//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains small standalone helper functions and enum definitions for // the X86 target useful for the compiler back-end and the MC libraries. // As such, it deliberately does not include references to LLVM core // code gen types, passes, etc.. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H #include "X86MCTargetDesc.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { namespace X86 { // Enums for memory operand decoding. Each memory operand is represented with // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment] enum { AddrBaseReg = 0, AddrScaleAmt = 1, AddrIndexReg = 2, AddrDisp = 3, // The operand # of the segment in the memory operand. AddrSegmentReg = 4, // Total number of operands in a memory reference. AddrNumOperands = 5 }; /// AVX512 static rounding constants. These need to match the values in /// avx512fintrin.h. enum STATIC_ROUNDING { TO_NEAREST_INT = 0, TO_NEG_INF = 1, TO_POS_INF = 2, TO_ZERO = 3, CUR_DIRECTION = 4, NO_EXC = 8 }; /// The constants to describe instr prefixes if there are enum IPREFIXES { IP_NO_PREFIX = 0, IP_HAS_OP_SIZE = 1U << 0, IP_HAS_AD_SIZE = 1U << 1, IP_HAS_REPEAT_NE = 1U << 2, IP_HAS_REPEAT = 1U << 3, IP_HAS_LOCK = 1U << 4, IP_HAS_NOTRACK = 1U << 5, IP_USE_REX = 1U << 6, IP_USE_REX2 = 1U << 7, IP_USE_VEX = 1U << 8, IP_USE_VEX2 = 1U << 9, IP_USE_VEX3 = 1U << 10, IP_USE_EVEX = 1U << 11, IP_USE_DISP8 = 1U << 12, IP_USE_DISP32 = 1U << 13, }; enum OperandType : unsigned { // AVX512 embedded rounding control. This should only have values 0-3. OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, OPERAND_COND_CODE, }; // X86 specific condition code. These correspond to X86_*_COND in // X86InstrInfo.td. They must be kept in synch. enum CondCode { COND_O = 0, COND_NO = 1, COND_B = 2, COND_AE = 3, COND_E = 4, COND_NE = 5, COND_BE = 6, COND_A = 7, COND_S = 8, COND_NS = 9, COND_P = 10, COND_NP = 11, COND_L = 12, COND_GE = 13, COND_LE = 14, COND_G = 15, LAST_VALID_COND = COND_G, // Artificial condition codes. These are used by analyzeBranch // to indicate a block terminated with two conditional branches that together // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, // which can't be represented on x86 with a single condition. These // are never used in MachineInstrs and are inverses of one another. COND_NE_OR_P, COND_E_AND_NP, COND_INVALID }; // The classification for the first instruction in macro fusion. // FIXME: Zen 3 support branch fusion for OR/XOR. enum class FirstMacroFusionInstKind { Test, // TEST Cmp, // CMP And, // AND AddSub, // ADD, SUB IncDec, // INC, DEC Invalid // Not valid as a first macro fusion instruction }; enum class SecondMacroFusionInstKind { AB, // JA, JB and variants ELG, // JE, JL, JG and variants SPO, // JS, JP, JO and variants Invalid, // Not a fusible jump. }; /// \returns the type of the first instruction in macro-fusion. // FIXME: Zen 3 support branch fusion for OR/XOR. inline FirstMacroFusionInstKind classifyFirstOpcodeInMacroFusion(unsigned Opcode) { switch (Opcode) { default: return FirstMacroFusionInstKind::Invalid; // TEST case X86::TEST16i16: case X86::TEST16mr: case X86::TEST16ri: case X86::TEST16rr: case X86::TEST32i32: case X86::TEST32mr: case X86::TEST32ri: case X86::TEST32rr: case X86::TEST64i32: case X86::TEST64mr: case X86::TEST64ri32: case X86::TEST64rr: case X86::TEST8i8: case X86::TEST8mr: case X86::TEST8ri: case X86::TEST8rr: return FirstMacroFusionInstKind::Test; case X86::AND16i16: case X86::AND16ri: case X86::AND16ri8: case X86::AND16rm: case X86::AND16rr: case X86::AND32i32: case X86::AND32ri: case X86::AND32ri8: case X86::AND32rm: case X86::AND32rr: case X86::AND64i32: case X86::AND64ri32: case X86::AND64ri8: case X86::AND64rm: case X86::AND64rr: case X86::AND8i8: case X86::AND8ri: case X86::AND8ri8: case X86::AND8rm: case X86::AND8rr: return FirstMacroFusionInstKind::And; // CMP case X86::CMP16i16: case X86::CMP16mr: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP16rm: case X86::CMP16rr: case X86::CMP32i32: case X86::CMP32mr: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP32rm: case X86::CMP32rr: case X86::CMP64i32: case X86::CMP64mr: case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP64rm: case X86::CMP64rr: case X86::CMP8i8: case X86::CMP8mr: case X86::CMP8ri: case X86::CMP8ri8: case X86::CMP8rm: case X86::CMP8rr: return FirstMacroFusionInstKind::Cmp; // ADD case X86::ADD16i16: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16rm: case X86::ADD16rr: case X86::ADD32i32: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32rm: case X86::ADD32rr: case X86::ADD64i32: case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64rm: case X86::ADD64rr: case X86::ADD8i8: case X86::ADD8ri: case X86::ADD8ri8: case X86::ADD8rm: case X86::ADD8rr: // SUB case X86::SUB16i16: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB16rm: case X86::SUB16rr: case X86::SUB32i32: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB32rm: case X86::SUB32rr: case X86::SUB64i32: case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB64rm: case X86::SUB64rr: case X86::SUB8i8: case X86::SUB8ri: case X86::SUB8ri8: case X86::SUB8rm: case X86::SUB8rr: return FirstMacroFusionInstKind::AddSub; // INC case X86::INC16r: case X86::INC16r_alt: case X86::INC32r: case X86::INC32r_alt: case X86::INC64r: case X86::INC8r: // DEC case X86::DEC16r: case X86::DEC16r_alt: case X86::DEC32r: case X86::DEC32r_alt: case X86::DEC64r: case X86::DEC8r: return FirstMacroFusionInstKind::IncDec; } } /// \returns the type of the second instruction in macro-fusion. inline SecondMacroFusionInstKind classifySecondCondCodeInMacroFusion(X86::CondCode CC) { if (CC == X86::COND_INVALID) return SecondMacroFusionInstKind::Invalid; switch (CC) { default: return SecondMacroFusionInstKind::Invalid; case X86::COND_E: // JE,JZ case X86::COND_NE: // JNE,JNZ case X86::COND_L: // JL,JNGE case X86::COND_LE: // JLE,JNG case X86::COND_G: // JG,JNLE case X86::COND_GE: // JGE,JNL return SecondMacroFusionInstKind::ELG; case X86::COND_B: // JB,JC case X86::COND_BE: // JNA,JBE case X86::COND_A: // JA,JNBE case X86::COND_AE: // JAE,JNC,JNB return SecondMacroFusionInstKind::AB; case X86::COND_S: // JS case X86::COND_NS: // JNS case X86::COND_P: // JP,JPE case X86::COND_NP: // JNP,JPO case X86::COND_O: // JO case X86::COND_NO: // JNO return SecondMacroFusionInstKind::SPO; } } /// \param FirstKind kind of the first instruction in macro fusion. /// \param SecondKind kind of the second instruction in macro fusion. /// /// \returns true if the two instruction can be macro fused. inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, SecondMacroFusionInstKind SecondKind) { switch (FirstKind) { case X86::FirstMacroFusionInstKind::Test: case X86::FirstMacroFusionInstKind::And: return true; case X86::FirstMacroFusionInstKind::Cmp: case X86::FirstMacroFusionInstKind::AddSub: return SecondKind == X86::SecondMacroFusionInstKind::AB || SecondKind == X86::SecondMacroFusionInstKind::ELG; case X86::FirstMacroFusionInstKind::IncDec: return SecondKind == X86::SecondMacroFusionInstKind::ELG; case X86::FirstMacroFusionInstKind::Invalid: return false; } llvm_unreachable("unknown fusion type"); } /// Defines the possible values of the branch boundary alignment mask. enum AlignBranchBoundaryKind : uint8_t { AlignBranchNone = 0, AlignBranchFused = 1U << 0, AlignBranchJcc = 1U << 1, AlignBranchJmp = 1U << 2, AlignBranchCall = 1U << 3, AlignBranchRet = 1U << 4, AlignBranchIndirect = 1U << 5 }; /// Defines the encoding values for segment override prefix. enum EncodingOfSegmentOverridePrefix : uint8_t { CS_Encoding = 0x2E, DS_Encoding = 0x3E, ES_Encoding = 0x26, FS_Encoding = 0x64, GS_Encoding = 0x65, SS_Encoding = 0x36 }; /// Given a segment register, return the encoding of the segment override /// prefix for it. inline EncodingOfSegmentOverridePrefix getSegmentOverridePrefixForReg(unsigned Reg) { switch (Reg) { default: llvm_unreachable("Unknown segment register!"); case X86::CS: return CS_Encoding; case X86::DS: return DS_Encoding; case X86::ES: return ES_Encoding; case X86::FS: return FS_Encoding; case X86::GS: return GS_Encoding; case X86::SS: return SS_Encoding; } } } // namespace X86 /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. /// namespace X86II { /// Target Operand Flag enum. enum TOF { //===------------------------------------------------------------------===// // X86 Specific MachineOperand flags. // /// MO_NO_FLAG - No flag for the operand MO_NO_FLAG, /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a /// relocation of: /// SYMBOL_LABEL + [. - PICBASELABEL] MO_GOT_ABSOLUTE_ADDRESS, /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the /// immediate should get the value of the symbol minus the PIC base label: /// SYMBOL_LABEL - PICBASELABEL MO_PIC_BASE_OFFSET, /// MO_GOT - On a symbol operand this indicates that the immediate is the /// offset to the GOT entry for the symbol name from the base of the GOT. /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOT MO_GOT, /// MO_GOTOFF - On a symbol operand this indicates that the immediate is /// the offset to the location of the symbol name from the base of the GOT. /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOTOFF MO_GOTOFF, /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is /// offset to the GOT entry for the symbol name from the current code /// location. /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @GOTPCREL MO_GOTPCREL, /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL /// relocations are guaranteed to be emitted by the integrated assembler /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. MO_GOTPCREL_NORELAX, /// MO_PLT - On a symbol operand this indicates that the immediate is /// offset to the PLT entry of symbol name from the current code location. /// See the X86-64 ELF ABI supplement for more details. /// SYMBOL_LABEL @PLT MO_PLT, /// MO_TLSGD - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS index structure that contains /// the module number and variable offset for the symbol. Used in the /// general dynamic TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TLSGD MO_TLSGD, /// MO_TLSLD - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS index for the module that /// contains the symbol. When this index is passed to a call to /// __tls_get_addr, the function will return the base address of the TLS /// block for the symbol. Used in the x86-64 local dynamic TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TLSLD MO_TLSLD, /// MO_TLSLDM - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS index for the module that /// contains the symbol. When this index is passed to a call to /// ___tls_get_addr, the function will return the base address of the TLS /// block for the symbol. Used in the IA32 local dynamic TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TLSLDM MO_TLSLDM, /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the thread-pointer offset for the /// symbol. Used in the x86-64 initial exec TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @GOTTPOFF MO_GOTTPOFF, /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is /// the absolute address of the GOT entry with the negative thread-pointer /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access /// model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @INDNTPOFF MO_INDNTPOFF, /// MO_TPOFF - On a symbol operand this indicates that the immediate is /// the thread-pointer offset for the symbol. Used in the x86-64 local /// exec TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TPOFF MO_TPOFF, /// MO_DTPOFF - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS offset of the symbol. Used /// in the local dynamic TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @DTPOFF MO_DTPOFF, /// MO_NTPOFF - On a symbol operand this indicates that the immediate is /// the negative thread-pointer offset for the symbol. Used in the IA32 /// local exec TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @NTPOFF MO_NTPOFF, /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the negative thread-pointer offset for /// the symbol. Used in the PIC IA32 initial exec TLS access model. /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @GOTNTPOFF MO_GOTNTPOFF, /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the /// reference is actually to the "__imp_FOO" symbol. This is used for /// dllimport linkage on windows. MO_DLLIMPORT, /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. MO_DARWIN_NONLAZY, /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. MO_DARWIN_NONLAZY_PIC_BASE, /// MO_TLVP - On a symbol operand this indicates that the immediate is /// some TLS offset. /// This is the TLS offset for the Darwin TLS mechanism. MO_TLVP, /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate /// is some TLS offset from the picbase. /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. MO_TLVP_PIC_BASE, /// MO_SECREL - On a symbol operand this indicates that the immediate is /// the offset from beginning of section. /// This is the TLS offset for the COFF/Windows TLS mechanism. MO_SECREL, /// MO_ABS8 - On a symbol operand this indicates that the symbol is known /// to be an absolute symbol in range [0,128), so we can use the @ABS8 /// symbol modifier. MO_ABS8, /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the /// reference is actually to the ".refptr.FOO" symbol. This is used for /// stub symbols on windows. MO_COFFSTUB, }; enum : uint64_t { //===------------------------------------------------------------------===// // Instruction encodings. These are the standard/most common forms for X86 // instructions. // /// PseudoFrm - This represents an instruction that is a pseudo instruction /// or one that has not been implemented yet. It is illegal to code generate /// it, but tolerated for intermediate implementation stages. Pseudo = 0, /// Raw - This form is for instructions that don't have any operands, so /// they are just a fixed opcode value, like 'leave'. RawFrm = 1, /// AddRegFrm - This form is used for instructions like 'push r32' that have /// their one register operand added to their opcode. AddRegFrm = 2, /// RawFrmMemOffs - This form is for instructions that store an absolute /// memory offset as an immediate with a possible segment override. RawFrmMemOffs = 3, /// RawFrmSrc - This form is for instructions that use the source index /// register SI/ESI/RSI with a possible segment override. RawFrmSrc = 4, /// RawFrmDst - This form is for instructions that use the destination index /// register DI/EDI/RDI. RawFrmDst = 5, /// RawFrmDstSrc - This form is for instructions that use the source index /// register SI/ESI/RSI with a possible segment override, and also the /// destination index register DI/EDI/RDI. RawFrmDstSrc = 6, /// RawFrmImm8 - This is used for the ENTER instruction, which has two /// immediates, the first of which is a 16-bit immediate (specified by /// the imm encoding) and the second is a 8-bit fixed value. RawFrmImm8 = 7, /// RawFrmImm16 - This is used for CALL FAR instructions, which have two /// immediates, the first of which is a 16 or 32-bit immediate (specified by /// the imm encoding) and the second is a 16-bit fixed value. In the AMD /// manual, this operand is described as pntr16:32 and pntr16:16 RawFrmImm16 = 8, /// AddCCFrm - This form is used for Jcc that encode the condition code /// in the lower 4 bits of the opcode. AddCCFrm = 9, /// PrefixByte - This form is used for instructions that represent a prefix /// byte like data16 or rep. PrefixByte = 10, /// MRMDestRegCC - This form is used for the cfcmov instructions, which use /// the Mod/RM byte to specify the operands reg(r/m) and reg(reg) and also /// encodes a condition code. MRMDestRegCC = 18, /// MRMDestMemCC - This form is used for the cfcmov instructions, which use /// the Mod/RM byte to specify the operands mem(r/m) and reg(reg) and also /// encodes a condition code. MRMDestMemCC = 19, /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM /// byte to specify a destination which in this case is memory and operand 3 /// with VEX.VVVV, and also encodes a condition code. MRMDestMem4VOp3CC = 20, /// Instructions operate on a register Reg/Opcode operand not the r/m field. MRMr0 = 21, /// MRMSrcMem - But force to use the SIB field. MRMSrcMemFSIB = 22, /// MRMDestMem - But force to use the SIB field. MRMDestMemFSIB = 23, /// MRMDestMem - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is memory. MRMDestMem = 24, /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is memory. MRMSrcMem = 25, /// MRMSrcMem4VOp3 - This form is used for instructions that encode /// operand 3 with VEX.VVVV and load from memory. MRMSrcMem4VOp3 = 26, /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM /// byte to specify the fourth source, which in this case is memory. MRMSrcMemOp4 = 27, /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM /// byte to specify the operands and also encodes a condition code. MRMSrcMemCC = 28, /// MRMXm - This form is used for instructions that use the Mod/RM byte /// to specify a memory source, but doesn't use the middle field. And has /// a condition code. MRMXmCC = 30, /// MRMXm - This form is used for instructions that use the Mod/RM byte /// to specify a memory source, but doesn't use the middle field. MRMXm = 31, /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use /// reg field to hold extended opcode, which is represented as /0, /1, ... MRM0m = 32, // Format /0 MRM1m = 33, // Format /1 MRM2m = 34, // Format /2 MRM3m = 35, // Format /3 MRM4m = 36, // Format /4 MRM5m = 37, // Format /5 MRM6m = 38, // Format /6 MRM7m = 39, // Format /7 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is a register. MRMDestReg = 40, /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is a register. MRMSrcReg = 41, /// MRMSrcReg4VOp3 - This form is used for instructions that encode /// operand 3 with VEX.VVVV and do not load from memory. MRMSrcReg4VOp3 = 42, /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM /// byte to specify the fourth source, which in this case is a register. MRMSrcRegOp4 = 43, /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM /// byte to specify the operands and also encodes a condition code MRMSrcRegCC = 44, /// MRMXCCr - This form is used for instructions that use the Mod/RM byte /// to specify a register source, but doesn't use the middle field. And has /// a condition code. MRMXrCC = 46, /// MRMXr - This form is used for instructions that use the Mod/RM byte /// to specify a register source, but doesn't use the middle field. MRMXr = 47, /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use /// reg field to hold extended opcode, which is represented as /0, /1, ... MRM0r = 48, // Format /0 MRM1r = 49, // Format /1 MRM2r = 50, // Format /2 MRM3r = 51, // Format /3 MRM4r = 52, // Format /4 MRM5r = 53, // Format /5 MRM6r = 54, // Format /6 MRM7r = 55, // Format /7 /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but /// ignore r/m. MRM0X = 56, // Format /0 MRM1X = 57, // Format /1 MRM2X = 58, // Format /2 MRM3X = 59, // Format /3 MRM4X = 60, // Format /4 MRM5X = 61, // Format /5 MRM6X = 62, // Format /6 MRM7X = 63, // Format /7 /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX. MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67, MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71, MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75, MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79, MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83, MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87, MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91, MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95, MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99, MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103, MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107, MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111, MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115, MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119, MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123, MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127, FormMask = 127, //===------------------------------------------------------------------===// // Actual flags... /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 /// prefix in 16-bit mode. OpSizeShift = 7, OpSizeMask = 0x3 << OpSizeShift, OpSizeFixed = 0 << OpSizeShift, OpSize16 = 1 << OpSizeShift, OpSize32 = 2 << OpSizeShift, /// AsSize - AdSizeX implies this instruction determines its need of 0x67 /// prefix from a normal ModRM memory operand. The other types indicate that /// an operand is encoded with a specific width and a prefix is needed if /// it differs from the current mode. AdSizeShift = OpSizeShift + 2, AdSizeMask = 0x3 << AdSizeShift, AdSizeX = 0 << AdSizeShift, AdSize16 = 1 << AdSizeShift, AdSize32 = 2 << AdSizeShift, AdSize64 = 3 << AdSizeShift, //===------------------------------------------------------------------===// /// OpPrefix - There are several prefix bytes that are used as opcode /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is /// no prefix. OpPrefixShift = AdSizeShift + 2, OpPrefixMask = 0x3 << OpPrefixShift, /// PD - Prefix code for packed double precision vector floating point /// operations performed in the SSE registers. PD = 1 << OpPrefixShift, /// XS, XD - These prefix codes are for single and double precision scalar /// floating point operations performed in the SSE registers. XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift, //===------------------------------------------------------------------===// /// OpMap - This field determines which opcode map this instruction /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. OpMapShift = OpPrefixShift + 2, OpMapMask = 0xF << OpMapShift, /// OB - OneByte - Set if this instruction has a one byte opcode. OB = 0 << OpMapShift, /// TB - TwoByte - Set if this instruction has a two byte opcode, which /// starts with a 0x0F byte before the real opcode. TB = 1 << OpMapShift, /// T8, TA - Prefix after the 0x0F prefix. T8 = 2 << OpMapShift, TA = 3 << OpMapShift, /// XOP8 - Prefix to include use of imm byte. XOP8 = 4 << OpMapShift, /// XOP9 - Prefix to exclude use of imm byte. XOP9 = 5 << OpMapShift, /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. XOPA = 6 << OpMapShift, /// ThreeDNow - This indicates that the instruction uses the /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction /// storing a classifier in the imm8 field. To simplify our implementation, /// we handle this by storeing the classifier in the opcode field and using /// this flag to indicate that the encoder should do the wacky 3DNow! thing. ThreeDNow = 7 << OpMapShift, /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix. T_MAP4 = 8 << OpMapShift, T_MAP5 = 9 << OpMapShift, T_MAP6 = 10 << OpMapShift, T_MAP7 = 11 << OpMapShift, //===------------------------------------------------------------------===// /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode. /// They are used to specify GPRs and SSE registers, 64-bit operand size, /// etc. We only cares about REX.W and REX.R bits and only the former is /// statically determined. REXShift = OpMapShift + 4, REX_W = 1 << REXShift, //===------------------------------------------------------------------===// // This 4-bit field describes the size of an immediate operand. Zero is // unused so that we can tell if we forgot to set a value. ImmShift = REXShift + 1, Imm8 = 1 << ImmShift, Imm8PCRel = 2 << ImmShift, Imm8Reg = 3 << ImmShift, Imm16 = 4 << ImmShift, Imm16PCRel = 5 << ImmShift, Imm32 = 6 << ImmShift, Imm32PCRel = 7 << ImmShift, Imm32S = 8 << ImmShift, Imm64 = 9 << ImmShift, ImmMask = 15 << ImmShift, //===------------------------------------------------------------------===// /// FP Instruction Classification... Zero is non-fp instruction. /// FPTypeMask - Mask for all of the FP types... FPTypeShift = ImmShift + 4, FPTypeMask = 7 << FPTypeShift, /// NotFP - The default, set for instructions that do not use FP registers. NotFP = 0 << FPTypeShift, /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 ZeroArgFP = 1 << FPTypeShift, /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst OneArgFP = 2 << FPTypeShift, /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a /// result back to ST(0). For example, fcos, fsqrt, etc. OneArgFPRW = 3 << FPTypeShift, /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an /// explicit argument, storing the result to either ST(0) or the implicit /// argument. For example: fadd, fsub, fmul, etc... TwoArgFP = 4 << FPTypeShift, /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an /// explicit argument, but have no destination. Example: fucom, fucomi, ... CompareFP = 5 << FPTypeShift, /// CondMovFP - "2 operand" floating point conditional move instructions. CondMovFP = 6 << FPTypeShift, /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly. SpecialFP = 7 << FPTypeShift, /// Lock prefix LOCKShift = FPTypeShift + 3, LOCK = 1 << LOCKShift, /// REP prefix REPShift = LOCKShift + 1, REP = 1 << REPShift, /// Execution domain for SSE instructions. /// 0 means normal, non-SSE instruction. SSEDomainShift = REPShift + 1, /// Encoding EncodingShift = SSEDomainShift + 2, EncodingMask = 0x3 << EncodingShift, /// LEGACY - encoding using REX/REX2 or w/o opcode prefix. LEGACY = 0 << EncodingShift, /// VEX - encoding using 0xC4/0xC5 VEX = 1 << EncodingShift, /// XOP - Opcode prefix used by XOP instructions. XOP = 2 << EncodingShift, /// EVEX - Specifies that this instruction use EVEX form which provides /// syntax support up to 32 512-bit register operands and up to 7 16-bit /// mask operands as well as source operand data swizzling/memory operand /// conversion, eviction hint, and rounding mode. EVEX = 3 << EncodingShift, /// Opcode OpcodeShift = EncodingShift + 2, /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 /// address instructions in SSE are represented as 3 address ones in AVX /// and the additional register is encoded in VEX_VVVV prefix. VEX_4VShift = OpcodeShift + 8, VEX_4V = 1ULL << VEX_4VShift, /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current /// instruction uses 256-bit wide registers. This is usually auto detected /// if a VR256 register is used, but some AVX instructions also have this /// field marked when using a f256 memory references. VEX_LShift = VEX_4VShift + 1, VEX_L = 1ULL << VEX_LShift, /// EVEX_K - Set if this instruction requires masking EVEX_KShift = VEX_LShift + 1, EVEX_K = 1ULL << EVEX_KShift, /// EVEX_Z - Set if this instruction has EVEX.Z field set. EVEX_ZShift = EVEX_KShift + 1, EVEX_Z = 1ULL << EVEX_ZShift, /// EVEX_L2 - Set if this instruction has EVEX.L' field set. EVEX_L2Shift = EVEX_ZShift + 1, EVEX_L2 = 1ULL << EVEX_L2Shift, /// EVEX_B - Set if this instruction has EVEX.B field set. EVEX_BShift = EVEX_L2Shift + 1, EVEX_B = 1ULL << EVEX_BShift, /// The scaling factor for the AVX512's 8-bit compressed displacement. CD8_Scale_Shift = EVEX_BShift + 1, CD8_Scale_Mask = 7ULL << CD8_Scale_Shift, /// Explicitly specified rounding control EVEX_RCShift = CD8_Scale_Shift + 3, EVEX_RC = 1ULL << EVEX_RCShift, /// NOTRACK prefix NoTrackShift = EVEX_RCShift + 1, NOTRACK = 1ULL << NoTrackShift, /// Force REX2/VEX/EVEX encoding ExplicitOpPrefixShift = NoTrackShift + 1, /// For instructions that require REX2 prefix even if EGPR is not used. ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift, /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} /// is present. ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift, /// For instructions that are promoted to EVEX space for EGPR. ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift, ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift, /// EVEX_NF - Set if this instruction has EVEX.NF field set. EVEX_NFShift = ExplicitOpPrefixShift + 2, EVEX_NF = 1ULL << EVEX_NFShift, // TwoConditionalOps - Set if this instruction has two conditional operands TwoConditionalOps_Shift = EVEX_NFShift + 1, TwoConditionalOps = 1ULL << TwoConditionalOps_Shift }; /// \returns true if the instruction with given opcode is a prefix. inline bool isPrefix(uint64_t TSFlags) { return (TSFlags & X86II::FormMask) == PrefixByte; } /// \returns true if the instruction with given opcode is a pseudo. inline bool isPseudo(uint64_t TSFlags) { return (TSFlags & X86II::FormMask) == Pseudo; } /// \returns the "base" X86 opcode for the specified machine /// instruction. inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { return TSFlags >> X86II::OpcodeShift; } inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } /// Decode the "size of immediate" field from the TSFlags field of the /// specified instruction. inline unsigned getSizeOfImm(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { default: llvm_unreachable("Unknown immediate size"); case X86II::Imm8: case X86II::Imm8PCRel: case X86II::Imm8Reg: return 1; case X86II::Imm16: case X86II::Imm16PCRel: return 2; case X86II::Imm32: case X86II::Imm32S: case X86II::Imm32PCRel: return 4; case X86II::Imm64: return 8; } } /// \returns true if the immediate of the specified instruction's TSFlags /// indicates that it is pc relative. inline bool isImmPCRel(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { default: llvm_unreachable("Unknown immediate size"); case X86II::Imm8PCRel: case X86II::Imm16PCRel: case X86II::Imm32PCRel: return true; case X86II::Imm8: case X86II::Imm8Reg: case X86II::Imm16: case X86II::Imm32: case X86II::Imm32S: case X86II::Imm64: return false; } } /// \returns true if the immediate of the specified instruction's /// TSFlags indicates that it is signed. inline bool isImmSigned(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { default: llvm_unreachable("Unknown immediate signedness"); case X86II::Imm32S: return true; case X86II::Imm8: case X86II::Imm8PCRel: case X86II::Imm8Reg: case X86II::Imm16: case X86II::Imm16PCRel: case X86II::Imm32: case X86II::Imm32PCRel: case X86II::Imm64: return false; } } /// Compute whether all of the def operands are repeated in the uses and /// therefore should be skipped. /// This determines the start of the unique operand list. We need to determine /// if all of the defs have a corresponding tied operand in the uses. /// Unfortunately, the tied operand information is encoded in the uses not /// the defs so we have to use some heuristics to find which operands to /// query. inline unsigned getOperandBias(const MCInstrDesc &Desc) { unsigned NumDefs = Desc.getNumDefs(); unsigned NumOps = Desc.getNumOperands(); switch (NumDefs) { default: llvm_unreachable("Unexpected number of defs"); case 0: return 0; case 1: // Common two addr case. if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) return 1; // Check for AVX-512 scatter which has a TIED_TO in the second to last // operand. if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) return 1; return 0; case 2: // XCHG/XADD have two destinations and two sources. if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) return 2; // Check for gather. AVX-512 has the second tied operand early. AVX2 // has it as the last op. if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) return 2; return 0; } } /// \returns true if the instruction has a NDD (new data destination). inline bool hasNewDataDest(uint64_t TSFlags) { return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 && (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V); } /// \returns operand # for the first field of the memory operand or -1 if no /// memory operands. /// NOTE: This ignores tied operands. If there is a tied register which is /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted /// as one operand. inline int getMemoryOperandNo(uint64_t TSFlags) { bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasEVEX_K = TSFlags & X86II::EVEX_K; switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); case X86II::Pseudo: case X86II::RawFrm: case X86II::AddRegFrm: case X86II::RawFrmImm8: case X86II::RawFrmImm16: case X86II::RawFrmMemOffs: case X86II::RawFrmSrc: case X86II::RawFrmDst: case X86II::RawFrmDstSrc: case X86II::AddCCFrm: case X86II::PrefixByte: return -1; case X86II::MRMDestMem: case X86II::MRMDestMemFSIB: case X86II::MRMDestMemCC: return hasNewDataDest(TSFlags); case X86II::MRMSrcMem: case X86II::MRMSrcMemFSIB: // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a // mask register. return 1 + HasVEX_4V + HasEVEX_K; case X86II::MRMSrcMem4VOp3: // Skip registers encoded in reg. return 1 + HasEVEX_K; case X86II::MRMSrcMemOp4: // Skip registers encoded in reg, VEX_VVVV, and I8IMM. return 3; case X86II::MRMSrcMemCC: return 1 + hasNewDataDest(TSFlags); case X86II::MRMDestMem4VOp3CC: // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a // mask register. return 1; case X86II::MRMDestReg: case X86II::MRMDestRegCC: case X86II::MRMSrcReg: case X86II::MRMSrcReg4VOp3: case X86II::MRMSrcRegOp4: case X86II::MRMSrcRegCC: case X86II::MRMXrCC: case X86II::MRMr0: case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: return -1; case X86II::MRM0X: case X86II::MRM1X: case X86II::MRM2X: case X86II::MRM3X: case X86II::MRM4X: case X86II::MRM5X: case X86II::MRM6X: case X86II::MRM7X: return -1; case X86II::MRMXmCC: case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: // Start from 0, skip registers encoded in VEX_VVVV or a mask register. return 0 + HasVEX_4V + HasEVEX_K; case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF: return -1; } } /// \returns true if the register is a XMM. inline bool isXMMReg(unsigned RegNo) { static_assert(X86::XMM15 - X86::XMM0 == 15, "XMM0-15 registers are not continuous"); static_assert(X86::XMM31 - X86::XMM16 == 15, "XMM16-31 registers are not continuous"); return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) || (RegNo >= X86::XMM16 && RegNo <= X86::XMM31); } /// \returns true if the register is a YMM. inline bool isYMMReg(unsigned RegNo) { static_assert(X86::YMM15 - X86::YMM0 == 15, "YMM0-15 registers are not continuous"); static_assert(X86::YMM31 - X86::YMM16 == 15, "YMM16-31 registers are not continuous"); return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) || (RegNo >= X86::YMM16 && RegNo <= X86::YMM31); } /// \returns true if the register is a ZMM. inline bool isZMMReg(unsigned RegNo) { static_assert(X86::ZMM31 - X86::ZMM0 == 31, "ZMM registers are not continuous"); return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31; } /// \returns true if \p RegNo is an apx extended register. inline bool isApxExtendedReg(unsigned RegNo) { static_assert(X86::R31WH - X86::R16 == 95, "EGPRs are not continuous"); return RegNo >= X86::R16 && RegNo <= X86::R31WH; } /// \returns true if the MachineOperand is a x86-64 extended (r8 or /// higher) register, e.g. r8, xmm8, xmm13, etc. inline bool isX86_64ExtendedReg(unsigned RegNo) { if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) || (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) || (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) return true; if (isApxExtendedReg(RegNo)) return true; switch (RegNo) { default: break; case X86::R8: case X86::R9: case X86::R10: case X86::R11: case X86::R12: case X86::R13: case X86::R14: case X86::R15: case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11: case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15: return true; } return false; } inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) { uint64_t TSFlags = Desc.TSFlags; uint64_t Encoding = TSFlags & EncodingMask; // EVEX can always use egpr. if (Encoding == X86II::EVEX) return true; unsigned Opcode = Desc.Opcode; // MOV32r0 is always expanded to XOR32rr if (Opcode == X86::MOV32r0) return true; // To be conservative, egpr is not used for all pseudo instructions // because we are not sure what instruction it will become. // FIXME: Could we improve it in X86ExpandPseudo? if (isPseudo(TSFlags)) return false; // MAP OB/TB in legacy encoding space can always use egpr except // XSAVE*/XRSTOR*. switch (Opcode) { default: break; case X86::XSAVE: case X86::XSAVE64: case X86::XSAVEOPT: case X86::XSAVEOPT64: case X86::XSAVEC: case X86::XSAVEC64: case X86::XSAVES: case X86::XSAVES64: case X86::XRSTOR: case X86::XRSTOR64: case X86::XRSTORS: case X86::XRSTORS64: return false; } uint64_t OpMap = TSFlags & X86II::OpMapMask; return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB); } /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) /// registers, e.g. zmm21, etc. static inline bool is32ExtendedReg(unsigned RegNo) { return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); } inline bool isX86_64NonExtLowByteReg(unsigned reg) { return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || reg == X86::DIL); } /// \returns true if this is a masked instruction. inline bool isKMasked(uint64_t TSFlags) { return (TSFlags & X86II::EVEX_K) != 0; } /// \returns true if this is a merge masked instruction. inline bool isKMergeMasked(uint64_t TSFlags) { return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; } /// \returns true if the intruction needs a SIB. inline bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode) { // The SIB byte must be used if there is an index register. if (IndexReg) return true; // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of // which encode to an R/M value of 4, which indicates that a SIB byte is // present. switch (BaseReg) { default: // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). return In64BitMode && !BaseReg; case X86::ESP: case X86::RSP: case X86::R12: case X86::R12D: case X86::R20: case X86::R20D: case X86::R28: case X86::R28D: return true; } } } // namespace X86II } // namespace llvm #endif