//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the transformation that promotes indirect calls to // conditional direct calls when the indirect-call value profile metadata is // available. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" #include "llvm/Analysis/IndirectCallVisitor.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/IR/Value.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" #include "llvm/Transforms/Utils/CallPromotionUtils.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "pgo-icall-prom" STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); extern cl::opt MaxNumVTableAnnotations; namespace llvm { extern cl::opt EnableVTableProfileUse; } // Command line option to disable indirect-call promotion with the default as // false. This is for debug purpose. static cl::opt DisableICP("disable-icp", cl::init(false), cl::Hidden, cl::desc("Disable indirect call promotion")); // Set the cutoff value for the promotion. If the value is other than 0, we // stop the transformation once the total number of promotions equals the cutoff // value. // For debug use only. static cl::opt ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, cl::desc("Max number of promotions for this compilation")); // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. // For debug use only. static cl::opt ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, cl::desc("Skip Callsite up to this number for this compilation")); // Set if the pass is called in LTO optimization. The difference for LTO mode // is the pass won't prefix the source module name to the internal linkage // symbols. static cl::opt ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, cl::desc("Run indirect-call promotion in LTO " "mode")); // Set if the pass is called in SamplePGO mode. The difference for SamplePGO // mode is it will add prof metadatato the created direct call. static cl::opt ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, cl::desc("Run indirect-call promotion in SamplePGO mode")); // If the option is set to true, only call instructions will be considered for // transformation -- invoke instructions will be ignored. static cl::opt ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, cl::desc("Run indirect-call promotion for call instructions " "only")); // If the option is set to true, only invoke instructions will be considered for // transformation -- call instructions will be ignored. static cl::opt ICPInvokeOnly("icp-invoke-only", cl::init(false), cl::Hidden, cl::desc("Run indirect-call promotion for " "invoke instruction only")); // Dump the function level IR if the transformation happened in this // function. For debug use only. static cl::opt ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, cl::desc("Dump IR after transformation happens")); // Indirect call promotion pass will fall back to function-based comparison if // vtable-count / function-count is smaller than this threshold. static cl::opt ICPVTablePercentageThreshold( "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden, cl::desc("The percentage threshold of vtable-count / function-count for " "cost-benefit analysis.")); // Although comparing vtables can save a vtable load, we may need to compare // vtable pointer with multiple vtable address points due to class inheritance. // Comparing with multiple vtables inserts additional instructions on hot code // path, and doing so for an earlier candidate delays the comparisons for later // candidates. For the last candidate, only the fallback path is affected. // We allow multiple vtable comparison for the last function candidate and use // the option below to cap the number of vtables. static cl::opt ICPMaxNumVTableLastCandidate( "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden, cl::desc("The maximum number of vtable for the last candidate.")); namespace { // The key is a vtable global variable, and the value is a map. // In the inner map, the key represents address point offsets and the value is a // constant for this address point. using VTableAddressPointOffsetValMap = SmallDenseMap>; // A struct to collect type information for a virtual call site. struct VirtualCallSiteInfo { // The offset from the address point to virtual function in the vtable. uint64_t FunctionOffset; // The instruction that computes the address point of vtable. Instruction *VPtr; // The compatible type used in LLVM type intrinsics. StringRef CompatibleTypeStr; }; // The key is a virtual call, and value is its type information. using VirtualCallSiteTypeInfoMap = SmallDenseMap; // The key is vtable GUID, and value is its value profile count. using VTableGUIDCountsMap = SmallDenseMap; // Return the address point offset of the given compatible type. // // Type metadata of a vtable specifies the types that can contain a pointer to // this vtable, for example, `Base*` can be a pointer to an derived type // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html static std::optional getAddressPointOffset(const GlobalVariable &VTableVar, StringRef CompatibleType) { SmallVector Types; VTableVar.getMetadata(LLVMContext::MD_type, Types); for (MDNode *Type : Types) if (auto *TypeId = dyn_cast(Type->getOperand(1).get()); TypeId && TypeId->getString() == CompatibleType) return cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); return std::nullopt; } // Return a constant representing the vtable's address point specified by the // offset. static Constant *getVTableAddressPointOffset(GlobalVariable *VTable, uint32_t AddressPointOffset) { Module &M = *VTable->getParent(); LLVMContext &Context = M.getContext(); assert(AddressPointOffset < M.getDataLayout().getTypeAllocSize(VTable->getValueType()) && "Out-of-bound access"); return ConstantExpr::getInBoundsGetElementPtr( Type::getInt8Ty(Context), VTable, llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset)); } // Return the basic block in which Use `U` is used via its `UserInst`. static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) { if (PHINode *PN = dyn_cast(UserInst)) return PN->getIncomingBlock(U); return UserInst->getParent(); } // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()` // is the sole predecessor of `DestBB` and `DestBB` is dominated by // `Inst->getParent()`. static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) { // 'BB' is used only by assert. [[maybe_unused]] BasicBlock *BB = Inst->getParent(); assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 && DestBB->getUniquePredecessor() == BB && "Guaranteed by ICP transformation"); BasicBlock *UserBB = nullptr; for (Use &Use : Inst->uses()) { User *User = Use.getUser(); // Do checked cast since IR verifier guarantees that the user of an // instruction must be an instruction. See `Verifier::visitInstruction`. Instruction *UserInst = cast(User); // We can sink debug or pseudo instructions together with Inst. if (UserInst->isDebugOrPseudoInst()) continue; UserBB = getUserBasicBlock(Use, UserInst); // Do not sink if Inst is used in a basic block that is not DestBB. // TODO: Sink to the common dominator of all user blocks. if (UserBB != DestBB) return false; } return UserBB != nullptr; } // For the virtual call dispatch sequence, try to sink vtable load instructions // to the cold indirect call fallback. // FIXME: Move the sink eligibility check below to a utility function in // Transforms/Utils/ directory. static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { if (!isDestBBSuitableForSink(I, DestBlock)) return false; // Do not move control-flow-involving, volatile loads, vaarg, alloca // instructions, etc. if (isa(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || isa(I)) return false; // Do not sink convergent call instructions. if (const auto *C = dyn_cast(I)) if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) return false; // Do not move an instruction that may write to memory. if (I->mayWriteToMemory()) return false; // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (I->mayReadFromMemory()) { // We already know that SrcBlock is the unique predecessor of DestBlock. for (BasicBlock::iterator Scan = std::next(I->getIterator()), E = I->getParent()->end(); Scan != E; ++Scan) { // Note analysis analysis can tell whether two pointers can point to the // same object in memory or not thereby find further opportunities to // sink. if (Scan->mayWriteToMemory()) return false; } } BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); I->moveBefore(*DestBlock, InsertPos); // TODO: Sink debug intrinsic users of I to 'DestBlock'. // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have // the core logic to do this. return true; } // Try to sink instructions after VPtr to the indirect call fallback. // Return the number of sunk IR instructions. static int tryToSinkInstructions(BasicBlock *OriginalBB, BasicBlock *IndirectCallBB) { int SinkCount = 0; // Do not sink across a critical edge for simplicity. if (IndirectCallBB->getUniquePredecessor() != OriginalBB) return SinkCount; // Sink all eligible instructions in OriginalBB in reverse order. for (Instruction &I : llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB)))) if (tryToSinkInstruction(&I, IndirectCallBB)) SinkCount++; return SinkCount; } // Promote indirect calls to conditional direct calls, keeping track of // thresholds. class IndirectCallPromoter { private: Function &F; Module &M; ProfileSummaryInfo *PSI = nullptr; // Symtab that maps indirect call profile values to function names and // defines. InstrProfSymtab *const Symtab; const bool SamplePGO; // A map from a virtual call to its type information. const VirtualCallSiteTypeInfoMap &VirtualCSInfo; VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal; OptimizationRemarkEmitter &ORE; // A struct that records the direct target and it's call count. struct PromotionCandidate { Function *const TargetFunction; const uint64_t Count; // The following fields only exists for promotion candidates with vtable // information. // // Due to class inheritance, one virtual call candidate can come from // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and // counts for 'TargetFunction'. `AddressPoints` stores the vtable address // points for comparison. VTableGUIDCountsMap VTableGUIDAndCounts; SmallVector AddressPoints; PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} }; // Check if the indirect-call call site should be promoted. Return the number // of promotions. Inst is the candidate indirect call, ValueDataRef // contains the array of value profile data for profiled targets, // TotalCount is the total profiled count of call executions, and // NumCandidates is the number of candidate entries in ValueDataRef. std::vector getPromotionCandidatesForCallSite( const CallBase &CB, ArrayRef ValueDataRef, uint64_t TotalCount, uint32_t NumCandidates); // Promote a list of targets for one indirect-call callsite by comparing // indirect callee with functions. Return true if there are IR // transformations and false otherwise. bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr, ArrayRef Candidates, uint64_t TotalCount, ArrayRef ICallProfDataRef, uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts); // Promote a list of targets for one indirect call by comparing vtables with // functions. Return true if there are IR transformations and false // otherwise. bool tryToPromoteWithVTableCmp( CallBase &CB, Instruction *VPtr, ArrayRef Candidates, uint64_t TotalFuncCount, uint32_t NumCandidates, MutableArrayRef ICallProfDataRef, VTableGUIDCountsMap &VTableGUIDCounts); // Return true if it's profitable to compare vtables for the callsite. bool isProfitableToCompareVTables(const CallBase &CB, ArrayRef Candidates, uint64_t TotalCount); // Given an indirect callsite and the list of function candidates, compute // the following vtable information in output parameters and return vtable // pointer if type profiles exist. // - Populate `VTableGUIDCounts` with using !prof // metadata attached on the vtable pointer. // - For each function candidate, finds out the vtables from which it gets // called and stores the in promotion candidate. Instruction *computeVTableInfos(const CallBase *CB, VTableGUIDCountsMap &VTableGUIDCounts, std::vector &Candidates); Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV, uint64_t AddressPointOffset); void updateFuncValueProfiles(CallBase &CB, ArrayRef VDs, uint64_t Sum, uint32_t MaxMDCount); void updateVPtrValueProfiles(Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts); public: IndirectCallPromoter( Function &Func, Module &M, ProfileSummaryInfo *PSI, InstrProfSymtab *Symtab, bool SamplePGO, const VirtualCallSiteTypeInfoMap &VirtualCSInfo, VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal, OptimizationRemarkEmitter &ORE) : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO), VirtualCSInfo(VirtualCSInfo), VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {} IndirectCallPromoter(const IndirectCallPromoter &) = delete; IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete; bool processFunction(ProfileSummaryInfo *PSI); }; } // end anonymous namespace // Indirect-call promotion heuristic. The direct targets are sorted based on // the count. Stop at the first target that is not promoted. std::vector IndirectCallPromoter::getPromotionCandidatesForCallSite( const CallBase &CB, ArrayRef ValueDataRef, uint64_t TotalCount, uint32_t NumCandidates) { std::vector Ret; LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB << " Num_targets: " << ValueDataRef.size() << " Num_candidates: " << NumCandidates << "\n"); NumOfPGOICallsites++; if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { LLVM_DEBUG(dbgs() << " Skip: User options.\n"); return Ret; } for (uint32_t I = 0; I < NumCandidates; I++) { uint64_t Count = ValueDataRef[I].Count; assert(Count <= TotalCount); (void)TotalCount; uint64_t Target = ValueDataRef[I].Value; LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count << " Target_func: " << Target << "\n"); if (ICPInvokeOnly && isa(CB)) { LLVM_DEBUG(dbgs() << " Not promote: User options.\n"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) << " Not promote: User options"; }); break; } if (ICPCallOnly && isa(CB)) { LLVM_DEBUG(dbgs() << " Not promote: User option.\n"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) << " Not promote: User options"; }); break; } if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB) << " Not promote: Cutoff reached"; }); break; } // Don't promote if the symbol is not defined in the module. This avoids // creating a reference to a symbol that doesn't exist in the module // This can happen when we compile with a sample profile collected from // one binary but used for another, which may have profiled targets that // aren't used in the new binary. We might have a declaration initially in // the case where the symbol is globally dead in the binary and removed by // ThinLTO. Function *TargetFunction = Symtab->getFunction(Target); if (TargetFunction == nullptr || TargetFunction->isDeclaration()) { LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB) << "Cannot promote indirect call: target with md5sum " << ore::NV("target md5sum", Target) << " not found"; }); break; } const char *Reason = nullptr; if (!isLegalToPromote(CB, TargetFunction, &Reason)) { using namespace ore; ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB) << "Cannot promote indirect call to " << NV("TargetFunction", TargetFunction) << " with count of " << NV("Count", Count) << ": " << Reason; }); break; } Ret.push_back(PromotionCandidate(TargetFunction, Count)); TotalCount -= Count; } return Ret; } Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar( GlobalVariable *GV, uint64_t AddressPointOffset) { auto [Iter, Inserted] = VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr); if (Inserted) Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset); return Iter->second; } Instruction *IndirectCallPromoter::computeVTableInfos( const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap, std::vector &Candidates) { if (!EnableVTableProfileUse) return nullptr; // Take the following code sequence as an example, here is how the code works // @vtable1 = {[n x ptr] [... ptr @func1]} // @vtable2 = {[m x ptr] [... ptr @func2]} // // %vptr = load ptr, ptr %d, !prof !0 // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1") // tail call void @llvm.assume(i1 %0) // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1 // %1 = load ptr, ptr %vfn // call void %1(ptr %d), !prof !1 // // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50} // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50} // // Step 1. Find out the %vptr instruction for indirect call and use its !prof // to populate `GUIDCountsMap`. // Step 2. For each vtable-guid, look up its definition from symtab. LTO can // make vtable definitions visible across modules. // Step 3. Compute the byte offset of the virtual call, by adding vtable // address point offset and function's offset relative to vtable address // point. For each function candidate, this step tells us the vtable from // which it comes from, and the vtable address point to compare %vptr with. // Only virtual calls have virtual call site info. auto Iter = VirtualCSInfo.find(CB); if (Iter == VirtualCSInfo.end()) return nullptr; LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #" << NumOfPGOICallsites << "\n"); const auto &VirtualCallInfo = Iter->second; Instruction *VPtr = VirtualCallInfo.VPtr; SmallDenseMap CalleeIndexMap; for (size_t I = 0; I < Candidates.size(); I++) CalleeIndexMap[Candidates[I].TargetFunction] = I; uint64_t TotalVTableCount = 0; auto VTableValueDataArray = getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalVTableCount); if (VTableValueDataArray.empty()) return VPtr; // Compute the functions and counts from by each vtable. for (const auto &V : VTableValueDataArray) { uint64_t VTableVal = V.Value; GUIDCountsMap[VTableVal] = V.Count; GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal); if (!VTableVar) { LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal << "; maybe the vtable isn't imported\n"); continue; } std::optional MaybeAddressPointOffset = getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr); if (!MaybeAddressPointOffset) continue; const uint64_t AddressPointOffset = *MaybeAddressPointOffset; Function *Callee = nullptr; std::tie(Callee, std::ignore) = getFunctionAtVTableOffset( VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M); if (!Callee) continue; auto CalleeIndexIter = CalleeIndexMap.find(Callee); if (CalleeIndexIter == CalleeIndexMap.end()) continue; auto &Candidate = Candidates[CalleeIndexIter->second]; // There shouldn't be duplicate GUIDs in one !prof metadata (except // duplicated zeros), so assign counters directly won't cause overwrite or // counter loss. Candidate.VTableGUIDAndCounts[VTableVal] = V.Count; Candidate.AddressPoints.push_back( getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset)); } return VPtr; } // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight. // Scales uint64_t counters down to uint32_t if necessary to prevent overflow. static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight, uint64_t FalseWeight) { MDBuilder MDB(Context); uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight)); return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale), scaleBranchCount(FalseWeight, Scale)); } CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee, uint64_t Count, uint64_t TotalCount, bool AttachProfToDirectCall, OptimizationRemarkEmitter *ORE) { CallBase &NewInst = promoteCallWithIfThenElse( CB, DirectCallee, createBranchWeights(CB.getContext(), Count, TotalCount - Count)); if (AttachProfToDirectCall) setBranchWeights(NewInst, {static_cast(Count)}, /*IsExpected=*/false); using namespace ore; if (ORE) ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB) << "Promote indirect call to " << NV("DirectCallee", DirectCallee) << " with count " << NV("Count", Count) << " out of " << NV("TotalCount", TotalCount); }); return NewInst; } // Promote indirect-call to conditional direct-call for one callsite. bool IndirectCallPromoter::tryToPromoteWithFuncCmp( CallBase &CB, Instruction *VPtr, ArrayRef Candidates, uint64_t TotalCount, ArrayRef ICallProfDataRef, uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) { uint32_t NumPromoted = 0; for (const auto &C : Candidates) { uint64_t FuncCount = C.Count; pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount, SamplePGO, &ORE); assert(TotalCount >= FuncCount); TotalCount -= FuncCount; NumOfPGOICallPromotion++; NumPromoted++; if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty()) continue; // After a virtual call candidate gets promoted, update the vtable's counts // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents // a vtable from which the virtual call is loaded. Compute the sum and use // 128-bit APInt to improve accuracy. uint64_t SumVTableCount = 0; for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) SumVTableCount += VTableCount; for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) { APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/); APFuncCount *= VTableCount; VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue(); } } if (NumPromoted == 0) return false; assert(NumPromoted <= ICallProfDataRef.size() && "Number of promoted functions should not be greater than the number " "of values in profile metadata"); // Update value profiles on the indirect call. updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount, NumCandidates); updateVPtrValueProfiles(VPtr, VTableGUIDCounts); return true; } void IndirectCallPromoter::updateFuncValueProfiles( CallBase &CB, ArrayRef CallVDs, uint64_t TotalCount, uint32_t MaxMDCount) { // First clear the existing !prof. CB.setMetadata(LLVMContext::MD_prof, nullptr); // Annotate the remaining value profiles if counter is not zero. if (TotalCount != 0) annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget, MaxMDCount); } void IndirectCallPromoter::updateVPtrValueProfiles( Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) { if (!EnableVTableProfileUse || VPtr == nullptr || !VPtr->getMetadata(LLVMContext::MD_prof)) return; VPtr->setMetadata(LLVMContext::MD_prof, nullptr); std::vector VTableValueProfiles; uint64_t TotalVTableCount = 0; for (auto [GUID, Count] : VTableGUIDCounts) { if (Count == 0) continue; VTableValueProfiles.push_back({GUID, Count}); TotalVTableCount += Count; } llvm::sort(VTableValueProfiles, [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) { return LHS.Count > RHS.Count; }); annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount, IPVK_VTableTarget, VTableValueProfiles.size()); } bool IndirectCallPromoter::tryToPromoteWithVTableCmp( CallBase &CB, Instruction *VPtr, ArrayRef Candidates, uint64_t TotalFuncCount, uint32_t NumCandidates, MutableArrayRef ICallProfDataRef, VTableGUIDCountsMap &VTableGUIDCounts) { SmallVector PromotedFuncCount; for (const auto &Candidate : Candidates) { for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts) VTableGUIDCounts[GUID] -= Count; // 'OriginalBB' is the basic block of indirect call. After each candidate // is promoted, a new basic block is created for the indirect fallback basic // block and indirect call `CB` is moved into this new BB. BasicBlock *OriginalBB = CB.getParent(); promoteCallWithVTableCmp( CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints, createBranchWeights(CB.getContext(), Candidate.Count, TotalFuncCount - Candidate.Count)); int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent()); ORE.emit([&]() { OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB); const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; Remark << "Promote indirect call to " << ore::NV("DirectCallee", Candidate.TargetFunction) << " with count " << ore::NV("Count", Candidate.Count) << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink " << ore::NV("SinkCount", SinkCount) << " instruction(s) and compare " << ore::NV("VTable", VTableGUIDAndCounts.size()) << " vtable(s): {"; // Sort GUIDs so remark message is deterministic. std::set GUIDSet; for (auto [GUID, Count] : VTableGUIDAndCounts) GUIDSet.insert(GUID); for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) { if (Iter != GUIDSet.begin()) Remark << ", "; Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter)); } Remark << "}"; return Remark; }); PromotedFuncCount.push_back(Candidate.Count); assert(TotalFuncCount >= Candidate.Count && "Within one prof metadata, total count is the sum of counts from " "individual pairs"); // Use std::min since 'TotalFuncCount' is the saturated sum of individual // counts, see // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288 TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count); NumOfPGOICallPromotion++; } if (PromotedFuncCount.empty()) return false; // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a // a distinct 'VPtr'. // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be // used to load multiple virtual functions. The vtable profiles needs to be // updated properly in that case (e.g, for each indirect call annotate both // type profiles and function profiles in one !prof). for (size_t I = 0; I < PromotedFuncCount.size(); I++) ICallProfDataRef[I].Count -= std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count); // Sort value profiles by count in descending order. llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) { return LHS.Count > RHS.Count; }); // Drop the pair if count is zero. ArrayRef VDs( ICallProfDataRef.begin(), llvm::upper_bound(ICallProfDataRef, 0U, [](uint64_t Count, const InstrProfValueData &ProfData) { return ProfData.Count <= Count; })); updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates); updateVPtrValueProfiles(VPtr, VTableGUIDCounts); return true; } // Traverse all the indirect-call callsite and get the value profile // annotation to perform indirect-call promotion. bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) { bool Changed = false; ICallPromotionAnalysis ICallAnalysis; for (auto *CB : findIndirectCalls(F)) { uint32_t NumCandidates; uint64_t TotalCount; auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( CB, TotalCount, NumCandidates); if (!NumCandidates || (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount))) continue; auto PromotionCandidates = getPromotionCandidatesForCallSite( *CB, ICallProfDataRef, TotalCount, NumCandidates); VTableGUIDCountsMap VTableGUIDCounts; Instruction *VPtr = computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates); if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount)) Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates, TotalCount, NumCandidates, ICallProfDataRef, VTableGUIDCounts); else Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates, TotalCount, ICallProfDataRef, NumCandidates, VTableGUIDCounts); } return Changed; } // TODO: Return false if the function addressing and vtable load instructions // cannot sink to indirect fallback. bool IndirectCallPromoter::isProfitableToCompareVTables( const CallBase &CB, ArrayRef Candidates, uint64_t TotalCount) { if (!EnableVTableProfileUse || Candidates.empty()) return false; LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #" << NumOfPGOICallsites << CB << "\n"); uint64_t RemainingVTableCount = TotalCount; const size_t CandidateSize = Candidates.size(); for (size_t I = 0; I < CandidateSize; I++) { auto &Candidate = Candidates[I]; auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: " << Candidate.Count << ", VTableCounts:"); // Add [[maybe_unused]] since are only used by LLVM_DEBUG. for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts) LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName() << ", " << Count << "}"); LLVM_DEBUG(dbgs() << "\n"); uint64_t CandidateVTableCount = 0; for (auto &[GUID, Count] : VTableGUIDAndCounts) CandidateVTableCount += Count; if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) { LLVM_DEBUG( dbgs() << " function count " << Candidate.Count << " and its vtable sum count " << CandidateVTableCount << " have discrepancies. Bail out vtable comparison.\n"); return false; } RemainingVTableCount -= Candidate.Count; // 'MaxNumVTable' limits the number of vtables to make vtable comparison // profitable. Comparing multiple vtables for one function candidate will // insert additional instructions on the hot path, and allowing more than // one vtable for non last candidates may or may not elongate the dependency // chain for the subsequent candidates. Set its value to 1 for non-last // candidate and allow option to override it for the last candidate. int MaxNumVTable = 1; if (I == CandidateSize - 1) MaxNumVTable = ICPMaxNumVTableLastCandidate; if ((int)Candidate.AddressPoints.size() > MaxNumVTable) { LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got " << Candidate.AddressPoints.size() << " vtables. Bail out for vtable comparison.\n"); return false; } } // If the indirect fallback is not cold, don't compare vtables. if (PSI && PSI->hasProfileSummary() && !PSI->isColdCount(RemainingVTableCount)) { LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail " "out for vtable comparison.\n"); return false; } return true; } // For virtual calls in the module, collect per-callsite information which will // be used to associate an ICP candidate with a vtable and a specific function // in the vtable. With type intrinsics (llvm.type.test), we can find virtual // calls in a compile-time efficient manner (by iterating its users) and more // importantly use the compatible type later to figure out the function byte // offset relative to the start of vtables. static void computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM, VirtualCallSiteTypeInfoMap &VirtualCSInfo) { // Right now only llvm.type.test is used to find out virtual call sites. // With ThinLTO and whole-program-devirtualization, llvm.type.test and // llvm.public.type.test are emitted, and llvm.public.type.test is either // refined to llvm.type.test or dropped before indirect-call-promotion pass. // // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted. // Find out virtual calls by looking at users of llvm.type.checked.load in // that case. Function *TypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_test)); if (!TypeTestFunc || TypeTestFunc->use_empty()) return; auto &FAM = MAM.getResult(M).getManager(); auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { return FAM.getResult(F); }; // Iterate all type.test calls to find all indirect calls. for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) { auto *CI = dyn_cast(U.getUser()); if (!CI) continue; auto *TypeMDVal = cast(CI->getArgOperand(1)); if (!TypeMDVal) continue; auto *CompatibleTypeId = dyn_cast(TypeMDVal->getMetadata()); if (!CompatibleTypeId) continue; // Find out all devirtualizable call sites given a llvm.type.test // intrinsic call. SmallVector DevirtCalls; SmallVector Assumes; auto &DT = LookupDomTree(*CI->getFunction()); findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); for (auto &DevirtCall : DevirtCalls) { CallBase &CB = DevirtCall.CB; // Given an indirect call, try find the instruction which loads a // pointer to virtual table. Instruction *VTablePtr = PGOIndirectCallVisitor::tryGetVTableInstruction(&CB); if (!VTablePtr) continue; VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr, CompatibleTypeId->getString()}; } } } // A wrapper function that does the actual work. static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO, bool SamplePGO, ModuleAnalysisManager &MAM) { if (DisableICP) return false; InstrProfSymtab Symtab; if (Error E = Symtab.create(M, InLTO)) { std::string SymtabFailure = toString(std::move(E)); M.getContext().emitError("Failed to create symtab: " + SymtabFailure); return false; } bool Changed = false; VirtualCallSiteTypeInfoMap VirtualCSInfo; if (EnableVTableProfileUse) computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo); // VTableAddressPointOffsetVal stores the vtable address points. The vtable // address point of a given is static (doesn't // change after being computed once). // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map // entry the first time a pair is seen, as // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter // repeatedly on each function. VTableAddressPointOffsetValMap VTableAddressPointOffsetVal; for (auto &F : M) { if (F.isDeclaration() || F.hasOptNone()) continue; auto &FAM = MAM.getResult(M).getManager(); auto &ORE = FAM.getResult(F); IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO, VirtualCSInfo, VTableAddressPointOffsetVal, ORE); bool FuncChanged = CallPromoter.processFunction(PSI); if (ICPDUMPAFTER && FuncChanged) { LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); } Changed |= FuncChanged; if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n"); break; } } return Changed; } PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, ModuleAnalysisManager &MAM) { ProfileSummaryInfo *PSI = &MAM.getResult(M); if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, SamplePGO | ICPSamplePGOMode, MAM)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); }