//===- InstCombineSelect.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visitSelect function. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CmpInstAnalysis.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/OverflowInstAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include #include #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Utils/InstructionWorklist.h" using namespace llvm; using namespace PatternMatch; /// Replace a select operand based on an equality comparison with the identity /// constant of a binop. static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC) { // The select condition must be an equality compare with a constant operand. Value *X; Constant *C; CmpInst::Predicate Pred; if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) return nullptr; bool IsEq; if (ICmpInst::isEquality(Pred)) IsEq = Pred == ICmpInst::ICMP_EQ; else if (Pred == FCmpInst::FCMP_OEQ) IsEq = true; else if (Pred == FCmpInst::FCMP_UNE) IsEq = false; else return nullptr; // A select operand must be a binop. BinaryOperator *BO; if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) return nullptr; // The compare constant must be the identity constant for that binop. // If this a floating-point compare with 0.0, any zero constant will do. Type *Ty = BO->getType(); Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); if (IdC != C) { if (!IdC || !CmpInst::isFPPredicate(Pred)) return nullptr; if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) return nullptr; } // Last, match the compare variable operand with a binop operand. Value *Y; if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) return nullptr; if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) return nullptr; // +0.0 compares equal to -0.0, and so it does not behave as required for this // transform. Bail out if we can not exclude that possibility. if (isa(BO)) if (!BO->hasNoSignedZeros() && !cannotBeNegativeZero(Y, 0, IC.getSimplifyQuery().getWithInstruction(&Sel))) return nullptr; // BO = binop Y, X // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } // => // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); } /// This folds: /// select (icmp eq (and X, C1)), TC, FC /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. /// To something like: /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC /// Or: /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC /// With some variations depending if FC is larger than TC, or the shift /// isn't needed, or the bit widths don't match. static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, InstCombiner::BuilderTy &Builder) { const APInt *SelTC, *SelFC; if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || !match(Sel.getFalseValue(), m_APInt(SelFC))) return nullptr; // If this is a vector select, we need a vector compare. Type *SelType = Sel.getType(); if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) return nullptr; Value *V; APInt AndMask; bool CreateAnd = false; ICmpInst::Predicate Pred = Cmp->getPredicate(); if (ICmpInst::isEquality(Pred)) { if (!match(Cmp->getOperand(1), m_Zero())) return nullptr; V = Cmp->getOperand(0); const APInt *AndRHS; if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) return nullptr; AndMask = *AndRHS; } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), Pred, V, AndMask)) { assert(ICmpInst::isEquality(Pred) && "Not equality test?"); if (!AndMask.isPowerOf2()) return nullptr; CreateAnd = true; } else { return nullptr; } // In general, when both constants are non-zero, we would need an offset to // replace the select. This would require more instructions than we started // with. But there's one special-case that we handle here because it can // simplify/reduce the instructions. APInt TC = *SelTC; APInt FC = *SelFC; if (!TC.isZero() && !FC.isZero()) { // If the select constants differ by exactly one bit and that's the same // bit that is masked and checked by the select condition, the select can // be replaced by bitwise logic to set/clear one bit of the constant result. if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) return nullptr; if (CreateAnd) { // If we have to create an 'and', then we must kill the cmp to not // increase the instruction count. if (!Cmp->hasOneUse()) return nullptr; V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); } bool ExtraBitInTC = TC.ugt(FC); if (Pred == ICmpInst::ICMP_EQ) { // If the masked bit in V is clear, clear or set the bit in the result: // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC Constant *C = ConstantInt::get(SelType, TC); return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); } if (Pred == ICmpInst::ICMP_NE) { // If the masked bit in V is set, set or clear the bit in the result: // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC Constant *C = ConstantInt::get(SelType, FC); return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); } llvm_unreachable("Only expecting equality predicates"); } // Make sure one of the select arms is a power-of-2. if (!TC.isPowerOf2() && !FC.isPowerOf2()) return nullptr; // Determine which shift is needed to transform result of the 'and' into the // desired result. const APInt &ValC = !TC.isZero() ? TC : FC; unsigned ValZeros = ValC.logBase2(); unsigned AndZeros = AndMask.logBase2(); bool ShouldNotVal = !TC.isZero(); ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; // If we would need to create an 'and' + 'shift' + 'xor' to replace a 'select' // + 'icmp', then this transformation would result in more instructions and // potentially interfere with other folding. if (CreateAnd && ShouldNotVal && ValZeros != AndZeros) return nullptr; // Insert the 'and' instruction on the input to the truncate. if (CreateAnd) V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); // If types don't match, we can still convert the select by introducing a zext // or a trunc of the 'and'. if (ValZeros > AndZeros) { V = Builder.CreateZExtOrTrunc(V, SelType); V = Builder.CreateShl(V, ValZeros - AndZeros); } else if (ValZeros < AndZeros) { V = Builder.CreateLShr(V, AndZeros - ValZeros); V = Builder.CreateZExtOrTrunc(V, SelType); } else { V = Builder.CreateZExtOrTrunc(V, SelType); } // Okay, now we know that everything is set up, we just don't know whether we // have a icmp_ne or icmp_eq and whether the true or false val is the zero. if (ShouldNotVal) V = Builder.CreateXor(V, ValC); return V; } /// We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. static unsigned getSelectFoldableOperands(BinaryOperator *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::FAdd: case Instruction::Mul: case Instruction::FMul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::FSub: case Instruction::FDiv: // Can only fold on the divisor amount. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::LShr: case Instruction::AShr: return 1; default: return 0; // Cannot fold } } /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { // Don't break up min/max patterns. The hasOneUse checks below prevent that // for most cases, but vector min/max with bitcasts can be transformed. If the // one-use restrictions are eased for other patterns, we still don't want to // obfuscate min/max. if ((match(&SI, m_SMin(m_Value(), m_Value())) || match(&SI, m_SMax(m_Value(), m_Value())) || match(&SI, m_UMin(m_Value(), m_Value())) || match(&SI, m_UMax(m_Value(), m_Value())))) return nullptr; // If this is a cast from the same type, merge. Value *Cond = SI.getCondition(); Type *CondTy = Cond->getType(); if (TI->getNumOperands() == 1 && TI->isCast()) { Type *FIOpndTy = FI->getOperand(0)->getType(); if (TI->getOperand(0)->getType() != FIOpndTy) return nullptr; // The select condition may be a vector. We may only change the operand // type if the vector width remains the same (and matches the condition). if (auto *CondVTy = dyn_cast(CondTy)) { if (!FIOpndTy->isVectorTy() || CondVTy->getElementCount() != cast(FIOpndTy)->getElementCount()) return nullptr; // TODO: If the backend knew how to deal with casts better, we could // remove this limitation. For now, there's too much potential to create // worse codegen by promoting the select ahead of size-altering casts // (PR28160). // // Note that ValueTracking's matchSelectPattern() looks through casts // without checking 'hasOneUse' when it matches min/max patterns, so this // transform may end up happening anyway. if (TI->getOpcode() != Instruction::BitCast && (!TI->hasOneUse() || !FI->hasOneUse())) return nullptr; } else if (!TI->hasOneUse() || !FI->hasOneUse()) { // TODO: The one-use restrictions for a scalar select could be eased if // the fold of a select in visitLoadInst() was enhanced to match a pattern // that includes a cast. return nullptr; } // Fold this by inserting a select from the input values. Value *NewSI = Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), SI.getName() + ".v", &SI); return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, TI->getType()); } Value *OtherOpT, *OtherOpF; bool MatchIsOpZero; auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, bool Swapped = false) -> Value * { assert(!(Commute && Swapped) && "Commute and Swapped can't set at the same time"); if (!Swapped) { if (TI->getOperand(0) == FI->getOperand(0)) { OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; return TI->getOperand(0); } else if (TI->getOperand(1) == FI->getOperand(1)) { OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; return TI->getOperand(1); } } if (!Commute && !Swapped) return nullptr; // If we are allowing commute or swap of operands, then // allow a cross-operand match. In that case, MatchIsOpZero // means that TI's operand 0 (FI's operand 1) is the common op. if (TI->getOperand(0) == FI->getOperand(1)) { OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; return TI->getOperand(0); } else if (TI->getOperand(1) == FI->getOperand(0)) { OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = false; return TI->getOperand(1); } return nullptr; }; if (TI->hasOneUse() || FI->hasOneUse()) { // Cond ? -X : -Y --> -(Cond ? X : Y) Value *X, *Y; if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { // Intersect FMF from the fneg instructions and union those with the // select. FastMathFlags FMF = TI->getFastMathFlags(); FMF &= FI->getFastMathFlags(); FMF |= SI.getFastMathFlags(); Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); if (auto *NewSelI = dyn_cast(NewSel)) NewSelI->setFastMathFlags(FMF); Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); NewFNeg->setFastMathFlags(FMF); return NewFNeg; } // Min/max intrinsic with a common operand can have the common operand // pulled after the select. This is the same transform as below for binops, // but specialized for intrinsic matching and without the restrictive uses // clause. auto *TII = dyn_cast(TI); auto *FII = dyn_cast(FI); if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { if (Value *MatchOp = getCommonOp(TI, FI, true)) { Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); } } // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e // // select c, (ldexp v0, e0), (ldexp v1, e1) -> // ldexp (select c, v0, v1), (select c, e0, e1) if (TII->getIntrinsicID() == Intrinsic::ldexp) { Value *LdexpVal0 = TII->getArgOperand(0); Value *LdexpExp0 = TII->getArgOperand(1); Value *LdexpVal1 = FII->getArgOperand(0); Value *LdexpExp1 = FII->getArgOperand(1); if (LdexpExp0->getType() == LdexpExp1->getType()) { FPMathOperator *SelectFPOp = cast(&SI); FastMathFlags FMF = cast(TII)->getFastMathFlags(); FMF &= cast(FII)->getFastMathFlags(); FMF |= SelectFPOp->getFastMathFlags(); Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); CallInst *NewLdexp = Builder.CreateIntrinsic( TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); NewLdexp->setFastMathFlags(FMF); return replaceInstUsesWith(SI, NewLdexp); } } } // icmp with a common operand also can have the common operand // pulled after the select. ICmpInst::Predicate TPred, FPred; if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) { bool Swapped = TPred != FPred; if (Value *MatchOp = getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) { Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, SI.getName() + ".v", &SI); return new ICmpInst( MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred), MatchOp, NewSel); } } } } // Only handle binary operators (including two-operand getelementptr) with // one-use here. As with the cast case above, it may be possible to relax the // one-use constraint, but that needs be examined carefully since it may not // reduce the total number of instructions. if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || !TI->isSameOperationAs(FI) || (!isa(TI) && !isa(TI)) || !TI->hasOneUse() || !FI->hasOneUse()) return nullptr; // Figure out if the operations have any operands in common. Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); if (!MatchOp) return nullptr; // If the select condition is a vector, the operands of the original select's // operands also must be vectors. This may not be the case for getelementptr // for example. if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || !OtherOpF->getType()->isVectorTy())) return nullptr; // If we are sinking div/rem after a select, we may need to freeze the // condition because div/rem may induce immediate UB with a poison operand. // For example, the following transform is not safe if Cond can ever be poison // because we can replace poison with zero and then we have div-by-zero that // didn't exist in the original code: // Cond ? x/y : x/z --> x / (Cond ? y : z) auto *BO = dyn_cast(TI); if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { // A udiv/urem with a common divisor is safe because UB can only occur with // div-by-zero, and that would be present in the original code. if (BO->getOpcode() == Instruction::SDiv || BO->getOpcode() == Instruction::SRem || MatchIsOpZero) Cond = Builder.CreateFreeze(Cond); } // If we reach here, they do have operations in common. Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, SI.getName() + ".v", &SI); Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; if (auto *BO = dyn_cast(TI)) { BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); NewBO->copyIRFlags(TI); NewBO->andIRFlags(FI); return NewBO; } if (auto *TGEP = dyn_cast(TI)) { auto *FGEP = cast(FI); Type *ElementType = TGEP->getSourceElementType(); return GetElementPtrInst::Create( ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags()); } llvm_unreachable("Expected BinaryOperator or GEP"); return nullptr; } static bool isSelect01(const APInt &C1I, const APInt &C2I) { if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. return false; return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); } /// Try to fold the select into one of the operands to allow further /// optimization. Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, Value *FalseVal) { // See the comment above getSelectFoldableOperands for a description of the // transformation we are doing here. auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, Value *FalseVal, bool Swapped) -> Instruction * { auto *TVI = dyn_cast(TrueVal); if (!TVI || !TVI->hasOneUse() || isa(FalseVal)) return nullptr; unsigned SFO = getSelectFoldableOperands(TVI); unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) OpToFold = 1; else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) OpToFold = 2; if (!OpToFold) return nullptr; // TODO: We probably ought to revisit cases where the select and FP // instructions have different flags and add tests to ensure the // behaviour is correct. FastMathFlags FMF; if (isa(&SI)) FMF = SI.getFastMathFlags(); Constant *C = ConstantExpr::getBinOpIdentity( TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); Value *OOp = TVI->getOperand(2 - OpToFold); // Avoid creating select between 2 constants unless it's selecting // between 0, 1 and -1. const APInt *OOpC; bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); if (isa(OOp) && (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC))) return nullptr; // If the false value is a NaN then we have that the floating point math // operation in the transformed code may not preserve the exact NaN // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. // This makes the transformation incorrect since the original program would // have preserved the exact NaN bit-pattern. // Avoid the folding if the false value might be a NaN. if (isa(&SI) && !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN()) return nullptr; Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, Swapped ? OOp : C, "", &SI); if (isa(&SI)) cast(NewSel)->setFastMathFlags(FMF); NewSel->takeName(TVI); BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); BO->copyIRFlags(TVI); return BO; }; if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) return R; if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) return R; return nullptr; } /// We want to turn: /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) /// into: /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) /// Note: /// Z may be 0 if lshr is missing. /// Worst-case scenario is that we will replace 5 instructions with 5 different /// instructions, but we got rid of select. static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder) { if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && Cmp->getPredicate() == ICmpInst::ICMP_EQ && match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) return nullptr; // The TrueVal has general form of: and %B, 1 Value *B; if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) return nullptr; // Where %B may be optionally shifted: lshr %X, %Z. Value *X, *Z; const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); // The shift must be valid. // TODO: This restricts the fold to constant shift amounts. Is there a way to // handle variable shifts safely? PR47012 if (HasShift && !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, APInt(SelType->getScalarSizeInBits(), SelType->getScalarSizeInBits())))) return nullptr; if (!HasShift) X = B; Value *Y; if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) return nullptr; // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 Constant *One = ConstantInt::get(SelType, 1); Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; Value *FullMask = Builder.CreateOr(Y, MaskB); Value *MaskedX = Builder.CreateAnd(X, FullMask); Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); return new ZExtInst(ICmpNeZero, SelType); } /// We want to turn: /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); /// iff C1 is a mask and the number of its leading zeros is equal to C2 /// into: /// shl X, C2 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate Pred; Value *AndVal; if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) return nullptr; if (Pred == ICmpInst::ICMP_NE) { Pred = ICmpInst::ICMP_EQ; std::swap(TVal, FVal); } Value *X; const APInt *C2, *C1; if (Pred != ICmpInst::ICMP_EQ || !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) return nullptr; if (!C1->isMask() || C1->countLeadingZeros() != static_cast(C2->getZExtValue())) return nullptr; auto *FI = dyn_cast(FVal); if (!FI) return nullptr; FI->setHasNoSignedWrap(false); FI->setHasNoUnsignedWrap(false); return FVal; } /// We want to turn: /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 /// into: /// ashr (X, Y) static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate Pred = IC->getPredicate(); Value *CmpLHS = IC->getOperand(0); Value *CmpRHS = IC->getOperand(1); if (!CmpRHS->getType()->isIntOrIntVectorTy()) return nullptr; Value *X, *Y; unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); if ((Pred != ICmpInst::ICMP_SGT || !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && (Pred != ICmpInst::ICMP_SLT || !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) return nullptr; // Canonicalize so that ashr is in FalseVal. if (Pred == ICmpInst::ICMP_SLT) std::swap(TrueVal, FalseVal); if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && match(CmpLHS, m_Specific(X))) { const auto *Ashr = cast(FalseVal); // if lshr is not exact and ashr is, this new ashr must not be exact. bool IsExact = Ashr->isExact() && cast(TrueVal)->isExact(); return Builder.CreateAShr(X, Y, IC->getName(), IsExact); } return nullptr; } /// We want to turn: /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) /// into: /// IF C2 u>= C1 /// (BinOp Y, (shl (and X, C1), C3)) /// ELSE /// (BinOp Y, (lshr (and X, C1), C3)) /// iff: /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...) /// C1 and C2 are both powers of 2 /// where: /// IF C2 u>= C1 /// C3 = Log(C2) - Log(C1) /// ELSE /// C3 = Log(C1) - Log(C2) /// /// This transform handles cases where: /// 1. The icmp predicate is inverted /// 2. The select operands are reversed /// 3. The magnitude of C2 and C1 are flipped static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder) { // Only handle integer compares. Also, if this is a vector select, we need a // vector compare. if (!TrueVal->getType()->isIntOrIntVectorTy() || TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) return nullptr; Value *CmpLHS = IC->getOperand(0); Value *CmpRHS = IC->getOperand(1); unsigned C1Log; bool NeedAnd = false; CmpInst::Predicate Pred = IC->getPredicate(); if (IC->isEquality()) { if (!match(CmpRHS, m_Zero())) return nullptr; const APInt *C1; if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) return nullptr; C1Log = C1->logBase2(); } else { APInt C1; if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) || !C1.isPowerOf2()) return nullptr; C1Log = C1.logBase2(); NeedAnd = true; } Value *Y, *V = CmpLHS; BinaryOperator *BinOp; const APInt *C2; bool NeedXor; if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) { Y = TrueVal; BinOp = cast(FalseVal); NeedXor = Pred == ICmpInst::ICMP_NE; } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) { Y = FalseVal; BinOp = cast(TrueVal); NeedXor = Pred == ICmpInst::ICMP_EQ; } else { return nullptr; } // Check that 0 on RHS is identity value for this binop. auto *IdentityC = ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(), /*AllowRHSConstant*/ true); if (IdentityC == nullptr || !IdentityC->isNullValue()) return nullptr; unsigned C2Log = C2->logBase2(); bool NeedShift = C1Log != C2Log; bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != V->getType()->getScalarSizeInBits(); // Make sure we don't create more instructions than we save. if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) > (IC->hasOneUse() + BinOp->hasOneUse())) return nullptr; if (NeedAnd) { // Insert the AND instruction on the input to the truncate. APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); } if (C2Log > C1Log) { V = Builder.CreateZExtOrTrunc(V, Y->getType()); V = Builder.CreateShl(V, C2Log - C1Log); } else if (C1Log > C2Log) { V = Builder.CreateLShr(V, C1Log - C2Log); V = Builder.CreateZExtOrTrunc(V, Y->getType()); } else V = Builder.CreateZExtOrTrunc(V, Y->getType()); if (NeedXor) V = Builder.CreateXor(V, *C2); return Builder.CreateBinOp(BinOp->getOpcode(), Y, V); } /// Canonicalize a set or clear of a masked set of constant bits to /// select-of-constants form. static Instruction *foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { Value *Cond = Sel.getCondition(); Value *T = Sel.getTrueValue(); Value *F = Sel.getFalseValue(); Type *Ty = Sel.getType(); Value *X; const APInt *NotC, *C; // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) if (match(T, m_And(m_Value(X), m_APInt(NotC))) && match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { Constant *Zero = ConstantInt::getNullValue(Ty); Constant *OrC = ConstantInt::get(Ty, *C); Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); return BinaryOperator::CreateOr(T, NewSel); } // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) if (match(F, m_And(m_Value(X), m_APInt(NotC))) && match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { Constant *Zero = ConstantInt::getNullValue(Ty); Constant *OrC = ConstantInt::get(Ty, *C); Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); return BinaryOperator::CreateOr(F, NewSel); } return nullptr; } // select (x == 0), 0, x * y --> freeze(y) * x // select (y == 0), 0, x * y --> freeze(x) * y // select (x == 0), undef, x * y --> freeze(y) * x // select (x == undef), 0, x * y --> freeze(y) * x // Usage of mul instead of 0 will make the result more poisonous, // so the operand that was not checked in the condition should be frozen. // The latter folding is applied only when a constant compared with x is // is a vector consisting of 0 and undefs. If a constant compared with x // is a scalar undefined value or undefined vector then an expression // should be already folded into a constant. static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { auto *CondVal = SI.getCondition(); auto *TrueVal = SI.getTrueValue(); auto *FalseVal = SI.getFalseValue(); Value *X, *Y; ICmpInst::Predicate Predicate; // Assuming that constant compared with zero is not undef (but it may be // a vector with some undef elements). Otherwise (when a constant is undef) // the select expression should be already simplified. if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || !ICmpInst::isEquality(Predicate)) return nullptr; if (Predicate == ICmpInst::ICMP_NE) std::swap(TrueVal, FalseVal); // Check that TrueVal is a constant instead of matching it with m_Zero() // to handle the case when it is a scalar undef value or a vector containing // non-zero elements that are masked by undef elements in the compare // constant. auto *TrueValC = dyn_cast(TrueVal); if (TrueValC == nullptr || !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || !isa(FalseVal)) return nullptr; auto *ZeroC = cast(cast(CondVal)->getOperand(1)); auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); // If X is compared with 0 then TrueVal could be either zero or undef. // m_Zero match vectors containing some undef elements, but for scalars // m_Undef should be used explicitly. if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) return nullptr; auto *FalseValI = cast(FalseVal); auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), FalseValI->getIterator()); IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); return IC.replaceInstUsesWith(SI, FalseValI); } /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). /// There are 8 commuted/swapped variants of this pattern. /// TODO: Also support a - UMIN(a,b) patterns. static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate Pred = ICI->getPredicate(); Value *A = ICI->getOperand(0); Value *B = ICI->getOperand(1); // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 if (match(TrueVal, m_Zero())) { Pred = ICmpInst::getInversePredicate(Pred); std::swap(TrueVal, FalseVal); } if (!match(FalseVal, m_Zero())) return nullptr; // ugt 0 is canonicalized to ne 0 and requires special handling // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) if (Pred == ICmpInst::ICMP_NE) { if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, ConstantInt::get(A->getType(), 1)); return nullptr; } if (!ICmpInst::isUnsigned(Pred)) return nullptr; if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 std::swap(A, B); Pred = ICmpInst::getSwappedPredicate(Pred); } assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && "Unexpected isUnsigned predicate!"); // Ensure the sub is of the form: // (a > b) ? a - b : 0 -> usub.sat(a, b) // (a > b) ? b - a : 0 -> -usub.sat(a, b) // Checking for both a-b and a+(-b) as a constant. bool IsNegative = false; const APInt *C; if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || (match(A, m_APInt(C)) && match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) IsNegative = true; else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && !(match(B, m_APInt(C)) && match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) return nullptr; // If we are adding a negate and the sub and icmp are used anywhere else, we // would end up with more instructions. if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) return nullptr; // (a > b) ? a - b : 0 -> usub.sat(a, b) // (a > b) ? b - a : 0 -> -usub.sat(a, b) Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); if (IsNegative) Result = Builder.CreateNeg(Result); return Result; } static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder) { if (!Cmp->hasOneUse()) return nullptr; // Match unsigned saturated add with constant. Value *Cmp0 = Cmp->getOperand(0); Value *Cmp1 = Cmp->getOperand(1); ICmpInst::Predicate Pred = Cmp->getPredicate(); Value *X; const APInt *C, *CmpC; if (Pred == ICmpInst::ICMP_ULT && match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) return Builder.CreateBinaryIntrinsic( Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); } // Match unsigned saturated add of 2 variables with an unnecessary 'not'. // There are 8 commuted variants. // Canonicalize -1 (saturated result) to true value of the select. if (match(FVal, m_AllOnes())) { std::swap(TVal, FVal); Pred = CmpInst::getInversePredicate(Pred); } if (!match(TVal, m_AllOnes())) return nullptr; // Canonicalize predicate to less-than or less-or-equal-than. if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { std::swap(Cmp0, Cmp1); Pred = CmpInst::getSwappedPredicate(Pred); } if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) return nullptr; // Match unsigned saturated add of 2 variables with an unnecessary 'not'. // Strictness of the comparison is irrelevant. Value *Y; if (match(Cmp0, m_Not(m_Value(X))) && match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); } // The 'not' op may be included in the sum but not the compare. // Strictness of the comparison is irrelevant. X = Cmp0; Y = Cmp1; if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) BinaryOperator *BO = cast(FVal); return Builder.CreateBinaryIntrinsic( Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); } // The overflow may be detected via the add wrapping round. // This is only valid for strict comparison! if (Pred == ICmpInst::ICMP_ULT && match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); } return nullptr; } /// Try to match patterns with select and subtract as absolute difference. static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder) { auto *TI = dyn_cast(TVal); auto *FI = dyn_cast(FVal); if (!TI || !FI) return nullptr; // Normalize predicate to gt/lt rather than ge/le. ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); Value *A = Cmp->getOperand(0); Value *B = Cmp->getOperand(1); // Normalize "A - B" as the true value of the select. if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { std::swap(FI, TI); Pred = ICmpInst::getSwappedPredicate(Pred); } // With any pair of no-wrap subtracts: // (A > B) ? (A - B) : (B - A) --> abs(A - B) if (Pred == CmpInst::ICMP_SGT && match(TI, m_Sub(m_Specific(A), m_Specific(B))) && match(FI, m_Sub(m_Specific(B), m_Specific(A))) && (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { // The remaining subtract is not "nuw" any more. // If there's one use of the subtract (no other use than the use we are // about to replace), then we know that the sub is "nsw" in this context // even if it was only "nuw" before. If there's another use, then we can't // add "nsw" to the existing instruction because it may not be safe in the // other user's context. TI->setHasNoUnsignedWrap(false); if (!TI->hasNoSignedWrap()) TI->setHasNoSignedWrap(TI->hasOneUse()); return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); } return nullptr; } /// Fold the following code sequence: /// \code /// int a = ctlz(x & -x); // x ? 31 - a : a; // // or // x ? 31 - a : 32; /// \code /// /// into: /// cttz(x) static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder) { unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) return nullptr; if (ICI->getPredicate() == ICmpInst::ICMP_NE) std::swap(TrueVal, FalseVal); Value *Ctlz; if (!match(FalseVal, m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) return nullptr; if (!match(Ctlz, m_Intrinsic())) return nullptr; if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) return nullptr; Value *X = ICI->getOperand(0); auto *II = cast(Ctlz); if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) return nullptr; Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, II->getType()); return CallInst::Create(F, {X, II->getArgOperand(1)}); } /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single /// call to cttz/ctlz with flag 'is_zero_poison' cleared. /// /// For example, we can fold the following code sequence: /// \code /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) /// %1 = icmp ne i32 %x, 0 /// %2 = select i1 %1, i32 %0, i32 32 /// \code /// /// into: /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, InstCombinerImpl &IC) { ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); // Check if the select condition compares a value for equality. if (!ICI->isEquality()) return nullptr; Value *SelectArg = FalseVal; Value *ValueOnZero = TrueVal; if (Pred == ICmpInst::ICMP_NE) std::swap(SelectArg, ValueOnZero); // Skip zero extend/truncate. Value *Count = nullptr; if (!match(SelectArg, m_ZExt(m_Value(Count))) && !match(SelectArg, m_Trunc(m_Value(Count)))) Count = SelectArg; // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the // input to the cttz/ctlz is used as LHS for the compare instruction. Value *X; if (!match(Count, m_Intrinsic(m_Value(X))) && !match(Count, m_Intrinsic(m_Value(X)))) return nullptr; // (X == 0) ? BitWidth : ctz(X) // (X == -1) ? BitWidth : ctz(~X) if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) return nullptr; IntrinsicInst *II = cast(Count); // Check if the value propagated on zero is a constant number equal to the // sizeof in bits of 'Count'. unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from // true to false on this flag, so we can replace it for all users. II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); // A range annotation on the intrinsic may no longer be valid. II->dropPoisonGeneratingAnnotations(); IC.addToWorklist(II); return SelectArg; } // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional // zext/trunc) have one use (ending at the select), the cttz/ctlz result will // not be used if the input is zero. Relax to 'zero is poison' for that case. if (II->hasOneUse() && SelectArg->hasOneUse() && !match(II->getArgOperand(1), m_One())) II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); return nullptr; } static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal, InstCombinerImpl &IC) { Value *LHS, *RHS; // TODO: What to do with pointer min/max patterns? if (!TrueVal->getType()->isIntOrIntVectorTy()) return nullptr; SelectPatternFlavor SPF = matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor; if (SPF == SelectPatternFlavor::SPF_ABS || SPF == SelectPatternFlavor::SPF_NABS) { if (!Cmp.hasOneUse() && !RHS->hasOneUse()) return nullptr; // TODO: Relax this restriction. // Note that NSW flag can only be propagated for normal, non-negated abs! bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && match(RHS, m_NSWNeg(m_Specific(LHS))); Constant *IntMinIsPoisonC = ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison); Value *Abs = IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); if (SPF == SelectPatternFlavor::SPF_NABS) return IC.Builder.CreateNeg(Abs); // Always without NSW flag! return Abs; } if (SelectPatternResult::isMinOrMax(SPF)) { Intrinsic::ID IntrinsicID; switch (SPF) { case SelectPatternFlavor::SPF_UMIN: IntrinsicID = Intrinsic::umin; break; case SelectPatternFlavor::SPF_UMAX: IntrinsicID = Intrinsic::umax; break; case SelectPatternFlavor::SPF_SMIN: IntrinsicID = Intrinsic::smin; break; case SelectPatternFlavor::SPF_SMAX: IntrinsicID = Intrinsic::smax; break; default: llvm_unreachable("Unexpected SPF"); } return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS); } return nullptr; } bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth) { // Conservatively limit replacement to two instructions upwards. if (Depth == 2) return false; assert(!isa(Old) && "Only replace non-constant values"); auto *I = dyn_cast(V); if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecuteWithVariableReplaced(I)) return false; bool Changed = false; for (Use &U : I->operands()) { if (U == Old) { replaceUse(U, New); Worklist.add(I); Changed = true; } else { Changed |= replaceInInstruction(U, Old, New, Depth + 1); } } return Changed; } /// If we have a select with an equality comparison, then we know the value in /// one of the arms of the select. See if substituting this value into an arm /// and simplifying the result yields the same value as the other arm. /// /// To make this transform safe, we must drop poison-generating flags /// (nsw, etc) if we simplified to a binop because the select may be guarding /// that poison from propagating. If the existing binop already had no /// poison-generating flags, then this transform can be done by instsimplify. /// /// Consider: /// %cmp = icmp eq i32 %x, 2147483647 /// %add = add nsw i32 %x, 1 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add /// /// We can't replace %sel with %add unless we strip away the flags. /// TODO: Wrapping flags could be preserved in some cases with better analysis. Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp) { if (!Cmp.isEquality()) return nullptr; // Canonicalize the pattern to ICMP_EQ by swapping the select operands. Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); bool Swapped = false; if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { std::swap(TrueVal, FalseVal); Swapped = true; } Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); auto ReplaceOldOpWithNewOp = [&](Value *OldOp, Value *NewOp) -> Instruction * { // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that // would lead to an infinite replacement cycle. // If we will be able to evaluate f(Y) to a constant, we can allow undef, // otherwise Y cannot be undef as we might pick different values for undef // in the icmp and in f(Y). if (TrueVal == OldOp) return nullptr; if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ, /* AllowRefinement=*/true)) { // Need some guarantees about the new simplified op to ensure we don't inf // loop. // If we simplify to a constant, replace if we aren't creating new undef. if (match(V, m_ImmConstant()) && isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT)) return replaceOperand(Sel, Swapped ? 2 : 1, V); // If NewOp is a constant and OldOp is not replace iff NewOp doesn't // contain and undef elements. if (match(NewOp, m_ImmConstant()) || NewOp == V) { if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) return replaceOperand(Sel, Swapped ? 2 : 1, V); return nullptr; } } // Even if TrueVal does not simplify, we can directly replace a use of // CmpLHS with CmpRHS, as long as the instruction is not used anywhere // else and is safe to speculatively execute (we may end up executing it // with different operands, which should not cause side-effects or trigger // undefined behavior). Only do this if CmpRHS is a constant, as // profitability is not clear for other cases. // FIXME: Support vectors. if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) && !match(OldOp, m_Constant()) && !Cmp.getType()->isVectorTy() && isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) if (replaceInInstruction(TrueVal, OldOp, NewOp)) return &Sel; return nullptr; }; if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS)) return R; if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS)) return R; auto *FalseInst = dyn_cast(FalseVal); if (!FalseInst) return nullptr; // InstSimplify already performed this fold if it was possible subject to // current poison-generating flags. Check whether dropping poison-generating // flags enables the transform. // Try each equivalence substitution possibility. // We have an 'EQ' comparison, so the select's false value will propagate. // Example: // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 SmallVector DropFlags; if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, /* AllowRefinement */ false, &DropFlags) == TrueVal || simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, /* AllowRefinement */ false, &DropFlags) == TrueVal) { for (Instruction *I : DropFlags) { I->dropPoisonGeneratingAnnotations(); Worklist.add(I); } return replaceInstUsesWith(Sel, FalseVal); } return nullptr; } // See if this is a pattern like: // %old_cmp1 = icmp slt i32 %x, C2 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high // %old_x_offseted = add i32 %x, C1 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement // This can be rewritten as more canonical pattern: // %new_cmp1 = icmp slt i32 %x, -C1 // %new_cmp2 = icmp sge i32 %x, C0-C1 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low // Iff -C1 s<= C2 s<= C0-C1 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, InstCombiner::BuilderTy &Builder, InstCombiner &IC) { Value *X = Sel0.getTrueValue(); Value *Sel1 = Sel0.getFalseValue(); // First match the condition of the outermost select. // Said condition must be one-use. if (!Cmp0.hasOneUse()) return nullptr; ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); Value *Cmp00 = Cmp0.getOperand(0); Constant *C0; if (!match(Cmp0.getOperand(1), m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) return nullptr; if (!isa(Sel1)) { Pred0 = ICmpInst::getInversePredicate(Pred0); std::swap(X, Sel1); } // Canonicalize Cmp0 into ult or uge. // FIXME: we shouldn't care about lanes that are 'undef' in the end? switch (Pred0) { case ICmpInst::Predicate::ICMP_ULT: case ICmpInst::Predicate::ICMP_UGE: // Although icmp ult %x, 0 is an unusual thing to try and should generally // have been simplified, it does not verify with undef inputs so ensure we // are not in a strange state. if (!match(C0, m_SpecificInt_ICMP( ICmpInst::Predicate::ICMP_NE, APInt::getZero(C0->getType()->getScalarSizeInBits())))) return nullptr; break; // Great! case ICmpInst::Predicate::ICMP_ULE: case ICmpInst::Predicate::ICMP_UGT: // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment // C0, which again means it must not have any all-ones elements. if (!match(C0, m_SpecificInt_ICMP( ICmpInst::Predicate::ICMP_NE, APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) return nullptr; // Can't do, have all-ones element[s]. Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); C0 = InstCombiner::AddOne(C0); break; default: return nullptr; // Unknown predicate. } // Now that we've canonicalized the ICmp, we know the X we expect; // the select in other hand should be one-use. if (!Sel1->hasOneUse()) return nullptr; // If the types do not match, look through any truncs to the underlying // instruction. if (Cmp00->getType() != X->getType() && X->hasOneUse()) match(X, m_TruncOrSelf(m_Value(X))); // We now can finish matching the condition of the outermost select: // it should either be the X itself, or an addition of some constant to X. Constant *C1; if (Cmp00 == X) C1 = ConstantInt::getNullValue(X->getType()); else if (!match(Cmp00, m_Add(m_Specific(X), m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) return nullptr; Value *Cmp1; ICmpInst::Predicate Pred1; Constant *C2; Value *ReplacementLow, *ReplacementHigh; if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), m_Value(ReplacementHigh))) || !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) return nullptr; if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) return nullptr; // Not enough one-use instructions for the fold. // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of // two comparisons we'll need to build. // Canonicalize Cmp1 into the form we expect. // FIXME: we shouldn't care about lanes that are 'undef' in the end? switch (Pred1) { case ICmpInst::Predicate::ICMP_SLT: break; case ICmpInst::Predicate::ICMP_SLE: // We'd have to increment C2 by one, and for that it must not have signed // max element, but then it would have been canonicalized to 'slt' before // we get here. So we can't do anything useful with 'sle'. return nullptr; case ICmpInst::Predicate::ICMP_SGT: // We want to canonicalize it to 'slt', so we'll need to increment C2, // which again means it must not have any signed max elements. if (!match(C2, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt::getSignedMaxValue( C2->getType()->getScalarSizeInBits())))) return nullptr; // Can't do, have signed max element[s]. C2 = InstCombiner::AddOne(C2); [[fallthrough]]; case ICmpInst::Predicate::ICMP_SGE: // Also non-canonical, but here we don't need to change C2, // so we don't have any restrictions on C2, so we can just handle it. Pred1 = ICmpInst::Predicate::ICMP_SLT; std::swap(ReplacementLow, ReplacementHigh); break; default: return nullptr; // Unknown predicate. } assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && "Unexpected predicate type."); // The thresholds of this clamp-like pattern. auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || Pred0 == ICmpInst::Predicate::ICMP_UGE) && "Unexpected predicate type."); if (Pred0 == ICmpInst::Predicate::ICMP_UGE) std::swap(ThresholdLowIncl, ThresholdHighExcl); // The fold has a precondition 1: C2 s>= ThresholdLow auto *Precond1 = ConstantFoldCompareInstOperands( ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout()); if (!Precond1 || !match(Precond1, m_One())) return nullptr; // The fold has a precondition 2: C2 s<= ThresholdHigh auto *Precond2 = ConstantFoldCompareInstOperands( ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout()); if (!Precond2 || !match(Precond2, m_One())) return nullptr; // If we are matching from a truncated input, we need to sext the // ReplacementLow and ReplacementHigh values. Only do the transform if they // are free to extend due to being constants. if (X->getType() != Sel0.getType()) { Constant *LowC, *HighC; if (!match(ReplacementLow, m_ImmConstant(LowC)) || !match(ReplacementHigh, m_ImmConstant(HighC))) return nullptr; const DataLayout &DL = Sel0.getDataLayout(); ReplacementLow = ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL); ReplacementHigh = ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL); assert(ReplacementLow && ReplacementHigh && "Constant folding of ImmConstant cannot fail"); } // All good, finally emit the new pattern. Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); Value *MaybeReplacedLow = Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); // Create the final select. If we looked through a truncate above, we will // need to retruncate the result. Value *MaybeReplacedHigh = Builder.CreateSelect( ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); } // If we have // %cmp = icmp [canonical predicate] i32 %x, C0 // %r = select i1 %cmp, i32 %y, i32 C1 // Where C0 != C1 and %x may be different from %y, see if the constant that we // will have if we flip the strictness of the predicate (i.e. without changing // the result) is identical to the C1 in select. If it matches we can change // original comparison to one with swapped predicate, reuse the constant, // and swap the hands of select. static Instruction * tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, InstCombinerImpl &IC) { ICmpInst::Predicate Pred; Value *X; Constant *C0; if (!match(&Cmp, m_OneUse(m_ICmp( Pred, m_Value(X), m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) return nullptr; // If comparison predicate is non-relational, we won't be able to do anything. if (ICmpInst::isEquality(Pred)) return nullptr; // If comparison predicate is non-canonical, then we certainly won't be able // to make it canonical; canonicalizeCmpWithConstant() already tried. if (!InstCombiner::isCanonicalPredicate(Pred)) return nullptr; // If the [input] type of comparison and select type are different, lets abort // for now. We could try to compare constants with trunc/[zs]ext though. if (C0->getType() != Sel.getType()) return nullptr; // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? // Or should we just abandon this transform entirely? if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) return nullptr; Value *SelVal0, *SelVal1; // We do not care which one is from where. match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); // At least one of these values we are selecting between must be a constant // else we'll never succeed. if (!match(SelVal0, m_AnyIntegralConstant()) && !match(SelVal1, m_AnyIntegralConstant())) return nullptr; // Does this constant C match any of the `select` values? auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); }; // If C0 *already* matches true/false value of select, we are done. if (MatchesSelectValue(C0)) return nullptr; // Check the constant we'd have with flipped-strictness predicate. auto FlippedStrictness = InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); if (!FlippedStrictness) return nullptr; // If said constant doesn't match either, then there is no hope, if (!MatchesSelectValue(FlippedStrictness->second)) return nullptr; // It matched! Lets insert the new comparison just before select. InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); IC.Builder.SetInsertPoint(&Sel); Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, Cmp.getName() + ".inv"); IC.replaceOperand(Sel, 0, NewCmp); Sel.swapValues(); Sel.swapProfMetadata(); return &Sel; } static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder) { if (!Cmp->hasOneUse()) return nullptr; const APInt *CmpC; if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC))) return nullptr; // (X u< 2) ? -X : -1 --> sext (X != 0) Value *X = Cmp->getOperand(0); if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); // (X u> 1) ? -1 : -X --> sext (X != 0) if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); return nullptr; } static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, InstCombiner::BuilderTy &Builder) { const APInt *CmpC; Value *V; CmpInst::Predicate Pred; if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) return nullptr; // Match clamp away from min/max value as a max/min operation. Value *TVal = SI.getTrueValue(); Value *FVal = SI.getFalseValue(); if (Pred == ICmpInst::ICMP_EQ && V == FVal) { // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); } BinaryOperator *BO; const APInt *C; CmpInst::Predicate CPred; if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) CPred = ICI->getPredicate(); else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) CPred = ICI->getInversePredicate(); else return nullptr; const APInt *BinOpC; if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) return nullptr; ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) .binaryOp(BO->getOpcode(), *BinOpC); if (R == *C) { BO->dropPoisonGeneratingFlags(); return BO; } return nullptr; } static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI, InstCombinerImpl &IC) { ICmpInst::Predicate Pred = ICI->getPredicate(); if (!ICmpInst::isEquality(Pred)) return nullptr; Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); if (Pred == ICmpInst::ICMP_NE) std::swap(TrueVal, FalseVal); // Transform (X == C) ? X : Y -> (X == C) ? C : Y // specific handling for Bitwise operation. // x&y -> (x|y) ^ (x^y) or (x|y) & ~(x^y) // x|y -> (x&y) | (x^y) or (x&y) ^ (x^y) // x^y -> (x|y) ^ (x&y) or (x|y) & ~(x&y) Value *X, *Y; if (!match(CmpLHS, m_BitwiseLogic(m_Value(X), m_Value(Y))) || !match(TrueVal, m_c_BitwiseLogic(m_Specific(X), m_Specific(Y)))) return nullptr; const unsigned AndOps = Instruction::And, OrOps = Instruction::Or, XorOps = Instruction::Xor, NoOps = 0; enum NotMask { None = 0, NotInner, NotRHS }; auto matchFalseVal = [&](unsigned OuterOpc, unsigned InnerOpc, unsigned NotMask) { auto matchInner = m_c_BinOp(InnerOpc, m_Specific(X), m_Specific(Y)); if (OuterOpc == NoOps) return match(CmpRHS, m_Zero()) && match(FalseVal, matchInner); if (NotMask == NotInner) { return match(FalseVal, m_c_BinOp(OuterOpc, m_NotForbidPoison(matchInner), m_Specific(CmpRHS))); } else if (NotMask == NotRHS) { return match(FalseVal, m_c_BinOp(OuterOpc, matchInner, m_NotForbidPoison(m_Specific(CmpRHS)))); } else { return match(FalseVal, m_c_BinOp(OuterOpc, matchInner, m_Specific(CmpRHS))); } }; // (X&Y)==C ? X|Y : X^Y -> (X^Y)|C : X^Y or (X^Y)^ C : X^Y // (X&Y)==C ? X^Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y if (match(CmpLHS, m_And(m_Value(X), m_Value(Y)))) { if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { // (X&Y)==C ? X|Y : (X^Y)|C -> (X^Y)|C : (X^Y)|C -> (X^Y)|C // (X&Y)==C ? X|Y : (X^Y)^C -> (X^Y)^C : (X^Y)^C -> (X^Y)^C if (matchFalseVal(OrOps, XorOps, None) || matchFalseVal(XorOps, XorOps, None)) return IC.replaceInstUsesWith(SI, FalseVal); } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { // (X&Y)==C ? X^Y : (X|Y)^ C -> (X|Y)^ C : (X|Y)^ C -> (X|Y)^ C // (X&Y)==C ? X^Y : (X|Y)&~C -> (X|Y)&~C : (X|Y)&~C -> (X|Y)&~C if (matchFalseVal(XorOps, OrOps, None) || matchFalseVal(AndOps, OrOps, NotRHS)) return IC.replaceInstUsesWith(SI, FalseVal); } } // (X|Y)==C ? X&Y : X^Y -> (X^Y)^C : X^Y or ~(X^Y)&C : X^Y // (X|Y)==C ? X^Y : X&Y -> (X&Y)^C : X&Y or ~(X&Y)&C : X&Y if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y)))) { if (match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y)))) { // (X|Y)==C ? X&Y: (X^Y)^C -> (X^Y)^C: (X^Y)^C -> (X^Y)^C // (X|Y)==C ? X&Y:~(X^Y)&C ->~(X^Y)&C:~(X^Y)&C -> ~(X^Y)&C if (matchFalseVal(XorOps, XorOps, None) || matchFalseVal(AndOps, XorOps, NotInner)) return IC.replaceInstUsesWith(SI, FalseVal); } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { // (X|Y)==C ? X^Y : (X&Y)^C -> (X&Y)^C : (X&Y)^C -> (X&Y)^C // (X|Y)==C ? X^Y :~(X&Y)&C -> ~(X&Y)&C :~(X&Y)&C -> ~(X&Y)&C if (matchFalseVal(XorOps, AndOps, None) || matchFalseVal(AndOps, AndOps, NotInner)) return IC.replaceInstUsesWith(SI, FalseVal); } } // (X^Y)==C ? X&Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y // (X^Y)==C ? X|Y : X&Y -> (X&Y)|C : X&Y or (X&Y)^ C : X&Y if (match(CmpLHS, m_Xor(m_Value(X), m_Value(Y)))) { if ((match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y))))) { // (X^Y)==C ? X&Y : (X|Y)^C -> (X|Y)^C // (X^Y)==C ? X&Y : (X|Y)&~C -> (X|Y)&~C if (matchFalseVal(XorOps, OrOps, None) || matchFalseVal(AndOps, OrOps, NotRHS)) return IC.replaceInstUsesWith(SI, FalseVal); } else if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { // (X^Y)==C ? (X|Y) : (X&Y)|C -> (X&Y)|C // (X^Y)==C ? (X|Y) : (X&Y)^C -> (X&Y)^C if (matchFalseVal(OrOps, AndOps, None) || matchFalseVal(XorOps, AndOps, None)) return IC.replaceInstUsesWith(SI, FalseVal); } } return nullptr; } /// Visit a SelectInst that has an ICmpInst as its first operand. Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI) { if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) return NewSel; if (Value *V = canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this)) return replaceInstUsesWith(SI, V); if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this)) return replaceInstUsesWith(SI, V); if (Instruction *NewSel = tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) return NewSel; if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) return replaceInstUsesWith(SI, V); // NOTE: if we wanted to, this is where to detect integer MIN/MAX bool Changed = false; Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); if (CmpRHS != CmpLHS && isa(CmpRHS) && !isa(CmpLHS)) { if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { // Transform (X == C) ? X : Y -> (X == C) ? C : Y replaceOperand(SI, 1, CmpRHS); Changed = true; } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { // Transform (X != C) ? Y : X -> (X != C) ? Y : C replaceOperand(SI, 2, CmpRHS); Changed = true; } } if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this)) return NewSel; // Canonicalize a signbit condition to use zero constant by swapping: // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV // To avoid conflicts (infinite loops) with other canonicalizations, this is // not applied with any constant select arm. if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && ICI->hasOneUse()) { InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); Builder.SetInsertPoint(&SI); Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); replaceOperand(SI, 0, IsNeg); SI.swapValues(); SI.swapProfMetadata(); return &SI; } // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring // decomposeBitTestICmp() might help. if (TrueVal->getType()->isIntOrIntVectorTy()) { unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); Value *X; const APInt *Y, *C; bool TrueWhenUnset; bool IsBitTest = false; if (ICmpInst::isEquality(Pred) && match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && match(CmpRHS, m_Zero())) { IsBitTest = true; TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { X = CmpLHS; Y = &MinSignedValue; IsBitTest = true; TrueWhenUnset = false; } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { X = CmpLHS; Y = &MinSignedValue; IsBitTest = true; TrueWhenUnset = true; } if (IsBitTest) { Value *V = nullptr; // (X & Y) == 0 ? X : X ^ Y --> X & ~Y if (TrueWhenUnset && TrueVal == X && match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder.CreateAnd(X, ~(*Y)); // (X & Y) != 0 ? X ^ Y : X --> X & ~Y else if (!TrueWhenUnset && FalseVal == X && match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder.CreateAnd(X, ~(*Y)); // (X & Y) == 0 ? X ^ Y : X --> X | Y else if (TrueWhenUnset && FalseVal == X && match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder.CreateOr(X, *Y); // (X & Y) != 0 ? X : X ^ Y --> X | Y else if (!TrueWhenUnset && TrueVal == X && match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder.CreateOr(X, *Y); if (V) return replaceInstUsesWith(SI, V); } } if (Instruction *V = foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) return V; if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) return V; if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) return V; if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this)) return replaceInstUsesWith(SI, V); if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); return Changed ? &SI : nullptr; } /// SI is a select whose condition is a PHI node (but the two may be in /// different blocks). See if the true/false values (V) are live in all of the /// predecessor blocks of the PHI. For example, cases like this can't be mapped: /// /// X = phi [ C1, BB1], [C2, BB2] /// Y = add /// Z = select X, Y, 0 /// /// because Y is not live in BB1/BB2. static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, const SelectInst &SI) { // If the value is a non-instruction value like a constant or argument, it // can always be mapped. const Instruction *I = dyn_cast(V); if (!I) return true; // If V is a PHI node defined in the same block as the condition PHI, we can // map the arguments. const PHINode *CondPHI = cast(SI.getCondition()); if (const PHINode *VP = dyn_cast(I)) if (VP->getParent() == CondPHI->getParent()) return true; // Otherwise, if the PHI and select are defined in the same block and if V is // defined in a different block, then we can transform it. if (SI.getParent() == CondPHI->getParent() && I->getParent() != CondPHI->getParent()) return true; // Otherwise we have a 'hard' case and we can't tell without doing more // detailed dominator based analysis, punt. return false; } /// We have an SPF (e.g. a min or max) of an SPF of the form: /// SPF2(SPF1(A, B), C) Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C) { if (Outer.getType() != Inner->getType()) return nullptr; if (C == A || C == B) { // MAX(MAX(A, B), B) -> MAX(A, B) // MIN(MIN(a, b), a) -> MIN(a, b) // TODO: This could be done in instsimplify. if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) return replaceInstUsesWith(Outer, Inner); } return nullptr; } /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). /// This is even legal for FP. static Instruction *foldAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); auto *TI = dyn_cast(TrueVal); auto *FI = dyn_cast(FalseVal); if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) return nullptr; Instruction *AddOp = nullptr, *SubOp = nullptr; if ((TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) || (TI->getOpcode() == Instruction::FSub && FI->getOpcode() == Instruction::FAdd)) { AddOp = FI; SubOp = TI; } else if ((FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) || (FI->getOpcode() == Instruction::FSub && TI->getOpcode() == Instruction::FAdd)) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = nullptr; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (SI.getType()->isFPOrFPVectorTy()) { NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); if (Instruction *NegInst = dyn_cast(NegVal)) { FastMathFlags Flags = AddOp->getFastMathFlags(); Flags &= SubOp->getFastMathFlags(); NegInst->setFastMathFlags(Flags); } } else { NegVal = Builder.CreateNeg(SubOp->getOperand(1)); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, SI.getName() + ".p", &SI); if (SI.getType()->isFPOrFPVectorTy()) { Instruction *RI = BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); FastMathFlags Flags = AddOp->getFastMathFlags(); Flags &= SubOp->getFastMathFlags(); RI->setFastMathFlags(Flags); return RI; } else return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); } } return nullptr; } /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y /// Along with a number of patterns similar to: /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y static Instruction * foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); WithOverflowInst *II; if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) return nullptr; Value *X = II->getLHS(); Value *Y = II->getRHS(); auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { Type *Ty = Limit->getType(); ICmpInst::Predicate Pred; Value *TrueVal, *FalseVal, *Op; const APInt *C; if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), m_Value(TrueVal), m_Value(FalseVal)))) return false; auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; auto IsMinMax = [&](Value *Min, Value *Max) { APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); return match(Min, m_SpecificInt(MinVal)) && match(Max, m_SpecificInt(MaxVal)); }; if (Op != X && Op != Y) return false; if (IsAdd) { // X + Y overflows ? (X sadd_sat X, Y // X + Y overflows ? (X sadd_sat X, Y // X + Y overflows ? (Y sadd_sat X, Y // X + Y overflows ? (Y sadd_sat X, Y if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && IsMinMax(TrueVal, FalseVal)) return true; // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && IsMinMax(FalseVal, TrueVal)) return true; } else { // X - Y overflows ? (X ssub_sat X, Y // X - Y overflows ? (X ssub_sat X, Y if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && IsMinMax(TrueVal, FalseVal)) return true; // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && IsMinMax(FalseVal, TrueVal)) return true; // X - Y overflows ? (Y ssub_sat X, Y // X - Y overflows ? (Y ssub_sat X, Y if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && IsMinMax(FalseVal, TrueVal)) return true; // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && IsMinMax(TrueVal, FalseVal)) return true; } return false; }; Intrinsic::ID NewIntrinsicID; if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && match(TrueVal, m_AllOnes())) // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y NewIntrinsicID = Intrinsic::uadd_sat; else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && match(TrueVal, m_Zero())) // X - Y overflows ? 0 : X - Y -> usub_sat X, Y NewIntrinsicID = Intrinsic::usub_sat; else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) // X + Y overflows ? (X sadd_sat X, Y // X + Y overflows ? (X sadd_sat X, Y // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (Y sadd_sat X, Y // X + Y overflows ? (Y sadd_sat X, Y // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y NewIntrinsicID = Intrinsic::sadd_sat; else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) // X - Y overflows ? (X ssub_sat X, Y // X - Y overflows ? (X ssub_sat X, Y // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y // X - Y overflows ? (Y ssub_sat X, Y // X - Y overflows ? (Y ssub_sat X, Y // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y NewIntrinsicID = Intrinsic::ssub_sat; else return nullptr; Function *F = Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); return CallInst::Create(F, {X, Y}); } Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { Constant *C; if (!match(Sel.getTrueValue(), m_Constant(C)) && !match(Sel.getFalseValue(), m_Constant(C))) return nullptr; Instruction *ExtInst; if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && !match(Sel.getFalseValue(), m_Instruction(ExtInst))) return nullptr; auto ExtOpcode = ExtInst->getOpcode(); if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) return nullptr; // If we are extending from a boolean type or if we can create a select that // has the same size operands as its condition, try to narrow the select. Value *X = ExtInst->getOperand(0); Type *SmallType = X->getType(); Value *Cond = Sel.getCondition(); auto *Cmp = dyn_cast(Cond); if (!SmallType->isIntOrIntVectorTy(1) && (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) return nullptr; // If the constant is the same after truncation to the smaller type and // extension to the original type, we can narrow the select. Type *SelType = Sel.getType(); Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode); if (TruncC && ExtInst->hasOneUse()) { Value *TruncCVal = cast(TruncC); if (ExtInst == Sel.getFalseValue()) std::swap(X, TruncCVal); // select Cond, (ext X), C --> ext(select Cond, X, C') // select Cond, C, (ext X) --> ext(select Cond, C', X) Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); } return nullptr; } /// Try to transform a vector select with a constant condition vector into a /// shuffle for easier combining with other shuffles and insert/extract. static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { Value *CondVal = SI.getCondition(); Constant *CondC; auto *CondValTy = dyn_cast(CondVal->getType()); if (!CondValTy || !match(CondVal, m_Constant(CondC))) return nullptr; unsigned NumElts = CondValTy->getNumElements(); SmallVector Mask; Mask.reserve(NumElts); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = CondC->getAggregateElement(i); if (!Elt) return nullptr; if (Elt->isOneValue()) { // If the select condition element is true, choose from the 1st vector. Mask.push_back(i); } else if (Elt->isNullValue()) { // If the select condition element is false, choose from the 2nd vector. Mask.push_back(i + NumElts); } else if (isa(Elt)) { // Undef in a select condition (choose one of the operands) does not mean // the same thing as undef in a shuffle mask (any value is acceptable), so // give up. return nullptr; } else { // Bail out on a constant expression. return nullptr; } } return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); } /// If we have a select of vectors with a scalar condition, try to convert that /// to a vector select by splatting the condition. A splat may get folded with /// other operations in IR and having all operands of a select be vector types /// is likely better for vector codegen. static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, InstCombinerImpl &IC) { auto *Ty = dyn_cast(Sel.getType()); if (!Ty) return nullptr; // We can replace a single-use extract with constant index. Value *Cond = Sel.getCondition(); if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) return nullptr; // select (extelt V, Index), T, F --> select (splat V, Index), T, F // Splatting the extracted condition reduces code (we could directly create a // splat shuffle of the source vector to eliminate the intermediate step). return IC.replaceOperand( Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); } /// Reuse bitcasted operands between a compare and select: /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { Value *Cond = Sel.getCondition(); Value *TVal = Sel.getTrueValue(); Value *FVal = Sel.getFalseValue(); CmpInst::Predicate Pred; Value *A, *B; if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) return nullptr; // The select condition is a compare instruction. If the select's true/false // values are already the same as the compare operands, there's nothing to do. if (TVal == A || TVal == B || FVal == A || FVal == B) return nullptr; Value *C, *D; if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) return nullptr; // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) Value *TSrc, *FSrc; if (!match(TVal, m_BitCast(m_Value(TSrc))) || !match(FVal, m_BitCast(m_Value(FSrc)))) return nullptr; // If the select true/false values are *different bitcasts* of the same source // operands, make the select operands the same as the compare operands and // cast the result. This is the canonical select form for min/max. Value *NewSel; if (TSrc == C && FSrc == D) { // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> // bitcast (select (cmp A, B), A, B) NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); } else if (TSrc == D && FSrc == C) { // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> // bitcast (select (cmp A, B), B, A) NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); } else { return nullptr; } return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); } /// Try to eliminate select instructions that test the returned flag of cmpxchg /// instructions. /// /// If a select instruction tests the returned flag of a cmpxchg instruction and /// selects between the returned value of the cmpxchg instruction its compare /// operand, the result of the select will always be equal to its false value. /// For example: /// /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst /// %val = extractvalue { i64, i1 } %cmpxchg, 0 /// %success = extractvalue { i64, i1 } %cmpxchg, 1 /// %sel = select i1 %success, i64 %compare, i64 %val /// ret i64 %sel /// /// The returned value of the cmpxchg instruction (%val) is the original value /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val /// must have been equal to %compare. Thus, the result of the select is always /// equal to %val, and the code can be simplified to: /// /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst /// %val = extractvalue { i64, i1 } %cmpxchg, 0 /// ret i64 %val /// static Value *foldSelectCmpXchg(SelectInst &SI) { // A helper that determines if V is an extractvalue instruction whose // aggregate operand is a cmpxchg instruction and whose single index is equal // to I. If such conditions are true, the helper returns the cmpxchg // instruction; otherwise, a nullptr is returned. auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { auto *Extract = dyn_cast(V); if (!Extract) return nullptr; if (Extract->getIndices()[0] != I) return nullptr; return dyn_cast(Extract->getAggregateOperand()); }; // If the select has a single user, and this user is a select instruction that // we can simplify, skip the cmpxchg simplification for now. if (SI.hasOneUse()) if (auto *Select = dyn_cast(SI.user_back())) if (Select->getCondition() == SI.getCondition()) if (Select->getFalseValue() == SI.getTrueValue() || Select->getTrueValue() == SI.getFalseValue()) return nullptr; // Ensure the select condition is the returned flag of a cmpxchg instruction. auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); if (!CmpXchg) return nullptr; // Check the true value case: The true value of the select is the returned // value of the same cmpxchg used by the condition, and the false value is the // cmpxchg instruction's compare operand. if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) return SI.getFalseValue(); // Check the false value case: The false value of the select is the returned // value of the same cmpxchg used by the condition, and the true value is the // cmpxchg instruction's compare operand. if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) return SI.getFalseValue(); return nullptr; } /// Try to reduce a funnel/rotate pattern that includes a compare and select /// into a funnel shift intrinsic. Example: /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) /// --> call llvm.fshl.i32(a, a, b) /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) /// --> call llvm.fshl.i32(a, b, c) /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) /// --> call llvm.fshr.i32(a, b, c) static Instruction *foldSelectFunnelShift(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { // This must be a power-of-2 type for a bitmasking transform to be valid. unsigned Width = Sel.getType()->getScalarSizeInBits(); if (!isPowerOf2_32(Width)) return nullptr; BinaryOperator *Or0, *Or1; if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) return nullptr; Value *SV0, *SV1, *SA0, *SA1; if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), m_ZExtOrSelf(m_Value(SA0))))) || !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), m_ZExtOrSelf(m_Value(SA1))))) || Or0->getOpcode() == Or1->getOpcode()) return nullptr; // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). if (Or0->getOpcode() == BinaryOperator::LShr) { std::swap(Or0, Or1); std::swap(SV0, SV1); std::swap(SA0, SA1); } assert(Or0->getOpcode() == BinaryOperator::Shl && Or1->getOpcode() == BinaryOperator::LShr && "Illegal or(shift,shift) pair"); // Check the shift amounts to see if they are an opposite pair. Value *ShAmt; if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) ShAmt = SA0; else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) ShAmt = SA1; else return nullptr; // We should now have this pattern: // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) // The false value of the select must be a funnel-shift of the true value: // IsFShl -> TVal must be SV0 else TVal must be SV1. bool IsFshl = (ShAmt == SA0); Value *TVal = Sel.getTrueValue(); if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) return nullptr; // Finally, see if the select is filtering out a shift-by-zero. Value *Cond = Sel.getCondition(); ICmpInst::Predicate Pred; if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || Pred != ICmpInst::ICMP_EQ) return nullptr; // If this is not a rotate then the select was blocking poison from the // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. if (SV0 != SV1) { if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) SV1 = Builder.CreateFreeze(SV1); else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) SV0 = Builder.CreateFreeze(SV0); } // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. // Convert to funnel shift intrinsic. Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); return CallInst::Create(F, { SV0, SV1, ShAmt }); } static Instruction *foldSelectToCopysign(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { Value *Cond = Sel.getCondition(); Value *TVal = Sel.getTrueValue(); Value *FVal = Sel.getFalseValue(); Type *SelType = Sel.getType(); // Match select ?, TC, FC where the constants are equal but negated. // TODO: Generalize to handle a negated variable operand? const APFloat *TC, *FC; if (!match(TVal, m_APFloatAllowPoison(TC)) || !match(FVal, m_APFloatAllowPoison(FC)) || !abs(*TC).bitwiseIsEqual(abs(*FC))) return nullptr; assert(TC != FC && "Expected equal select arms to simplify"); Value *X; const APInt *C; bool IsTrueIfSignSet; ICmpInst::Predicate Pred; if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)), m_APInt(C)))) || !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType) return nullptr; // If needed, negate the value that will be the sign argument of the copysign: // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) // Note: FMF from the select can not be propagated to the new instructions. if (IsTrueIfSignSet ^ TC->isNegative()) X = Builder.CreateFNeg(X); // Canonicalize the magnitude argument as the positive constant since we do // not care about its sign. Value *MagArg = ConstantFP::get(SelType, abs(*TC)); Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, Sel.getType()); return CallInst::Create(F, { MagArg, X }); } Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { if (!isa(Sel.getType())) return nullptr; Value *Cond = Sel.getCondition(); Value *TVal = Sel.getTrueValue(); Value *FVal = Sel.getFalseValue(); Value *C, *X, *Y; if (match(Cond, m_VecReverse(m_Value(C)))) { auto createSelReverse = [&](Value *C, Value *X, Value *Y) { Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel); if (auto *I = dyn_cast(V)) I->copyIRFlags(&Sel); Module *M = Sel.getModule(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType()); return CallInst::Create(F, V); }; if (match(TVal, m_VecReverse(m_Value(X)))) { // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y) if (match(FVal, m_VecReverse(m_Value(Y))) && (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse())) return createSelReverse(C, X, Y); // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat) if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal)) return createSelReverse(C, X, FVal); } // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y) else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) && (Cond->hasOneUse() || FVal->hasOneUse())) return createSelReverse(C, TVal, Y); } auto *VecTy = dyn_cast(Sel.getType()); if (!VecTy) return nullptr; unsigned NumElts = VecTy->getNumElements(); APInt PoisonElts(NumElts, 0); APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) { if (V != &Sel) return replaceInstUsesWith(Sel, V); return &Sel; } // A select of a "select shuffle" with a common operand can be rearranged // to select followed by "select shuffle". Because of poison, this only works // in the case of a shuffle with no undefined mask elements. ArrayRef Mask; if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && !is_contained(Mask, PoisonMaskElem) && cast(TVal)->isSelect()) { if (X == FVal) { // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); return new ShuffleVectorInst(X, NewSel, Mask); } if (Y == FVal) { // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); return new ShuffleVectorInst(NewSel, Y, Mask); } } if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && !is_contained(Mask, PoisonMaskElem) && cast(FVal)->isSelect()) { if (X == TVal) { // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); return new ShuffleVectorInst(X, NewSel, Mask); } if (Y == TVal) { // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); return new ShuffleVectorInst(NewSel, Y, Mask); } } return nullptr; } static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, const DominatorTree &DT, InstCombiner::BuilderTy &Builder) { // Find the block's immediate dominator that ends with a conditional branch // that matches select's condition (maybe inverted). auto *IDomNode = DT[BB]->getIDom(); if (!IDomNode) return nullptr; BasicBlock *IDom = IDomNode->getBlock(); Value *Cond = Sel.getCondition(); Value *IfTrue, *IfFalse; BasicBlock *TrueSucc, *FalseSucc; if (match(IDom->getTerminator(), m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { IfTrue = Sel.getTrueValue(); IfFalse = Sel.getFalseValue(); } else if (match(IDom->getTerminator(), m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { IfTrue = Sel.getFalseValue(); IfFalse = Sel.getTrueValue(); } else return nullptr; // Make sure the branches are actually different. if (TrueSucc == FalseSucc) return nullptr; // We want to replace select %cond, %a, %b with a phi that takes value %a // for all incoming edges that are dominated by condition `%cond == true`, // and value %b for edges dominated by condition `%cond == false`. If %a // or %b are also phis from the same basic block, we can go further and take // their incoming values from the corresponding blocks. BasicBlockEdge TrueEdge(IDom, TrueSucc); BasicBlockEdge FalseEdge(IDom, FalseSucc); DenseMap Inputs; for (auto *Pred : predecessors(BB)) { // Check implication. BasicBlockEdge Incoming(Pred, BB); if (DT.dominates(TrueEdge, Incoming)) Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); else if (DT.dominates(FalseEdge, Incoming)) Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); else return nullptr; // Check availability. if (auto *Insn = dyn_cast(Inputs[Pred])) if (!DT.dominates(Insn, Pred->getTerminator())) return nullptr; } Builder.SetInsertPoint(BB, BB->begin()); auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); for (auto *Pred : predecessors(BB)) PN->addIncoming(Inputs[Pred], Pred); PN->takeName(&Sel); return PN; } static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, InstCombiner::BuilderTy &Builder) { // Try to replace this select with Phi in one of these blocks. SmallSetVector CandidateBlocks; CandidateBlocks.insert(Sel.getParent()); for (Value *V : Sel.operands()) if (auto *I = dyn_cast(V)) CandidateBlocks.insert(I->getParent()); for (BasicBlock *BB : CandidateBlocks) if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) return PN; return nullptr; } /// Tries to reduce a pattern that arises when calculating the remainder of the /// Euclidean division. When the divisor is a power of two and is guaranteed not /// to be negative, a signed remainder can be folded with a bitwise and. /// /// (x % n) < 0 ? (x % n) + n : (x % n) /// -> x & (n - 1) static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC, IRBuilderBase &Builder) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); ICmpInst::Predicate Pred; Value *Op, *RemRes, *Remainder; const APInt *C; bool TrueIfSigned = false; if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) && isSignBitCheck(Pred, *C, TrueIfSigned))) return nullptr; // If the sign bit is not set, we have a SGE/SGT comparison, and the operands // of the select are inverted. if (!TrueIfSigned) std::swap(TrueVal, FalseVal); auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * { Value *Add = Builder.CreateAdd( Remainder, Constant::getAllOnesValue(RemRes->getType())); return BinaryOperator::CreateAnd(Op, Add); }; // Match the general case: // %rem = srem i32 %x, %n // %cnd = icmp slt i32 %rem, 0 // %add = add i32 %rem, %n // %sel = select i1 %cnd, i32 %add, i32 %rem if (match(TrueVal, m_Add(m_Specific(RemRes), m_Value(Remainder))) && match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) && IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) && FalseVal == RemRes) return FoldToBitwiseAnd(Remainder); // Match the case where the one arm has been replaced by constant 1: // %rem = srem i32 %n, 2 // %cnd = icmp slt i32 %rem, 0 // %sel = select i1 %cnd, i32 1, i32 %rem if (match(TrueVal, m_One()) && match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) && FalseVal == RemRes) return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2)); return nullptr; } static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { FreezeInst *FI = dyn_cast(Sel.getCondition()); if (!FI) return nullptr; Value *Cond = FI->getOperand(0); Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); // select (freeze(x == y)), x, y --> y // select (freeze(x != y)), x, y --> x // The freeze should be only used by this select. Otherwise, remaining uses of // the freeze can observe a contradictory value. // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 // a = select c, x, y ; // f(a, c) ; f(poison, 1) cannot happen, but if a is folded // ; to y, this can happen. CmpInst::Predicate Pred; if (FI->hasOneUse() && match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; } return nullptr; } /// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI. static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI, Value *CondVal, bool CondIsTrue, const DataLayout &DL) { Value *InnerCondVal = SI.getCondition(); Value *InnerTrueVal = SI.getTrueValue(); Value *InnerFalseVal = SI.getFalseValue(); assert(CondVal->getType() == InnerCondVal->getType() && "The type of inner condition must match with the outer."); if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue)) return *Implied ? InnerTrueVal : InnerFalseVal; return nullptr; } Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI, bool IsAnd) { assert(Op->getType()->isIntOrIntVectorTy(1) && "Op must be either i1 or vector of i1."); if (SI.getCondition()->getType() != Op->getType()) return nullptr; if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL)) return SelectInst::Create(Op, IsAnd ? V : ConstantInt::getTrue(Op->getType()), IsAnd ? ConstantInt::getFalse(Op->getType()) : V); return nullptr; } // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, InstCombinerImpl &IC) { Value *CondVal = SI.getCondition(); bool ChangedFMF = false; for (bool Swap : {false, true}) { Value *TrueVal = SI.getTrueValue(); Value *X = SI.getFalseValue(); CmpInst::Predicate Pred; if (Swap) std::swap(TrueVal, X); if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) continue; // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); return IC.replaceInstUsesWith(SI, Fabs); } if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); return IC.replaceInstUsesWith(SI, Fabs); } } if (!match(TrueVal, m_FNeg(m_Specific(X)))) return nullptr; // Forward-propagate nnan and ninf from the fneg to the select. // If all inputs are not those values, then the select is not either. // Note: nsz is defined differently, so it may not be correct to propagate. FastMathFlags FMF = cast(TrueVal)->getFastMathFlags(); if (FMF.noNaNs() && !SI.hasNoNaNs()) { SI.setHasNoNaNs(true); ChangedFMF = true; } if (FMF.noInfs() && !SI.hasNoInfs()) { SI.setHasNoInfs(true); ChangedFMF = true; } // With nsz, when 'Swap' is false: // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) // when 'Swap' is true: // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) // // Note: We require "nnan" for this fold because fcmp ignores the signbit // of NAN, but IEEE-754 specifies the signbit of NAN values with // fneg/fabs operations. if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs()) return nullptr; if (Swap) Pred = FCmpInst::getSwappedPredicate(Pred); bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; if (IsLTOrLE) { Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); return IC.replaceInstUsesWith(SI, Fabs); } if (IsGTOrGE) { Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); NewFNeg->setFastMathFlags(SI.getFastMathFlags()); return NewFNeg; } } // Match select with (icmp slt (bitcast X to int), 0) // or (icmp sgt (bitcast X to int), -1) for (bool Swap : {false, true}) { Value *TrueVal = SI.getTrueValue(); Value *X = SI.getFalseValue(); if (Swap) std::swap(TrueVal, X); CmpInst::Predicate Pred; const APInt *C; bool TrueIfSigned; if (!match(CondVal, m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(X)), m_APInt(C))) || !isSignBitCheck(Pred, *C, TrueIfSigned)) continue; if (!match(TrueVal, m_FNeg(m_Specific(X)))) return nullptr; if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse()) return nullptr; // Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X) // Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X) Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); if (Swap != TrueIfSigned) return IC.replaceInstUsesWith(SI, Fabs); return UnaryOperator::CreateFNegFMF(Fabs, &SI); } return ChangedFMF ? &SI : nullptr; } // Match the following IR pattern: // %x.lowbits = and i8 %x, %lowbitmask // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 // %x.biased = add i8 %x, %bias // %x.biased.highbits = and i8 %x.biased, %highbitmask // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits // Define: // %alignment = add i8 %lowbitmask, 1 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) // and 2. %bias is equal to either %lowbitmask or %alignment, // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) // then this pattern can be transformed into: // %x.offset = add i8 %x, %lowbitmask // %x.roundedup = and i8 %x.offset, %highbitmask static Value * foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, InstCombiner::BuilderTy &Builder) { Value *Cond = SI.getCondition(); Value *X = SI.getTrueValue(); Value *XBiasedHighBits = SI.getFalseValue(); ICmpInst::Predicate Pred; Value *XLowBits; if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || !ICmpInst::isEquality(Pred)) return nullptr; if (Pred == ICmpInst::Predicate::ICMP_NE) std::swap(X, XBiasedHighBits); // FIXME: we could support non non-splats here. const APInt *LowBitMaskCst; if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst)))) return nullptr; // Match even if the AND and ADD are swapped. const APInt *BiasCst, *HighBitMaskCst; if (!match(XBiasedHighBits, m_And(m_Add(m_Specific(X), m_APIntAllowPoison(BiasCst)), m_APIntAllowPoison(HighBitMaskCst))) && !match(XBiasedHighBits, m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)), m_APIntAllowPoison(BiasCst)))) return nullptr; if (!LowBitMaskCst->isMask()) return nullptr; APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; if (InvertedLowBitMaskCst != *HighBitMaskCst) return nullptr; APInt AlignmentCst = *LowBitMaskCst + 1; if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) return nullptr; if (!XBiasedHighBits->hasOneUse()) { // We can't directly return XBiasedHighBits if it is more poisonous. if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X)) return XBiasedHighBits; return nullptr; } // FIXME: could we preserve undef's here? Type *Ty = X->getType(); Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), X->getName() + ".biased"); Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); R->takeName(&SI); return R; } namespace { struct DecomposedSelect { Value *Cond = nullptr; Value *TrueVal = nullptr; Value *FalseVal = nullptr; }; } // namespace /// Folds patterns like: /// select c2 (select c1 a b) (select c1 b a) /// into: /// select (xor c1 c2) b a static Instruction * foldSelectOfSymmetricSelect(SelectInst &OuterSelVal, InstCombiner::BuilderTy &Builder) { Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal; if (!match( &OuterSelVal, m_Select(m_Value(OuterCond), m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal), m_Value(InnerFalseVal))), m_OneUse(m_Select(m_Deferred(InnerCond), m_Deferred(InnerFalseVal), m_Deferred(InnerTrueVal)))))) return nullptr; if (OuterCond->getType() != InnerCond->getType()) return nullptr; Value *Xor = Builder.CreateXor(InnerCond, OuterCond); return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal); } /// Look for patterns like /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel /// and rewrite it as /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f static Instruction *foldNestedSelects(SelectInst &OuterSelVal, InstCombiner::BuilderTy &Builder) { // We must start with a `select`. DecomposedSelect OuterSel; match(&OuterSelVal, m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal), m_Value(OuterSel.FalseVal))); // Canonicalize inversion of the outermost `select`'s condition. if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond)))) std::swap(OuterSel.TrueVal, OuterSel.FalseVal); // The condition of the outermost select must be an `and`/`or`. if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value()))) return nullptr; // Depending on the logical op, inner select might be in different hand. bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd()); Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal; // Profitability check - avoid increasing instruction count. if (none_of(ArrayRef({OuterSelVal.getCondition(), InnerSelVal}), [](Value *V) { return V->hasOneUse(); })) return nullptr; // The appropriate hand of the outermost `select` must be a select itself. DecomposedSelect InnerSel; if (!match(InnerSelVal, m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal), m_Value(InnerSel.FalseVal)))) return nullptr; // Canonicalize inversion of the innermost `select`'s condition. if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond)))) std::swap(InnerSel.TrueVal, InnerSel.FalseVal); Value *AltCond = nullptr; auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) { // An unsimplified select condition can match both LogicalAnd and LogicalOr // (select true, true, false). Since below we assume that LogicalAnd implies // InnerSel match the FVal and vice versa for LogicalOr, we can't match the // alternative pattern here. return IsAndVariant ? match(OuterSel.Cond, m_c_LogicalAnd(m_InnerCond, m_Value(AltCond))) : match(OuterSel.Cond, m_c_LogicalOr(m_InnerCond, m_Value(AltCond))); }; // Finally, match the condition that was driving the outermost `select`, // it should be a logical operation between the condition that was driving // the innermost `select` (after accounting for the possible inversions // of the condition), and some other condition. if (matchOuterCond(m_Specific(InnerSel.Cond))) { // Done! } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd( m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) { // Done! std::swap(InnerSel.TrueVal, InnerSel.FalseVal); InnerSel.Cond = NotInnerCond; } else // Not the pattern we were looking for. return nullptr; Value *SelInner = Builder.CreateSelect( AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal, IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal); SelInner->takeName(InnerSelVal); return SelectInst::Create(InnerSel.Cond, IsAndVariant ? SelInner : InnerSel.TrueVal, !IsAndVariant ? SelInner : InnerSel.FalseVal); } Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Type *SelType = SI.getType(); // Avoid potential infinite loops by checking for non-constant condition. // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? // Scalar select must have simplified? if (!SelType->isIntOrIntVectorTy(1) || isa(CondVal) || TrueVal->getType() != CondVal->getType()) return nullptr; auto *One = ConstantInt::getTrue(SelType); auto *Zero = ConstantInt::getFalse(SelType); Value *A, *B, *C, *D; // Folding select to and/or i1 isn't poison safe in general. impliesPoison // checks whether folding it does not convert a well-defined value into // poison. if (match(TrueVal, m_One())) { if (impliesPoison(FalseVal, CondVal)) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::CreateOr(CondVal, FalseVal); } if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) && impliesPoison(FalseVal, B)) { // (A || B) || C --> A || (B | C) return replaceInstUsesWith( SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal))); } if (auto *LHS = dyn_cast(CondVal)) if (auto *RHS = dyn_cast(FalseVal)) if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false, /*IsSelectLogical*/ true)) return replaceInstUsesWith(SI, V); // (A && B) || (C && B) --> (A || C) && B if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) && (CondVal->hasOneUse() || FalseVal->hasOneUse())) { bool CondLogicAnd = isa(CondVal); bool FalseLogicAnd = isa(FalseVal); auto AndFactorization = [&](Value *Common, Value *InnerCond, Value *InnerVal, bool SelFirst = false) -> Instruction * { Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal); if (SelFirst) std::swap(Common, InnerSel); if (FalseLogicAnd || (CondLogicAnd && Common == A)) return SelectInst::Create(Common, InnerSel, Zero); else return BinaryOperator::CreateAnd(Common, InnerSel); }; if (A == C) return AndFactorization(A, B, D); if (A == D) return AndFactorization(A, B, C); if (B == C) return AndFactorization(B, A, D); if (B == D) return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd); } } if (match(FalseVal, m_Zero())) { if (impliesPoison(TrueVal, CondVal)) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::CreateAnd(CondVal, TrueVal); } if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) && impliesPoison(TrueVal, B)) { // (A && B) && C --> A && (B & C) return replaceInstUsesWith( SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal))); } if (auto *LHS = dyn_cast(CondVal)) if (auto *RHS = dyn_cast(TrueVal)) if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true, /*IsSelectLogical*/ true)) return replaceInstUsesWith(SI, V); // (A || B) && (C || B) --> (A && C) || B if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) && (CondVal->hasOneUse() || TrueVal->hasOneUse())) { bool CondLogicOr = isa(CondVal); bool TrueLogicOr = isa(TrueVal); auto OrFactorization = [&](Value *Common, Value *InnerCond, Value *InnerVal, bool SelFirst = false) -> Instruction * { Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero); if (SelFirst) std::swap(Common, InnerSel); if (TrueLogicOr || (CondLogicOr && Common == A)) return SelectInst::Create(Common, One, InnerSel); else return BinaryOperator::CreateOr(Common, InnerSel); }; if (A == C) return OrFactorization(A, B, D); if (A == D) return OrFactorization(A, B, C); if (B == C) return OrFactorization(B, A, D); if (B == D) return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr); } } // We match the "full" 0 or 1 constant here to avoid a potential infinite // loop with vectors that may have undefined/poison elements. // select a, false, b -> select !a, b, false if (match(TrueVal, m_Specific(Zero))) { Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); return SelectInst::Create(NotCond, FalseVal, Zero); } // select a, b, true -> select !a, true, b if (match(FalseVal, m_Specific(One))) { Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); return SelectInst::Create(NotCond, One, TrueVal); } // DeMorgan in select form: !a && !b --> !(a || b) // select !a, !b, false --> not (select a, true, b) if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && (CondVal->hasOneUse() || TrueVal->hasOneUse()) && !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); // DeMorgan in select form: !a || !b --> !(a && b) // select !a, true, !b --> not (select a, b, false) if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && (CondVal->hasOneUse() || FalseVal->hasOneUse()) && !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); // select (select a, true, b), true, b -> select a, true, b if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) return replaceOperand(SI, 0, A); // select (select a, b, false), b, false -> select a, b, false if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) return replaceOperand(SI, 0, A); // ~(A & B) & (A | B) --> A ^ B if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))), m_c_LogicalOr(m_Deferred(A), m_Deferred(B))))) return BinaryOperator::CreateXor(A, B); // select (~a | c), a, b -> select a, (select c, true, b), false if (match(CondVal, m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) { Value *OrV = Builder.CreateSelect(C, One, FalseVal); return SelectInst::Create(TrueVal, OrV, Zero); } // select (c & b), a, b -> select b, (select ~c, true, a), false if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) { if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { Value *OrV = Builder.CreateSelect(NotC, One, TrueVal); return SelectInst::Create(FalseVal, OrV, Zero); } } // select (a | c), a, b -> select a, true, (select ~c, b, false) if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) { if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero); return SelectInst::Create(TrueVal, One, AndV); } } // select (c & ~b), a, b -> select b, true, (select c, a, false) if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) { Value *AndV = Builder.CreateSelect(C, TrueVal, Zero); return SelectInst::Create(FalseVal, One, AndV); } if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { Use *Y = nullptr; bool IsAnd = match(FalseVal, m_Zero()) ? true : false; Value *Op1 = IsAnd ? TrueVal : FalseVal; if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); InsertNewInstBefore(FI, cast(Y->getUser())->getIterator()); replaceUse(*Y, FI); return replaceInstUsesWith(SI, Op1); } if (auto *ICmp0 = dyn_cast(CondVal)) if (auto *ICmp1 = dyn_cast(Op1)) if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd, /* IsLogical */ true)) return replaceInstUsesWith(SI, V); } // select (a || b), c, false -> select a, c, false // select c, (a || b), false -> select c, a, false // if c implies that b is false. if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && match(FalseVal, m_Zero())) { std::optional Res = isImpliedCondition(TrueVal, B, DL); if (Res && *Res == false) return replaceOperand(SI, 0, A); } if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) && match(FalseVal, m_Zero())) { std::optional Res = isImpliedCondition(CondVal, B, DL); if (Res && *Res == false) return replaceOperand(SI, 1, A); } // select c, true, (a && b) -> select c, true, a // select (a && b), true, c -> select a, true, c // if c = false implies that b = true if (match(TrueVal, m_One()) && match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) { std::optional Res = isImpliedCondition(CondVal, B, DL, false); if (Res && *Res == true) return replaceOperand(SI, 2, A); } if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && match(TrueVal, m_One())) { std::optional Res = isImpliedCondition(FalseVal, B, DL, false); if (Res && *Res == true) return replaceOperand(SI, 0, A); } if (match(TrueVal, m_One())) { Value *C; // (C && A) || (!C && B) --> sel C, A, B // (A && C) || (!C && B) --> sel C, A, B // (C && A) || (B && !C) --> sel C, A, B // (A && C) || (B && !C) --> sel C, A, B (may require freeze) if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) && match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) { auto *SelCond = dyn_cast(CondVal); auto *SelFVal = dyn_cast(FalseVal); bool MayNeedFreeze = SelCond && SelFVal && match(SelFVal->getTrueValue(), m_Not(m_Specific(SelCond->getTrueValue()))); if (MayNeedFreeze) C = Builder.CreateFreeze(C); return SelectInst::Create(C, A, B); } // (!C && A) || (C && B) --> sel C, B, A // (A && !C) || (C && B) --> sel C, B, A // (!C && A) || (B && C) --> sel C, B, A // (A && !C) || (B && C) --> sel C, B, A (may require freeze) if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) && match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) { auto *SelCond = dyn_cast(CondVal); auto *SelFVal = dyn_cast(FalseVal); bool MayNeedFreeze = SelCond && SelFVal && match(SelCond->getTrueValue(), m_Not(m_Specific(SelFVal->getTrueValue()))); if (MayNeedFreeze) C = Builder.CreateFreeze(C); return SelectInst::Create(C, B, A); } } return nullptr; } // Return true if we can safely remove the select instruction for std::bit_ceil // pattern. static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0, const APInt *Cond1, Value *CtlzOp, unsigned BitWidth, bool &ShouldDropNUW) { // The challenge in recognizing std::bit_ceil(X) is that the operand is used // for the CTLZ proper and select condition, each possibly with some // operation like add and sub. // // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the // select instruction would select 1, which allows us to get rid of the select // instruction. // // To see if we can do so, we do some symbolic execution with ConstantRange. // Specifically, we compute the range of values that Cond0 could take when // Cond == false. Then we successively transform the range until we obtain // the range of values that CtlzOp could take. // // Conceptually, we follow the def-use chain backward from Cond0 while // transforming the range for Cond0 until we meet the common ancestor of Cond0 // and CtlzOp. Then we follow the def-use chain forward until we obtain the // range for CtlzOp. That said, we only follow at most one ancestor from // Cond0. Likewise, we only follow at most one ancestor from CtrlOp. ConstantRange CR = ConstantRange::makeExactICmpRegion( CmpInst::getInversePredicate(Pred), *Cond1); ShouldDropNUW = false; // Match the operation that's used to compute CtlzOp from CommonAncestor. If // CtlzOp == CommonAncestor, return true as no operation is needed. If a // match is found, execute the operation on CR, update CR, and return true. // Otherwise, return false. auto MatchForward = [&](Value *CommonAncestor) { const APInt *C = nullptr; if (CtlzOp == CommonAncestor) return true; if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) { CR = CR.add(*C); return true; } if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) { ShouldDropNUW = true; CR = ConstantRange(*C).sub(CR); return true; } if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) { CR = CR.binaryNot(); return true; } return false; }; const APInt *C = nullptr; Value *CommonAncestor; if (MatchForward(Cond0)) { // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated. } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) { CR = CR.sub(*C); if (!MatchForward(CommonAncestor)) return false; // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated. } else { return false; } // Return true if all the values in the range are either 0 or negative (if // treated as signed). We do so by evaluating: // // CR - 1 u>= (1 << BitWidth) - 1. APInt IntMax = APInt::getSignMask(BitWidth) - 1; CR = CR.sub(APInt(BitWidth, 1)); return CR.icmp(ICmpInst::ICMP_UGE, IntMax); } // Transform the std::bit_ceil(X) pattern like: // // %dec = add i32 %x, -1 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) // %sub = sub i32 32, %ctlz // %shl = shl i32 1, %sub // %ugt = icmp ugt i32 %x, 1 // %sel = select i1 %ugt, i32 %shl, i32 1 // // into: // // %dec = add i32 %x, -1 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) // %neg = sub i32 0, %ctlz // %masked = and i32 %ctlz, 31 // %shl = shl i32 1, %sub // // Note that the select is optimized away while the shift count is masked with // 31. We handle some variations of the input operand like std::bit_ceil(X + // 1). static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) { Type *SelType = SI.getType(); unsigned BitWidth = SelType->getScalarSizeInBits(); Value *FalseVal = SI.getFalseValue(); Value *TrueVal = SI.getTrueValue(); ICmpInst::Predicate Pred; const APInt *Cond1; Value *Cond0, *Ctlz, *CtlzOp; if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1)))) return nullptr; if (match(TrueVal, m_One())) { std::swap(FalseVal, TrueVal); Pred = CmpInst::getInversePredicate(Pred); } bool ShouldDropNUW; if (!match(FalseVal, m_One()) || !match(TrueVal, m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth), m_Value(Ctlz)))))) || !match(Ctlz, m_Intrinsic(m_Value(CtlzOp), m_Zero())) || !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth, ShouldDropNUW)) return nullptr; if (ShouldDropNUW) cast(CtlzOp)->setHasNoUnsignedWrap(false); // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth // is an integer constant. Masking with BitWidth-1 comes free on some // hardware as part of the shift instruction. Value *Neg = Builder.CreateNeg(Ctlz); Value *Masked = Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1)); return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1), Masked); } bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const { KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI); return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() && (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN()); } static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0, Value *Cmp1, Value *TrueVal, Value *FalseVal, Instruction &CtxI, bool SelectIsNSZ) { Value *MulRHS; if (match(Cmp1, m_PosZeroFP()) && match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) { FastMathFlags FMF = cast(TrueVal)->getFastMathFlags(); // nsz must be on the select, it must be ignored on the multiply. We // need nnan and ninf on the multiply for the other value. FMF.setNoSignedZeros(SelectIsNSZ); return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI); } return false; } /// Check whether the KnownBits of a select arm may be affected by the /// select condition. static bool hasAffectedValue(Value *V, SmallPtrSetImpl &Affected, unsigned Depth) { if (Depth == MaxAnalysisRecursionDepth) return false; // Ignore the case where the select arm itself is affected. These cases // are handled more efficiently by other optimizations. if (Depth != 0 && Affected.contains(V)) return true; if (auto *I = dyn_cast(V)) { if (isa(I)) { if (Depth == MaxAnalysisRecursionDepth - 1) return false; Depth = MaxAnalysisRecursionDepth - 2; } return any_of(I->operands(), [&](Value *Op) { return Op->getType()->isIntOrIntVectorTy() && hasAffectedValue(Op, Affected, Depth + 1); }); } return false; } Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Type *SelType = SI.getType(); if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, SQ.getWithInstruction(&SI))) return replaceInstUsesWith(SI, V); if (Instruction *I = canonicalizeSelectToShuffle(SI)) return I; if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) return I; // If the type of select is not an integer type or if the condition and // the selection type are not both scalar nor both vector types, there is no // point in attempting to match these patterns. Type *CondType = CondVal->getType(); if (!isa(CondVal) && SelType->isIntOrIntVectorTy() && CondType->isVectorTy() == SelType->isVectorTy()) { if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, ConstantInt::getTrue(CondType), SQ, /* AllowRefinement */ true)) return replaceOperand(SI, 1, S); if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, ConstantInt::getFalse(CondType), SQ, /* AllowRefinement */ true)) return replaceOperand(SI, 2, S); } if (Instruction *R = foldSelectOfBools(SI)) return R; // Selecting between two integer or vector splat integer constants? // // Note that we don't handle a scalar select of vectors: // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> // because that may need 3 instructions to splat the condition value: // extend, insertelement, shufflevector. // // Do not handle i1 TrueVal and FalseVal otherwise would result in // zext/sext i1 to i1. if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { // select C, 1, 0 -> zext C to int if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) return new ZExtInst(CondVal, SelType); // select C, -1, 0 -> sext C to int if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) return new SExtInst(CondVal, SelType); // select C, 0, 1 -> zext !C to int if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); return new ZExtInst(NotCond, SelType); } // select C, 0, -1 -> sext !C to int if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); return new SExtInst(NotCond, SelType); } } auto *SIFPOp = dyn_cast(&SI); if (auto *FCmp = dyn_cast(CondVal)) { FCmpInst::Predicate Pred = FCmp->getPredicate(); Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); // Are we selecting a value based on a comparison of the two values? if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || (Cmp0 == FalseVal && Cmp1 == TrueVal)) { // Canonicalize to use ordered comparisons by swapping the select // operands. // // e.g. // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) { FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); IRBuilder<>::FastMathFlagGuard FMFG(Builder); // FIXME: The FMF should propagate from the select, not the fcmp. Builder.setFastMathFlags(FCmp->getFastMathFlags()); Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, FCmp->getName() + ".inv"); Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); return replaceInstUsesWith(SI, NewSel); } } if (SIFPOp) { // Fold out scale-if-equals-zero pattern. // // This pattern appears in code with denormal range checks after it's // assumed denormals are treated as zero. This drops a canonicalization. // TODO: Could relax the signed zero logic. We just need to know the sign // of the result matches (fmul x, y has the same sign as x). // // TODO: Handle always-canonicalizing variant that selects some value or 1 // scaling factor in the fmul visitor. // TODO: Handle ldexp too Value *MatchCmp0 = nullptr; Value *MatchCmp1 = nullptr; // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) { MatchCmp0 = FalseVal; MatchCmp1 = TrueVal; } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) { MatchCmp0 = TrueVal; MatchCmp1 = FalseVal; } if (Cmp0 == MatchCmp0 && matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0, SI, SIFPOp->hasNoSignedZeros())) return replaceInstUsesWith(SI, Cmp0); } } if (SIFPOp) { // TODO: Try to forward-propagate FMF from select arms to the select. // Canonicalize select of FP values where NaN and -0.0 are not valid as // minnum/maxnum intrinsics. if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) { Value *X, *Y; if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) return replaceInstUsesWith( SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) return replaceInstUsesWith( SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); } } // Fold selecting to fabs. if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) return Fabs; // See if we are selecting two values based on a comparison of the two values. if (ICmpInst *ICI = dyn_cast(CondVal)) if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) return Result; if (Instruction *Add = foldAddSubSelect(SI, Builder)) return Add; if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) return Add; if (Instruction *Or = foldSetClearBits(SI, Builder)) return Or; if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) return Mul; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) auto *TI = dyn_cast(TrueVal); auto *FI = dyn_cast(FalseVal); if (TI && FI && TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) return IV; if (Instruction *I = foldSelectExtConst(SI)) return I; if (Instruction *I = foldSelectWithSRem(SI, *this, Builder)) return I; // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, bool Swap) -> GetElementPtrInst * { Value *Ptr = Gep->getPointerOperand(); if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || !Gep->hasOneUse()) return nullptr; Value *Idx = Gep->getOperand(1); if (isa(CondVal->getType()) && !isa(Idx->getType())) return nullptr; Type *ElementType = Gep->getSourceElementType(); Value *NewT = Idx; Value *NewF = Constant::getNullValue(Idx->getType()); if (Swap) std::swap(NewT, NewF); Value *NewSI = Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); return GetElementPtrInst::Create(ElementType, Ptr, NewSI, Gep->getNoWrapFlags()); }; if (auto *TrueGep = dyn_cast(TrueVal)) if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) return NewGep; if (auto *FalseGep = dyn_cast(FalseVal)) if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) return NewGep; // See if we can fold the select into one of our operands. if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) return FoldI; Value *LHS, *RHS; Instruction::CastOps CastOp; SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); auto SPF = SPR.Flavor; if (SPF) { Value *LHS2, *RHS2; if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) if (Instruction *R = foldSPFofSPF(cast(LHS), SPF2, LHS2, RHS2, SI, SPF, RHS)) return R; if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) if (Instruction *R = foldSPFofSPF(cast(RHS), SPF2, LHS2, RHS2, SI, SPF, LHS)) return R; } if (SelectPatternResult::isMinOrMax(SPF)) { // Canonicalize so that // - type casts are outside select patterns. // - float clamp is transformed to min/max pattern bool IsCastNeeded = LHS->getType() != SelType; Value *CmpLHS = cast(CondVal)->getOperand(0); Value *CmpRHS = cast(CondVal)->getOperand(1); if (IsCastNeeded || (LHS->getType()->isFPOrFPVectorTy() && ((CmpLHS != LHS && CmpLHS != RHS) || (CmpRHS != LHS && CmpRHS != RHS)))) { CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); Value *Cmp; if (CmpInst::isIntPredicate(MinMaxPred)) { Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); } else { IRBuilder<>::FastMathFlagGuard FMFG(Builder); auto FMF = cast(SI.getCondition())->getFastMathFlags(); Builder.setFastMathFlags(FMF); Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); } Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); if (!IsCastNeeded) return replaceInstUsesWith(SI, NewSI); Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); return replaceInstUsesWith(SI, NewCast); } } } // See if we can fold the select into a phi node if the condition is a select. if (auto *PN = dyn_cast(SI.getCondition())) // The true/false values have to be live in the PHI predecessor's blocks. if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) if (Instruction *NV = foldOpIntoPhi(SI, PN)) return NV; if (SelectInst *TrueSI = dyn_cast(TrueVal)) { if (TrueSI->getCondition()->getType() == CondVal->getType()) { // Fold nested selects if the inner condition can be implied by the outer // condition. if (Value *V = simplifyNestedSelectsUsingImpliedCond( *TrueSI, CondVal, /*CondIsTrue=*/true, DL)) return replaceOperand(SI, 1, V); // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) // We choose this as normal form to enable folding on the And and // shortening paths for the values (this helps getUnderlyingObjects() for // example). if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); replaceOperand(SI, 0, And); replaceOperand(SI, 1, TrueSI->getTrueValue()); return &SI; } } } if (SelectInst *FalseSI = dyn_cast(FalseVal)) { if (FalseSI->getCondition()->getType() == CondVal->getType()) { // Fold nested selects if the inner condition can be implied by the outer // condition. if (Value *V = simplifyNestedSelectsUsingImpliedCond( *FalseSI, CondVal, /*CondIsTrue=*/false, DL)) return replaceOperand(SI, 2, V); // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); replaceOperand(SI, 0, Or); replaceOperand(SI, 2, FalseSI->getFalseValue()); return &SI; } } } // Try to simplify a binop sandwiched between 2 selects with the same // condition. This is not valid for div/rem because the select might be // preventing a division-by-zero. // TODO: A div/rem restriction is conservative; use something like // isSafeToSpeculativelyExecute(). // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) BinaryOperator *TrueBO; if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) { if (auto *TrueBOSI = dyn_cast(TrueBO->getOperand(0))) { if (TrueBOSI->getCondition() == CondVal) { replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); Worklist.push(TrueBO); return &SI; } } if (auto *TrueBOSI = dyn_cast(TrueBO->getOperand(1))) { if (TrueBOSI->getCondition() == CondVal) { replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); Worklist.push(TrueBO); return &SI; } } } // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) BinaryOperator *FalseBO; if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) { if (auto *FalseBOSI = dyn_cast(FalseBO->getOperand(0))) { if (FalseBOSI->getCondition() == CondVal) { replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); Worklist.push(FalseBO); return &SI; } } if (auto *FalseBOSI = dyn_cast(FalseBO->getOperand(1))) { if (FalseBOSI->getCondition() == CondVal) { replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); Worklist.push(FalseBO); return &SI; } } } Value *NotCond; if (match(CondVal, m_Not(m_Value(NotCond))) && !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { replaceOperand(SI, 0, NotCond); SI.swapValues(); SI.swapProfMetadata(); return &SI; } if (Instruction *I = foldVectorSelect(SI)) return I; // If we can compute the condition, there's no need for a select. // Like the above fold, we are attempting to reduce compile-time cost by // putting this fold here with limitations rather than in InstSimplify. // The motivation for this call into value tracking is to take advantage of // the assumption cache, so make sure that is populated. if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { KnownBits Known(1); computeKnownBits(CondVal, Known, 0, &SI); if (Known.One.isOne()) return replaceInstUsesWith(SI, TrueVal); if (Known.Zero.isOne()) return replaceInstUsesWith(SI, FalseVal); } if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) return BitCastSel; // Simplify selects that test the returned flag of cmpxchg instructions. if (Value *V = foldSelectCmpXchg(SI)) return replaceInstUsesWith(SI, V); if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) return Select; if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) return Funnel; if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) return Copysign; if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) return replaceInstUsesWith(SI, PN); if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) return replaceInstUsesWith(SI, Fr); if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) return replaceInstUsesWith(SI, V); // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) // Load inst is intentionally not checked for hasOneUse() if (match(FalseVal, m_Zero()) && (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), m_CombineOr(m_Undef(), m_Zero()))) || match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), m_CombineOr(m_Undef(), m_Zero()))))) { auto *MaskedInst = cast(TrueVal); if (isa(MaskedInst->getArgOperand(3))) MaskedInst->setArgOperand(3, FalseVal /* Zero */); return replaceInstUsesWith(SI, MaskedInst); } Value *Mask; if (match(TrueVal, m_Zero()) && (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), m_CombineOr(m_Undef(), m_Zero()))) || match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), m_CombineOr(m_Undef(), m_Zero())))) && (CondVal->getType() == Mask->getType())) { // We can remove the select by ensuring the load zeros all lanes the // select would have. We determine this by proving there is no overlap // between the load and select masks. // (i.e (load_mask & select_mask) == 0 == no overlap) bool CanMergeSelectIntoLoad = false; if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) CanMergeSelectIntoLoad = match(V, m_Zero()); if (CanMergeSelectIntoLoad) { auto *MaskedInst = cast(FalseVal); if (isa(MaskedInst->getArgOperand(3))) MaskedInst->setArgOperand(3, TrueVal /* Zero */); return replaceInstUsesWith(SI, MaskedInst); } } if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder)) return I; if (Instruction *I = foldNestedSelects(SI, Builder)) return I; // Match logical variants of the pattern, // and transform them iff that gets rid of inversions. // (~x) | y --> ~(x & (~y)) // (~x) & y --> ~(x | (~y)) if (sinkNotIntoOtherHandOfLogicalOp(SI)) return &SI; if (Instruction *I = foldBitCeil(SI, Builder)) return I; // Fold: // (select A && B, T, F) -> (select A, (select B, T, F), F) // (select A || B, T, F) -> (select A, T, (select B, T, F)) // if (select B, T, F) is foldable. // TODO: preserve FMF flags auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A, Value *B) -> Instruction * { if (Value *V = simplifySelectInst(B, TrueVal, FalseVal, SQ.getWithInstruction(&SI))) return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V); // Is (select B, T, F) a SPF? if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) { if (ICmpInst *Cmp = dyn_cast(B)) if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this)) return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V); } return nullptr; }; Value *LHS, *RHS; if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) { if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) return I; if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS)) return I; } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) { if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) return I; if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS)) return I; } else { // We cannot swap the operands of logical and/or. // TODO: Can we swap the operands by inserting a freeze? if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) { if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) return I; } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) { if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) return I; } } // select Cond, !X, X -> xor Cond, X if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal)) return BinaryOperator::CreateXor(CondVal, FalseVal); // For vectors, this transform is only safe if the simplification does not // look through any lane-crossing operations. For now, limit to scalars only. if (SelType->isIntegerTy() && (!isa(TrueVal) || !isa(FalseVal))) { // Try to simplify select arms based on KnownBits implied by the condition. CondContext CC(CondVal); findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) { CC.AffectedValues.insert(V); }); SimplifyQuery Q = SQ.getWithInstruction(&SI).getWithCondContext(CC); if (!CC.AffectedValues.empty()) { if (!isa(TrueVal) && hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) { KnownBits Known = llvm::computeKnownBits(TrueVal, /*Depth=*/0, Q); if (Known.isConstant()) return replaceOperand(SI, 1, ConstantInt::get(SelType, Known.getConstant())); } CC.Invert = true; if (!isa(FalseVal) && hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) { KnownBits Known = llvm::computeKnownBits(FalseVal, /*Depth=*/0, Q); if (Known.isConstant()) return replaceOperand(SI, 2, ConstantInt::get(SelType, Known.getConstant())); } } } return nullptr; }