//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks // with control-flow edges incident from outside the SCC. This pass converts a // irreducible SCC into a natural loop by applying the following transformation: // // 1. Collect the set of headers H of the SCC. // 2. Collect the set of predecessors P of these headers. These may be inside as // well as outside the SCC. // 3. Create block N and redirect every edge from set P to set H through N. // // This converts the SCC into a natural loop with N as the header: N is the only // block with edges incident from outside the SCC, and all backedges in the SCC // are incident on N, i.e., for every backedge, the head now dominates the tail. // // INPUT CFG: The blocks A and B form an irreducible loop with two headers. // // Entry // / \ // v v // A ----> B // ^ /| // `----' | // v // Exit // // OUTPUT CFG: Edges incident on A and B are now redirected through a // new block N, forming a natural loop consisting of N, A and B. // // Entry // | // v // .---> N <---. // / / \ \ // | / \ | // \ v v / // `-- A B --' // | // v // Exit // // The transformation is applied to every maximal SCC that is not already // recognized as a loop. The pass operates on all maximal SCCs found in the // function body outside of any loop, as well as those found inside each loop, // including inside any newly created loops. This ensures that any SCC hidden // inside a maximal SCC is also transformed. // // The actual transformation is handled by function CreateControlFlowHub, which // takes a set of incoming blocks (the predecessors) and outgoing blocks (the // headers). The function also moves every PHINode in an outgoing block to the // hub. Since the hub dominates all the outgoing blocks, each such PHINode // continues to dominate its uses. Since every header in an SCC has at least two // predecessors, every value used in the header (or later) but defined in a // predecessor (or earlier) is represented by a PHINode in a header. Hence the // above handling of PHINodes is sufficient and no further processing is // required to restore SSA. // // Limitation: The pass cannot handle switch statements and indirect // branches. Both must be lowered to plain branches first. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/FixIrreducible.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #define DEBUG_TYPE "fix-irreducible" using namespace llvm; namespace { struct FixIrreducible : public FunctionPass { static char ID; FixIrreducible() : FunctionPass(ID) { initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } bool runOnFunction(Function &F) override; }; } // namespace char FixIrreducible::ID = 0; FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible", "Convert irreducible control-flow into natural loops", false /* Only looks at CFG */, false /* Analysis Pass */) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible", "Convert irreducible control-flow into natural loops", false /* Only looks at CFG */, false /* Analysis Pass */) // When a new loop is created, existing children of the parent loop may now be // fully inside the new loop. Reconnect these as children of the new loop. static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, SetVector &Blocks, SetVector &Headers) { auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() : LI.getTopLevelLoopsVector(); // The new loop cannot be its own child, and any candidate is a // child iff its header is owned by the new loop. Move all the // children to a new vector. auto FirstChild = std::partition( CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) { return L == NewLoop || !Blocks.contains(L->getHeader()); }); SmallVector ChildLoops(FirstChild, CandidateLoops.end()); CandidateLoops.erase(FirstChild, CandidateLoops.end()); for (Loop *Child : ChildLoops) { LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() << "\n"); // TODO: A child loop whose header is also a header in the current // SCC gets destroyed since its backedges are removed. That may // not be necessary if we can retain such backedges. if (Headers.count(Child->getHeader())) { for (auto *BB : Child->blocks()) { if (LI.getLoopFor(BB) != Child) continue; LI.changeLoopFor(BB, NewLoop); LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() << "\n"); } std::vector GrandChildLoops; std::swap(GrandChildLoops, Child->getSubLoopsVector()); for (auto *GrandChildLoop : GrandChildLoops) { GrandChildLoop->setParentLoop(nullptr); NewLoop->addChildLoop(GrandChildLoop); } LI.destroy(Child); LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n"); continue; } Child->setParentLoop(nullptr); NewLoop->addChildLoop(Child); LLVM_DEBUG(dbgs() << "added child loop to new loop\n"); } } // Given a set of blocks and headers in an irreducible SCC, convert it into a // natural loop. Also insert this new loop at its appropriate place in the // hierarchy of loops. static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, Loop *ParentLoop, SetVector &Blocks, SetVector &Headers) { #ifndef NDEBUG // All headers are part of the SCC for (auto *H : Headers) { assert(Blocks.count(H)); } #endif SetVector Predecessors; for (auto *H : Headers) { for (auto *P : predecessors(H)) { Predecessors.insert(P); } } LLVM_DEBUG( dbgs() << "Found predecessors:"; for (auto P : Predecessors) { dbgs() << " " << P->getName(); } dbgs() << "\n"); // Redirect all the backedges through a "hub" consisting of a series // of guard blocks that manage the flow of control from the // predecessors to the headers. SmallVector GuardBlocks; DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr"); #if defined(EXPENSIVE_CHECKS) assert(DT.verify(DominatorTree::VerificationLevel::Full)); #else assert(DT.verify(DominatorTree::VerificationLevel::Fast)); #endif // Create a new loop from the now-transformed cycle auto NewLoop = LI.AllocateLoop(); if (ParentLoop) { ParentLoop->addChildLoop(NewLoop); } else { LI.addTopLevelLoop(NewLoop); } // Add the guard blocks to the new loop. The first guard block is // the head of all the backedges, and it is the first to be inserted // in the loop. This ensures that it is recognized as the // header. Since the new loop is already in LoopInfo, the new blocks // are also propagated up the chain of parent loops. for (auto *G : GuardBlocks) { LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n"); NewLoop->addBasicBlockToLoop(G, LI); } // Add the SCC blocks to the new loop. for (auto *BB : Blocks) { NewLoop->addBlockEntry(BB); if (LI.getLoopFor(BB) == ParentLoop) { LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() << "\n"); LI.changeLoopFor(BB, NewLoop); } else { LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n"); } } LLVM_DEBUG(dbgs() << "header for new loop: " << NewLoop->getHeader()->getName() << "\n"); reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); NewLoop->verifyLoop(); if (ParentLoop) { ParentLoop->verifyLoop(); } #if defined(EXPENSIVE_CHECKS) LI.verify(DT); #endif // EXPENSIVE_CHECKS } namespace llvm { // Enable the graph traits required for traversing a Loop body. template <> struct GraphTraits : LoopBodyTraits {}; } // namespace llvm // Overloaded wrappers to go with the function template below. static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, SetVector &Blocks, SetVector &Headers) { createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers); } static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, SetVector &Blocks, SetVector &Headers) { createNaturalLoopInternal(LI, DT, &L, Blocks, Headers); } // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. template static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { bool Changed = false; for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { if (Scc->size() < 2) continue; SetVector Blocks; LLVM_DEBUG(dbgs() << "Found SCC:"); for (auto N : *Scc) { auto BB = unwrapBlock(N); LLVM_DEBUG(dbgs() << " " << BB->getName()); Blocks.insert(BB); } LLVM_DEBUG(dbgs() << "\n"); // Minor optimization: The SCC blocks are usually discovered in an order // that is the opposite of the order in which these blocks appear as branch // targets. This results in a lot of condition inversions in the control // flow out of the new ControlFlowHub, which can be mitigated if the orders // match. So we discover the headers using the reverse of the block order. SetVector Headers; LLVM_DEBUG(dbgs() << "Found headers:"); for (auto *BB : reverse(Blocks)) { for (const auto P : predecessors(BB)) { // Skip unreachable predecessors. if (!DT.isReachableFromEntry(P)) continue; if (!Blocks.count(P)) { LLVM_DEBUG(dbgs() << " " << BB->getName()); Headers.insert(BB); break; } } } LLVM_DEBUG(dbgs() << "\n"); if (Headers.size() == 1) { assert(LI.isLoopHeader(Headers.front())); LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n"); continue; } createNaturalLoop(LI, DT, G, Blocks, Headers); Changed = true; } return Changed; } static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) { LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " << F.getName() << "\n"); assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator."); bool Changed = false; SmallVector WorkList; LLVM_DEBUG(dbgs() << "visiting top-level\n"); Changed |= makeReducible(LI, DT, &F); // Any SCCs reduced are now already in the list of top-level loops, so simply // add them all to the worklist. append_range(WorkList, LI); while (!WorkList.empty()) { auto L = WorkList.pop_back_val(); LLVM_DEBUG(dbgs() << "visiting loop with header " << L->getHeader()->getName() << "\n"); Changed |= makeReducible(LI, DT, *L); // Any SCCs reduced are now already in the list of child loops, so simply // add them all to the worklist. WorkList.append(L->begin(), L->end()); } return Changed; } bool FixIrreducible::runOnFunction(Function &F) { auto &LI = getAnalysis().getLoopInfo(); auto &DT = getAnalysis().getDomTree(); return FixIrreducibleImpl(F, LI, DT); } PreservedAnalyses FixIrreduciblePass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &DT = AM.getResult(F); if (!FixIrreducibleImpl(F, LI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; }