//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as Intel-style // assembly. // //===----------------------------------------------------------------------===// #include "X86IntelInstPrinter.h" #include "X86BaseInfo.h" #include "X86InstComments.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include #include using namespace llvm; #define DEBUG_TYPE "asm-printer" // Include the auto-generated portion of the assembly writer. #define PRINT_ALIAS_INSTR #include "X86GenAsmWriter1.inc" void X86IntelInstPrinter::printRegName(raw_ostream &OS, MCRegister Reg) const { markup(OS, Markup::Register) << getRegisterName(Reg); } void X86IntelInstPrinter::printInst(const MCInst *MI, uint64_t Address, StringRef Annot, const MCSubtargetInfo &STI, raw_ostream &OS) { printInstFlags(MI, OS, STI); // In 16-bit mode, print data16 as data32. if (MI->getOpcode() == X86::DATA16_PREFIX && STI.hasFeature(X86::Is16Bit)) { OS << "\tdata32"; } else if (!printAliasInstr(MI, Address, OS) && !printVecCompareInstr(MI, OS)) printInstruction(MI, Address, OS); // Next always print the annotation. printAnnotation(OS, Annot); // If verbose assembly is enabled, we can print some informative comments. if (CommentStream) EmitAnyX86InstComments(MI, *CommentStream, MII); } bool X86IntelInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) { if (MI->getNumOperands() == 0 || !MI->getOperand(MI->getNumOperands() - 1).isImm()) return false; int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm(); const MCInstrDesc &Desc = MII.get(MI->getOpcode()); // Custom print the vector compare instructions to get the immediate // translated into the mnemonic. switch (MI->getOpcode()) { case X86::CMPPDrmi: case X86::CMPPDrri: case X86::CMPPSrmi: case X86::CMPPSrri: case X86::CMPSDrmi: case X86::CMPSDrri: case X86::CMPSDrmi_Int: case X86::CMPSDrri_Int: case X86::CMPSSrmi: case X86::CMPSSrri: case X86::CMPSSrmi_Int: case X86::CMPSSrri_Int: if (Imm >= 0 && Imm <= 7) { OS << '\t'; printCMPMnemonic(MI, /*IsVCMP*/false, OS); printOperand(MI, 0, OS); OS << ", "; // Skip operand 1 as its tied to the dest. if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) printdwordmem(MI, 2, OS); else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) printqwordmem(MI, 2, OS); else printxmmwordmem(MI, 2, OS); } else printOperand(MI, 2, OS); return true; } break; case X86::VCMPPDrmi: case X86::VCMPPDrri: case X86::VCMPPDYrmi: case X86::VCMPPDYrri: case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri: case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri: case X86::VCMPPDZrmi: case X86::VCMPPDZrri: case X86::VCMPPSrmi: case X86::VCMPPSrri: case X86::VCMPPSYrmi: case X86::VCMPPSYrri: case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri: case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri: case X86::VCMPPSZrmi: case X86::VCMPPSZrri: case X86::VCMPSDrmi: case X86::VCMPSDrri: case X86::VCMPSDZrmi: case X86::VCMPSDZrri: case X86::VCMPSDrmi_Int: case X86::VCMPSDrri_Int: case X86::VCMPSDZrmi_Int: case X86::VCMPSDZrri_Int: case X86::VCMPSSrmi: case X86::VCMPSSrri: case X86::VCMPSSZrmi: case X86::VCMPSSZrri: case X86::VCMPSSrmi_Int: case X86::VCMPSSrri_Int: case X86::VCMPSSZrmi_Int: case X86::VCMPSSZrri_Int: case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik: case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik: case X86::VCMPPDZrmik: case X86::VCMPPDZrrik: case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik: case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik: case X86::VCMPPSZrmik: case X86::VCMPPSZrrik: case X86::VCMPSDZrmi_Intk: case X86::VCMPSDZrri_Intk: case X86::VCMPSSZrmi_Intk: case X86::VCMPSSZrri_Intk: case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik: case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik: case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik: case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik: case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik: case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik: case X86::VCMPPDZrrib: case X86::VCMPPDZrribk: case X86::VCMPPSZrrib: case X86::VCMPPSZrribk: case X86::VCMPSDZrrib_Int: case X86::VCMPSDZrrib_Intk: case X86::VCMPSSZrrib_Int: case X86::VCMPSSZrrib_Intk: case X86::VCMPPHZ128rmi: case X86::VCMPPHZ128rri: case X86::VCMPPHZ256rmi: case X86::VCMPPHZ256rri: case X86::VCMPPHZrmi: case X86::VCMPPHZrri: case X86::VCMPSHZrmi: case X86::VCMPSHZrri: case X86::VCMPSHZrmi_Int: case X86::VCMPSHZrri_Int: case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik: case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik: case X86::VCMPPHZrmik: case X86::VCMPPHZrrik: case X86::VCMPSHZrmi_Intk: case X86::VCMPSHZrri_Intk: case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik: case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik: case X86::VCMPPHZrmbi: case X86::VCMPPHZrmbik: case X86::VCMPPHZrrib: case X86::VCMPPHZrribk: case X86::VCMPSHZrrib_Int: case X86::VCMPSHZrrib_Intk: if (Imm >= 0 && Imm <= 31) { OS << '\t'; printCMPMnemonic(MI, /*IsVCMP*/true, OS); unsigned CurOp = 0; printOperand(MI, CurOp++, OS); if (Desc.TSFlags & X86II::EVEX_K) { // Print mask operand. OS << " {"; printOperand(MI, CurOp++, OS); OS << "}"; } OS << ", "; printOperand(MI, CurOp++, OS); OS << ", "; if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if (Desc.TSFlags & X86II::EVEX_B) { // Broadcast form. // Load size is word for TA map. Otherwise it is based on W-bit. if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) { assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!"); printwordmem(MI, CurOp++, OS); } else if (Desc.TSFlags & X86II::REX_W) { printqwordmem(MI, CurOp++, OS); } else { printdwordmem(MI, CurOp++, OS); } // Print the number of elements broadcasted. unsigned NumElts; if (Desc.TSFlags & X86II::EVEX_L2) NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16; else if (Desc.TSFlags & X86II::VEX_L) NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8; else NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4; if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) { assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!"); NumElts *= 2; } OS << "{1to" << NumElts << "}"; } else { if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) { if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) printwordmem(MI, CurOp++, OS); else printdwordmem(MI, CurOp++, OS); } else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) { assert((Desc.TSFlags & X86II::OpMapMask) != X86II::TA && "Unexpected op map!"); printqwordmem(MI, CurOp++, OS); } else if (Desc.TSFlags & X86II::EVEX_L2) { printzmmwordmem(MI, CurOp++, OS); } else if (Desc.TSFlags & X86II::VEX_L) { printymmwordmem(MI, CurOp++, OS); } else { printxmmwordmem(MI, CurOp++, OS); } } } else { printOperand(MI, CurOp++, OS); if (Desc.TSFlags & X86II::EVEX_B) OS << ", {sae}"; } return true; } break; case X86::VPCOMBmi: case X86::VPCOMBri: case X86::VPCOMDmi: case X86::VPCOMDri: case X86::VPCOMQmi: case X86::VPCOMQri: case X86::VPCOMUBmi: case X86::VPCOMUBri: case X86::VPCOMUDmi: case X86::VPCOMUDri: case X86::VPCOMUQmi: case X86::VPCOMUQri: case X86::VPCOMUWmi: case X86::VPCOMUWri: case X86::VPCOMWmi: case X86::VPCOMWri: if (Imm >= 0 && Imm <= 7) { OS << '\t'; printVPCOMMnemonic(MI, OS); printOperand(MI, 0, OS); OS << ", "; printOperand(MI, 1, OS); OS << ", "; if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) printxmmwordmem(MI, 2, OS); else printOperand(MI, 2, OS); return true; } break; case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri: case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri: case X86::VPCMPBZrmi: case X86::VPCMPBZrri: case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri: case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri: case X86::VPCMPDZrmi: case X86::VPCMPDZrri: case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri: case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri: case X86::VPCMPQZrmi: case X86::VPCMPQZrri: case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri: case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri: case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri: case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri: case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri: case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri: case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri: case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri: case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri: case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri: case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZ256rri: case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri: case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri: case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri: case X86::VPCMPWZrmi: case X86::VPCMPWZrri: case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik: case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik: case X86::VPCMPBZrmik: case X86::VPCMPBZrrik: case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik: case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik: case X86::VPCMPDZrmik: case X86::VPCMPDZrrik: case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik: case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik: case X86::VPCMPQZrmik: case X86::VPCMPQZrrik: case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik: case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik: case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik: case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik: case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik: case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik: case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik: case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik: case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik: case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik: case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik: case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik: case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik: case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik: case X86::VPCMPWZrmik: case X86::VPCMPWZrrik: case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk: case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk: case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk: case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk: case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk: case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk: case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk: case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk: case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk: case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk: case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk: case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk: if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) { OS << '\t'; printVPCMPMnemonic(MI, OS); unsigned CurOp = 0; printOperand(MI, CurOp++, OS); if (Desc.TSFlags & X86II::EVEX_K) { // Print mask operand. OS << " {"; printOperand(MI, CurOp++, OS); OS << "}"; } OS << ", "; printOperand(MI, CurOp++, OS); OS << ", "; if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if (Desc.TSFlags & X86II::EVEX_B) { // Broadcast form. // Load size is based on W-bit as only D and Q are supported. if (Desc.TSFlags & X86II::REX_W) printqwordmem(MI, CurOp++, OS); else printdwordmem(MI, CurOp++, OS); // Print the number of elements broadcasted. unsigned NumElts; if (Desc.TSFlags & X86II::EVEX_L2) NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16; else if (Desc.TSFlags & X86II::VEX_L) NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8; else NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4; OS << "{1to" << NumElts << "}"; } else { if (Desc.TSFlags & X86II::EVEX_L2) printzmmwordmem(MI, CurOp++, OS); else if (Desc.TSFlags & X86II::VEX_L) printymmwordmem(MI, CurOp++, OS); else printxmmwordmem(MI, CurOp++, OS); } } else { printOperand(MI, CurOp++, OS); } return true; } break; } return false; } void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isReg()) { printRegName(O, Op.getReg()); } else if (Op.isImm()) { markup(O, Markup::Immediate) << formatImm((int64_t)Op.getImm()); } else { assert(Op.isExpr() && "unknown operand kind in printOperand"); O << "offset "; Op.getExpr()->print(O, &MAI); } } void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O) { // Do not print the exact form of the memory operand if it references a known // binary object. if (SymbolizeOperands && MIA) { uint64_t Target; if (MIA->evaluateBranch(*MI, 0, 0, Target)) return; if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0)) return; } const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg); unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm(); const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg); const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp); // If this has a segment register, print it. printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O); WithMarkup M = markup(O, Markup::Memory); O << '['; bool NeedPlus = false; if (BaseReg.getReg()) { printOperand(MI, Op+X86::AddrBaseReg, O); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1 || !BaseReg.getReg()) O << ScaleVal << '*'; printOperand(MI, Op+X86::AddrIndexReg, O); NeedPlus = true; } if (!DispSpec.isImm()) { if (NeedPlus) O << " + "; assert(DispSpec.isExpr() && "non-immediate displacement for LEA?"); DispSpec.getExpr()->print(O, &MAI); } else { int64_t DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) { if (NeedPlus) { if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } } markup(O, Markup::Immediate) << formatImm(DispVal); } } O << ']'; } void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { // If this has a segment register, print it. printOptionalSegReg(MI, Op + 1, O); WithMarkup M = markup(O, Markup::Memory); O << '['; printOperand(MI, Op, O); O << ']'; } void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { // DI accesses are always ES-based. O << "es:"; WithMarkup M = markup(O, Markup::Memory); O << '['; printOperand(MI, Op, O); O << ']'; } void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op, raw_ostream &O) { const MCOperand &DispSpec = MI->getOperand(Op); // If this has a segment register, print it. printOptionalSegReg(MI, Op + 1, O); WithMarkup M = markup(O, Markup::Memory); O << '['; if (DispSpec.isImm()) { markup(O, Markup::Immediate) << formatImm(DispSpec.getImm()); } else { assert(DispSpec.isExpr() && "non-immediate displacement?"); DispSpec.getExpr()->print(O, &MAI); } O << ']'; } void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op, raw_ostream &O) { if (MI->getOperand(Op).isExpr()) return MI->getOperand(Op).getExpr()->print(O, &MAI); markup(O, Markup::Immediate) << formatImm(MI->getOperand(Op).getImm() & 0xff); } void X86IntelInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS) { const MCOperand &Op = MI->getOperand(OpNo); unsigned Reg = Op.getReg(); // Override the default printing to print st(0) instead st. if (Reg == X86::ST0) OS << "st(0)"; else printRegName(OS, Reg); }