in the same block"); SmallVector Succs(successors()); // First, disconnect the current block from its successors. for (VPBlockBase *Succ : Succs) VPBlockUtils::disconnectBlocks(this, Succ); // Create new empty block after the block to split. auto *SplitBlock = new VPBasicBlock(getName() + ".split"); VPBlockUtils::insertBlockAfter(SplitBlock, this); // Add successors for block to split to new block. for (VPBlockBase *Succ : Succs) VPBlockUtils::connectBlocks(SplitBlock, Succ); // Finally, move the recipes starting at SplitAt to new block. for (VPRecipeBase &ToMove : make_early_inc_range(make_range(SplitAt, this->end()))) ToMove.moveBefore(*SplitBlock, SplitBlock->end()); return SplitBlock; } VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { VPRegionBlock *P = getParent(); if (P && P->isReplicator()) { P = P->getParent(); assert(!cast(P)->isReplicator() && "unexpected nested replicate regions"); } return P; } static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { if (VPBB->empty()) { assert( VPBB->getNumSuccessors() < 2 && "block with multiple successors doesn't have a recipe as terminator"); return false; } const VPRecipeBase *R = &VPBB->back(); bool IsCondBranch = isa(R) || match(R, m_BranchOnCond(m_VPValue())) || match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); (void)IsCondBranch; if (VPBB->getNumSuccessors() >= 2 || (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { assert(IsCondBranch && "block with multiple successors not terminated by " "conditional branch recipe"); return true; } assert( !IsCondBranch && "block with 0 or 1 successors terminated by conditional branch recipe"); return false; } VPRecipeBase *VPBasicBlock::getTerminator() { if (hasConditionalTerminator(this)) return &back(); return nullptr; } const VPRecipeBase *VPBasicBlock::getTerminator() const { if (hasConditionalTerminator(this)) return &back(); return nullptr; } bool VPBasicBlock::isExiting() const { return getParent() && getParent()->getExitingBasicBlock() == this; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { if (getSuccessors().empty()) { O << Indent << "No successors\n"; } else { O << Indent << "Successor(s): "; ListSeparator LS; for (auto *Succ : getSuccessors()) O << LS << Succ->getName(); O << '\n'; } } void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << getName() << ":\n"; auto RecipeIndent = Indent + " "; for (const VPRecipeBase &Recipe : *this) { Recipe.print(O, RecipeIndent, SlotTracker); O << '\n'; } printSuccessors(O, Indent); } #endif static std::pair cloneFrom(VPBlockBase *Entry); // Clone the CFG for all nodes reachable from \p Entry, this includes cloning // the blocks and their recipes. Operands of cloned recipes will NOT be updated. // Remapping of operands must be done separately. Returns a pair with the new // entry and exiting blocks of the cloned region. If \p Entry isn't part of a // region, return nullptr for the exiting block. static std::pair cloneFrom(VPBlockBase *Entry) { DenseMap Old2NewVPBlocks; VPBlockBase *Exiting = nullptr; bool InRegion = Entry->getParent(); // First, clone blocks reachable from Entry. for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { VPBlockBase *NewBB = BB->clone(); Old2NewVPBlocks[BB] = NewBB; if (InRegion && BB->getNumSuccessors() == 0) { assert(!Exiting && "Multiple exiting blocks?"); Exiting = BB; } } assert((!InRegion || Exiting) && "regions must have a single exiting block"); // Second, update the predecessors & successors of the cloned blocks. for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { VPBlockBase *NewBB = Old2NewVPBlocks[BB]; SmallVector NewPreds; for (VPBlockBase *Pred : BB->getPredecessors()) { NewPreds.push_back(Old2NewVPBlocks[Pred]); } NewBB->setPredecessors(NewPreds); SmallVector NewSuccs; for (VPBlockBase *Succ : BB->successors()) { NewSuccs.push_back(Old2NewVPBlocks[Succ]); } NewBB->setSuccessors(NewSuccs); } #if !defined(NDEBUG) // Verify that the order of predecessors and successors matches in the cloned // version. for (const auto &[OldBB, NewBB] : zip(vp_depth_first_shallow(Entry), vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { for (const auto &[OldPred, NewPred] : zip(OldBB->getPredecessors(), NewBB->getPredecessors())) assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); for (const auto &[OldSucc, NewSucc] : zip(OldBB->successors(), NewBB->successors())) assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); } #endif return std::make_pair(Old2NewVPBlocks[Entry], Exiting ? Old2NewVPBlocks[Exiting] : nullptr); } VPRegionBlock *VPRegionBlock::clone() { const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); auto *NewRegion = new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) Block->setParent(NewRegion); return NewRegion; } void VPRegionBlock::dropAllReferences(VPValue *NewValue) { for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) // Drop all references in VPBasicBlocks and replace all uses with // DummyValue. Block->dropAllReferences(NewValue); } void VPRegionBlock::execute(VPTransformState *State) { ReversePostOrderTraversal> RPOT(Entry); if (!isReplicator()) { // Create and register the new vector loop. Loop *PrevLoop = State->CurrentVectorLoop; State->CurrentVectorLoop = State->LI->AllocateLoop(); BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; Loop *ParentLoop = State->LI->getLoopFor(VectorPH); // Insert the new loop into the loop nest and register the new basic blocks // before calling any utilities such as SCEV that require valid LoopInfo. if (ParentLoop) ParentLoop->addChildLoop(State->CurrentVectorLoop); else State->LI->addTopLevelLoop(State->CurrentVectorLoop); // Visit the VPBlocks connected to "this", starting from it. for (VPBlockBase *Block : RPOT) { LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } State->CurrentVectorLoop = PrevLoop; return; } assert(!State->Instance && "Replicating a Region with non-null instance."); // Enter replicating mode. State->Instance = VPIteration(0, 0); for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { State->Instance->Part = Part; assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; ++Lane) { State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); // Visit the VPBlocks connected to \p this, starting from it. for (VPBlockBase *Block : RPOT) { LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } } } // Exit replicating mode. State->Instance.reset(); } InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { InstructionCost Cost = 0; for (VPRecipeBase &R : Recipes) Cost += R.cost(VF, Ctx); return Cost; } InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { if (!isReplicator()) { InstructionCost Cost = 0; for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) Cost += Block->cost(VF, Ctx); InstructionCost BackedgeCost = Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF << ": vector loop backedge\n"); Cost += BackedgeCost; return Cost; } // Compute the cost of a replicate region. Replicating isn't supported for // scalable vectors, return an invalid cost for them. // TODO: Discard scalable VPlans with replicate recipes earlier after // construction. if (VF.isScalable()) return InstructionCost::getInvalid(); // First compute the cost of the conditionally executed recipes, followed by // account for the branching cost, except if the mask is a header mask or // uniform condition. using namespace llvm::VPlanPatternMatch; VPBasicBlock *Then = cast(getEntry()->getSuccessors()[0]); InstructionCost ThenCost = Then->cost(VF, Ctx); // For the scalar case, we may not always execute the original predicated // block, Thus, scale the block's cost by the probability of executing it. if (VF.isScalar()) return ThenCost / getReciprocalPredBlockProb(); return ThenCost; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << (isReplicator() ? " " : " ") << getName() << ": {"; auto NewIndent = Indent + " "; for (auto *BlockBase : vp_depth_first_shallow(Entry)) { O << '\n'; BlockBase->print(O, NewIndent, SlotTracker); } O << Indent << "}\n"; printSuccessors(O, Indent); } #endif VPlan::~VPlan() { for (auto &KV : LiveOuts) delete KV.second; LiveOuts.clear(); if (Entry) { VPValue DummyValue; for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) Block->dropAllReferences(&DummyValue); VPBlockBase::deleteCFG(Entry); Preheader->dropAllReferences(&DummyValue); delete Preheader; } for (VPValue *VPV : VPLiveInsToFree) delete VPV; if (BackedgeTakenCount) delete BackedgeTakenCount; } VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop) { VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); auto Plan = std::make_unique(Entry, VecPreheader); Plan->TripCount = vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); // Create VPRegionBlock, with empty header and latch blocks, to be filled // during processing later. VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/); VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); if (!RequiresScalarEpilogueCheck) { VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); return Plan; } // If needed, add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. Three cases: // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. // Thus if tail is to be folded, we know we don't need to run the // remainder and we can set the condition to true. // 2) If we require a scalar epilogue, there is no conditional branch as // we unconditionally branch to the scalar preheader. Do nothing. // 3) Otherwise, construct a runtime check. BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); // The connection order corresponds to the operands of the conditional branch. VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); // Here we use the same DebugLoc as the scalar loop latch terminator instead // of the corresponding compare because they may have ended up with // different line numbers and we want to avoid awkward line stepping while // debugging. Eg. if the compare has got a line number inside the loop. VPBuilder Builder(MiddleVPBB); VPValue *Cmp = TailFolded ? Plan->getOrAddLiveIn(ConstantInt::getTrue( IntegerType::getInt1Ty(TripCount->getType()->getContext()))) : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), &Plan->getVectorTripCount(), ScalarLatchTerm->getDebugLoc(), "cmp.n"); Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, ScalarLatchTerm->getDebugLoc()); return Plan; } void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, Value *CanonicalIVStartValue, VPTransformState &State) { // Check if the backedge taken count is needed, and if so build it. if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TripCountV->getType(), 1), "trip.count.minus.1"); BackedgeTakenCount->setUnderlyingValue(TCMO); } VectorTripCount.setUnderlyingValue(VectorTripCountV); IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); // FIXME: Model VF * UF computation completely in VPlan. VFxUF.setUnderlyingValue( createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); // When vectorizing the epilogue loop, the canonical induction start value // needs to be changed from zero to the value after the main vector loop. // FIXME: Improve modeling for canonical IV start values in the epilogue loop. if (CanonicalIVStartValue) { VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); auto *IV = getCanonicalIV(); assert(all_of(IV->users(), [](const VPUser *U) { return isa(U) || isa(U) || isa(U) || cast(U)->getOpcode() == Instruction::Add; }) && "the canonical IV should only be used by its increment or " "ScalarIVSteps when resetting the start value"); IV->setOperand(0, VPV); } } /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of /// VPBB, if any, are rewired to the new VPIRBasicBlock. static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); for (auto &R : make_early_inc_range(*VPBB)) R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end()); VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB); for (auto *Succ : to_vector(VPBB->getSuccessors())) { VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ); VPBlockUtils::disconnectBlocks(VPBB, Succ); } delete VPBB; } /// Generate the code inside the preheader and body of the vectorized loop. /// Assumes a single pre-header basic-block was created for this. Introduce /// additional basic-blocks as needed, and fill them all. void VPlan::execute(VPTransformState *State) { // Initialize CFG state. State->CFG.PrevVPBB = nullptr; State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); BasicBlock *VectorPreHeader = State->CFG.PrevBB; State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. cast(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); State->CFG.DTU.applyUpdates( {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); // Replace regular VPBB's for the middle and scalar preheader blocks with // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during // skeleton creation, so we can only create the VPIRBasicBlocks now during // VPlan execution rather than earlier during VPlan construction. BasicBlock *MiddleBB = State->CFG.ExitBB; VPBasicBlock *MiddleVPBB = cast(getVectorLoopRegion()->getSingleSuccessor()); // Find the VPBB for the scalar preheader, relying on the current structure // when creating the middle block and its successrs: if there's a single // predecessor, it must be the scalar preheader. Otherwise, the second // successor is the scalar preheader. BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); auto &MiddleSuccs = MiddleVPBB->getSuccessors(); assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && "middle block has unexpected successors"); VPBasicBlock *ScalarPhVPBB = cast( MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); assert(!isa(ScalarPhVPBB) && "scalar preheader cannot be wrapped already"); replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); // Disconnect the middle block from its single successor (the scalar loop // header) in both the CFG and DT. The branch will be recreated during VPlan // execution. auto *BrInst = new UnreachableInst(MiddleBB->getContext()); BrInst->insertBefore(MiddleBB->getTerminator()); MiddleBB->getTerminator()->eraseFromParent(); State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); // Generate code in the loop pre-header and body. for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) Block->execute(State); VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; // Fix the latch value of canonical, reduction and first-order recurrences // phis in the vector loop. VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); for (VPRecipeBase &R : Header->phis()) { // Skip phi-like recipes that generate their backedege values themselves. if (isa(&R)) continue; if (isa(&R) || isa(&R)) { PHINode *Phi = nullptr; if (isa(&R)) { Phi = cast(State->get(R.getVPSingleValue(), 0)); } else { auto *WidenPhi = cast(&R); assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && "recipe generating only scalars should have been replaced"); auto *GEP = cast(State->get(WidenPhi, 0)); Phi = cast(GEP->getPointerOperand()); } Phi->setIncomingBlock(1, VectorLatchBB); // Move the last step to the end of the latch block. This ensures // consistent placement of all induction updates. Instruction *Inc = cast(Phi->getIncomingValue(1)); Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); continue; } auto *PhiR = cast(&R); // For canonical IV, first-order recurrences and in-order reduction phis, // only a single part is generated, which provides the last part from the // previous iteration. For non-ordered reductions all UF parts are // generated. bool SinglePartNeeded = isa(PhiR) || isa(PhiR) || (isa(PhiR) && cast(PhiR)->isOrdered()); bool NeedsScalar = isa(PhiR) || (isa(PhiR) && cast(PhiR)->isInLoop()); unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { Value *Phi = State->get(PhiR, Part, NeedsScalar); Value *Val = State->get(PhiR->getBackedgeValue(), SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); cast(Phi)->addIncoming(Val, VectorLatchBB); } } State->CFG.DTU.flush(); assert(State->CFG.DTU.getDomTree().verify( DominatorTree::VerificationLevel::Fast) && "DT not preserved correctly"); } InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { // For now only return the cost of the vector loop region, ignoring any other // blocks, like the preheader or middle blocks. return getVectorLoopRegion()->cost(VF, Ctx); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPlan::printLiveIns(raw_ostream &O) const { VPSlotTracker SlotTracker(this); if (VFxUF.getNumUsers() > 0) { O << "\nLive-in "; VFxUF.printAsOperand(O, SlotTracker); O << " = VF * UF"; } if (VectorTripCount.getNumUsers() > 0) { O << "\nLive-in "; VectorTripCount.printAsOperand(O, SlotTracker); O << " = vector-trip-count"; } if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { O << "\nLive-in "; BackedgeTakenCount->printAsOperand(O, SlotTracker); O << " = backedge-taken count"; } O << "\n"; if (TripCount->isLiveIn()) O << "Live-in "; TripCount->printAsOperand(O, SlotTracker); O << " = original trip-count"; O << "\n"; } LLVM_DUMP_METHOD void VPlan::print(raw_ostream &O) const { VPSlotTracker SlotTracker(this); O << "VPlan '" << getName() << "' {"; printLiveIns(O); if (!getPreheader()->empty()) { O << "\n"; getPreheader()->print(O, "", SlotTracker); } for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { O << '\n'; Block->print(O, "", SlotTracker); } if (!LiveOuts.empty()) O << "\n"; for (const auto &KV : LiveOuts) { KV.second->print(O, SlotTracker); } O << "}\n"; } std::string VPlan::getName() const { std::string Out; raw_string_ostream RSO(Out); RSO << Name << " for "; if (!VFs.empty()) { RSO << "VF={" << VFs[0]; for (ElementCount VF : drop_begin(VFs)) RSO << "," << VF; RSO << "},"; } if (UFs.empty()) { RSO << "UF>=1"; } else { RSO << "UF={" << UFs[0]; for (unsigned UF : drop_begin(UFs)) RSO << "," << UF; RSO << "}"; } return Out; } LLVM_DUMP_METHOD void VPlan::printDOT(raw_ostream &O) const { VPlanPrinter Printer(O, *this); Printer.dump(); } LLVM_DUMP_METHOD void VPlan::dump() const { print(dbgs()); } #endif void VPlan::addLiveOut(PHINode *PN, VPValue *V) { assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); LiveOuts.insert({PN, new VPLiveOut(PN, V)}); } static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap &Old2NewVPValues) { // Update the operands of all cloned recipes starting at NewEntry. This // traverses all reachable blocks. This is done in two steps, to handle cycles // in PHI recipes. ReversePostOrderTraversal> OldDeepRPOT(Entry); ReversePostOrderTraversal> NewDeepRPOT(NewEntry); // First, collect all mappings from old to new VPValues defined by cloned // recipes. for (const auto &[OldBB, NewBB] : zip(VPBlockUtils::blocksOnly(OldDeepRPOT), VPBlockUtils::blocksOnly(NewDeepRPOT))) { assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && "blocks must have the same number of recipes"); for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { assert(OldR.getNumOperands() == NewR.getNumOperands() && "recipes must have the same number of operands"); assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && "recipes must define the same number of operands"); for (const auto &[OldV, NewV] : zip(OldR.definedValues(), NewR.definedValues())) Old2NewVPValues[OldV] = NewV; } } // Update all operands to use cloned VPValues. for (VPBasicBlock *NewBB : VPBlockUtils::blocksOnly(NewDeepRPOT)) { for (VPRecipeBase &NewR : *NewBB) for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); NewR.setOperand(I, NewOp); } } } VPlan *VPlan::duplicate() { // Clone blocks. VPBasicBlock *NewPreheader = Preheader->clone(); const auto &[NewEntry, __] = cloneFrom(Entry); // Create VPlan, clone live-ins and remap operands in the cloned blocks. auto *NewPlan = new VPlan(NewPreheader, cast(NewEntry)); DenseMap Old2NewVPValues; for (VPValue *OldLiveIn : VPLiveInsToFree) { Old2NewVPValues[OldLiveIn] = NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); } Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; if (BackedgeTakenCount) { NewPlan->BackedgeTakenCount = new VPValue(); Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; } assert(TripCount && "trip count must be set"); if (TripCount->isLiveIn()) Old2NewVPValues[TripCount] = NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); // else NewTripCount will be created and inserted into Old2NewVPValues when // TripCount is cloned. In any case NewPlan->TripCount is updated below. remapOperands(Preheader, NewPreheader, Old2NewVPValues); remapOperands(Entry, NewEntry, Old2NewVPValues); // Clone live-outs. for (const auto &[_, LO] : LiveOuts) NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); // Initialize remaining fields of cloned VPlan. NewPlan->VFs = VFs; NewPlan->UFs = UFs; // TODO: Adjust names. NewPlan->Name = Name; assert(Old2NewVPValues.contains(TripCount) && "TripCount must have been added to Old2NewVPValues"); NewPlan->TripCount = Old2NewVPValues[TripCount]; return NewPlan; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) Twine VPlanPrinter::getUID(const VPBlockBase *Block) { return (isa(Block) ? "cluster_N" : "N") + Twine(getOrCreateBID(Block)); } Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { const std::string &Name = Block->getName(); if (!Name.empty()) return Name; return "VPB" + Twine(getOrCreateBID(Block)); } void VPlanPrinter::dump() { Depth = 1; bumpIndent(0); OS << "digraph VPlan {\n"; OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; if (!Plan.getName().empty()) OS << "\\n" << DOT::EscapeString(Plan.getName()); { // Print live-ins. std::string Str; raw_string_ostream SS(Str); Plan.printLiveIns(SS); SmallVector Lines; StringRef(Str).rtrim('\n').split(Lines, "\n"); for (auto Line : Lines) OS << DOT::EscapeString(Line.str()) << "\\n"; } OS << "\"]\n"; OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; OS << "edge [fontname=Courier, fontsize=30]\n"; OS << "compound=true\n"; dumpBlock(Plan.getPreheader()); for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) dumpBlock(Block); OS << "}\n"; } void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { if (const VPBasicBlock *BasicBlock = dyn_cast(Block)) dumpBasicBlock(BasicBlock); else if (const VPRegionBlock *Region = dyn_cast(Block)) dumpRegion(Region); else llvm_unreachable("Unsupported kind of VPBlock."); } void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, const Twine &Label) { // Due to "dot" we print an edge between two regions as an edge between the // exiting basic block and the entry basic of the respective regions. const VPBlockBase *Tail = From->getExitingBasicBlock(); const VPBlockBase *Head = To->getEntryBasicBlock(); OS << Indent << getUID(Tail) << " -> " << getUID(Head); OS << " [ label=\"" << Label << '\"'; if (Tail != From) OS << " ltail=" << getUID(From); if (Head != To) OS << " lhead=" << getUID(To); if (Hidden) OS << "; splines=none"; OS << "]\n"; } void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { auto &Successors = Block->getSuccessors(); if (Successors.size() == 1) drawEdge(Block, Successors.front(), false, ""); else if (Successors.size() == 2) { drawEdge(Block, Successors.front(), false, "T"); drawEdge(Block, Successors.back(), false, "F"); } else { unsigned SuccessorNumber = 0; for (auto *Successor : Successors) drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); } } void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { // Implement dot-formatted dump by performing plain-text dump into the // temporary storage followed by some post-processing. OS << Indent << getUID(BasicBlock) << " [label =\n"; bumpIndent(1); std::string Str; raw_string_ostream SS(Str); // Use no indentation as we need to wrap the lines into quotes ourselves. BasicBlock->print(SS, "", SlotTracker); // We need to process each line of the output separately, so split // single-string plain-text dump. SmallVector Lines; StringRef(Str).rtrim('\n').split(Lines, "\n"); auto EmitLine = [&](StringRef Line, StringRef Suffix) { OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; }; // Don't need the "+" after the last line. for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) EmitLine(Line, " +\n"); EmitLine(Lines.back(), "\n"); bumpIndent(-1); OS << Indent << "]\n"; dumpEdges(BasicBlock); } void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { OS << Indent << "subgraph " << getUID(Region) << " {\n"; bumpIndent(1); OS << Indent << "fontname=Courier\n" << Indent << "label=\"" << DOT::EscapeString(Region->isReplicator() ? " " : " ") << DOT::EscapeString(Region->getName()) << "\"\n"; // Dump the blocks of the region. assert(Region->getEntry() && "Region contains no inner blocks."); for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) dumpBlock(Block); bumpIndent(-1); OS << Indent << "}\n"; dumpEdges(Region); } void VPlanIngredient::print(raw_ostream &O) const { if (auto *Inst = dyn_cast(V)) { if (!Inst->getType()->isVoidTy()) { Inst->printAsOperand(O, false); O << " = "; } O << Inst->getOpcodeName() << " "; unsigned E = Inst->getNumOperands(); if (E > 0) { Inst->getOperand(0)->printAsOperand(O, false); for (unsigned I = 1; I < E; ++I) Inst->getOperand(I)->printAsOperand(O << ", ", false); } } else // !Inst V->printAsOperand(O, false); } #endif template void DomTreeBuilder::Calculate(VPDominatorTree &DT); void VPValue::replaceAllUsesWith(VPValue *New) { replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); } void VPValue::replaceUsesWithIf( VPValue *New, llvm::function_ref ShouldReplace) { // Note that this early exit is required for correctness; the implementation // below relies on the number of users for this VPValue to decrease, which // isn't the case if this == New. if (this == New) return; for (unsigned J = 0; J < getNumUsers();) { VPUser *User = Users[J]; bool RemovedUser = false; for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { if (User->getOperand(I) != this || !ShouldReplace(*User, I)) continue; RemovedUser = true; User->setOperand(I, New); } // If a user got removed after updating the current user, the next user to // update will be moved to the current position, so we only need to // increment the index if the number of users did not change. if (!RemovedUser) J++; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { OS << Tracker.getOrCreateName(this); } void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { Op->printAsOperand(O, SlotTracker); }); } #endif void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { ReversePostOrderTraversal> RPOT(Region->getEntry()); for (VPBlockBase *Base : RPOT) { visitBlock(Base, Old2New, IAI); } } void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { if (VPBasicBlock *VPBB = dyn_cast(Block)) { for (VPRecipeBase &VPI : *VPBB) { if (isa(&VPI)) continue; assert(isa(&VPI) && "Can only handle VPInstructions"); auto *VPInst = cast(&VPI); auto *Inst = dyn_cast_or_null(VPInst->getUnderlyingValue()); if (!Inst) continue; auto *IG = IAI.getInterleaveGroup(Inst); if (!IG) continue; auto NewIGIter = Old2New.find(IG); if (NewIGIter == Old2New.end()) Old2New[IG] = new InterleaveGroup( IG->getFactor(), IG->isReverse(), IG->getAlign()); if (Inst == IG->getInsertPos()) Old2New[IG]->setInsertPos(VPInst); InterleaveGroupMap[VPInst] = Old2New[IG]; InterleaveGroupMap[VPInst]->insertMember( VPInst, IG->getIndex(Inst), Align(IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor())); } } else if (VPRegionBlock *Region = dyn_cast(Block)) visitRegion(Region, Old2New, IAI); else llvm_unreachable("Unsupported kind of VPBlock."); } VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI) { Old2NewTy Old2New; visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); } void VPSlotTracker::assignName(const VPValue *V) { assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); auto *UV = V->getUnderlyingValue(); if (!UV) { VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); NextSlot++; return; } // Use the name of the underlying Value, wrapped in "ir<>", and versioned by // appending ".Number" to the name if there are multiple uses. std::string Name; raw_string_ostream S(Name); UV->printAsOperand(S, false); assert(!Name.empty() && "Name cannot be empty."); std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); // First assign the base name for V. const auto &[A, _] = VPValue2Name.insert({V, BaseName}); // Integer or FP constants with different types will result in he same string // due to stripping types. if (V->isLiveIn() && isa(UV)) return; // If it is already used by C > 0 other VPValues, increase the version counter // C and use it for V. const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); if (!UseInserted) { C->second++; A->second = (BaseName + Twine(".") + Twine(C->second)).str(); } } void VPSlotTracker::assignNames(const VPlan &Plan) { if (Plan.VFxUF.getNumUsers() > 0) assignName(&Plan.VFxUF); assignName(&Plan.VectorTripCount); if (Plan.BackedgeTakenCount) assignName(Plan.BackedgeTakenCount); for (VPValue *LI : Plan.VPLiveInsToFree) assignName(LI); assignNames(Plan.getPreheader()); ReversePostOrderTraversal> RPOT(VPBlockDeepTraversalWrapper(Plan.getEntry())); for (const VPBasicBlock *VPBB : VPBlockUtils::blocksOnly(RPOT)) assignNames(VPBB); } void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { for (const VPRecipeBase &Recipe : *VPBB) for (VPValue *Def : Recipe.definedValues()) assignName(Def); } std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { std::string Name = VPValue2Name.lookup(V); if (!Name.empty()) return Name; // If no name was assigned, no VPlan was provided when creating the slot // tracker or it is not reachable from the provided VPlan. This can happen, // e.g. when trying to print a recipe that has not been inserted into a VPlan // in a debugger. // TODO: Update VPSlotTracker constructor to assign names to recipes & // VPValues not associated with a VPlan, instead of constructing names ad-hoc // here. const VPRecipeBase *DefR = V->getDefiningRecipe(); (void)DefR; assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && "VPValue defined by a recipe in a VPlan?"); // Use the underlying value's name, if there is one. if (auto *UV = V->getUnderlyingValue()) { std::string Name; raw_string_ostream S(Name); UV->printAsOperand(S, false); return (Twine("ir<") + Name + ">").str(); } return ""; } bool vputils::onlyFirstLaneUsed(const VPValue *Def) { return all_of(Def->users(), [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); }); } bool vputils::onlyFirstPartUsed(const VPValue *Def) { return all_of(Def->users(), [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); }); } VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE) { if (auto *Expanded = Plan.getSCEVExpansion(Expr)) return Expanded; VPValue *Expanded = nullptr; if (auto *E = dyn_cast(Expr)) Expanded = Plan.getOrAddLiveIn(E->getValue()); else if (auto *E = dyn_cast(Expr)) Expanded = Plan.getOrAddLiveIn(E->getValue()); else { Expanded = new VPExpandSCEVRecipe(Expr, SE); Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); } Plan.addSCEVExpansion(Expr, Expanded); return Expanded; } bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) { if (isa(V)) return true; auto IsWideCanonicalIV = [](VPValue *A) { return isa(A) || (isa(A) && cast(A)->isCanonical()); }; VPValue *A, *B; if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B)))) return B == Plan.getTripCount() && (match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) || IsWideCanonicalIV(A)); return match(V, m_Binary(m_VPValue(A), m_VPValue(B))) && IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount(); }