//===-- SystemZInstrInfo.h - SystemZ instruction information ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the SystemZ implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H #include "SystemZ.h" #include "SystemZRegisterInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include #define GET_INSTRINFO_HEADER #include "SystemZGenInstrInfo.inc" namespace llvm { class SystemZSubtarget; namespace SystemZII { enum { // See comments in SystemZInstrFormats.td. SimpleBDXLoad = (1 << 0), SimpleBDXStore = (1 << 1), Has20BitOffset = (1 << 2), HasIndex = (1 << 3), Is128Bit = (1 << 4), AccessSizeMask = (31 << 5), AccessSizeShift = 5, CCValuesMask = (15 << 10), CCValuesShift = 10, CompareZeroCCMaskMask = (15 << 14), CompareZeroCCMaskShift = 14, CCMaskFirst = (1 << 18), CCMaskLast = (1 << 19), IsLogical = (1 << 20), CCIfNoSignedWrap = (1 << 21) }; static inline unsigned getAccessSize(unsigned int Flags) { return (Flags & AccessSizeMask) >> AccessSizeShift; } static inline unsigned getCCValues(unsigned int Flags) { return (Flags & CCValuesMask) >> CCValuesShift; } static inline unsigned getCompareZeroCCMask(unsigned int Flags) { return (Flags & CompareZeroCCMaskMask) >> CompareZeroCCMaskShift; } // SystemZ MachineOperand target flags. enum { // Masks out the bits for the access model. MO_SYMBOL_MODIFIER = (3 << 0), // @GOT (aka @GOTENT) MO_GOT = (1 << 0), // @INDNTPOFF MO_INDNTPOFF = (2 << 0) }; // z/OS XPLink specific: classifies the types of // accesses to the ADA (Associated Data Area). // These enums contains values that overlap with the above MO_ enums, // but that's fine since the above enums are used with ELF, // while these values are used with z/OS. enum { MO_ADA_DATA_SYMBOL_ADDR = 1, MO_ADA_INDIRECT_FUNC_DESC, MO_ADA_DIRECT_FUNC_DESC, }; // Classifies a branch. enum BranchType { // An instruction that branches on the current value of CC. BranchNormal, // An instruction that peforms a 32-bit signed comparison and branches // on the result. BranchC, // An instruction that peforms a 32-bit unsigned comparison and branches // on the result. BranchCL, // An instruction that peforms a 64-bit signed comparison and branches // on the result. BranchCG, // An instruction that peforms a 64-bit unsigned comparison and branches // on the result. BranchCLG, // An instruction that decrements a 32-bit register and branches if // the result is nonzero. BranchCT, // An instruction that decrements a 64-bit register and branches if // the result is nonzero. BranchCTG, // An instruction representing an asm goto statement. AsmGoto }; // Information about a branch instruction. class Branch { // The target of the branch. In case of INLINEASM_BR, this is nullptr. const MachineOperand *Target; public: // The type of the branch. BranchType Type; // CCMASK_ is set if CC might be equal to N. unsigned CCValid; // CCMASK_ is set if the branch should be taken when CC == N. unsigned CCMask; Branch(BranchType type, unsigned ccValid, unsigned ccMask, const MachineOperand *target) : Target(target), Type(type), CCValid(ccValid), CCMask(ccMask) {} bool isIndirect() { return Target != nullptr && Target->isReg(); } bool hasMBBTarget() { return Target != nullptr && Target->isMBB(); } MachineBasicBlock *getMBBTarget() { return hasMBBTarget() ? Target->getMBB() : nullptr; } }; // Kinds of fused compares in compare-and-* instructions. Together with type // of the converted compare, this identifies the compare-and-* // instruction. enum FusedCompareType { // Relative branch - CRJ etc. CompareAndBranch, // Indirect branch, used for return - CRBReturn etc. CompareAndReturn, // Indirect branch, used for sibcall - CRBCall etc. CompareAndSibcall, // Trap CompareAndTrap }; } // end namespace SystemZII namespace SystemZ { int getTwoOperandOpcode(uint16_t Opcode); int getTargetMemOpcode(uint16_t Opcode); // Return a version of comparison CC mask CCMask in which the LT and GT // actions are swapped. unsigned reverseCCMask(unsigned CCMask); // Create a new basic block after MBB. MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB); // Split MBB after MI and return the new block (the one that contains // instructions after MI). MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB); // Split MBB before MI and return the new block (the one that contains MI). MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB); } class SystemZInstrInfo : public SystemZGenInstrInfo { const SystemZRegisterInfo RI; SystemZSubtarget &STI; void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const; void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const; void expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode, bool ConvertHigh) const; void expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned LowOpcodeK, unsigned HighOpcode) const; void expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode) const; void expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode) const; void expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned Size) const; void expandLoadStackGuard(MachineInstr *MI) const; MachineInstrBuilder emitGRX32Move(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, unsigned LowLowOpcode, unsigned Size, bool KillSrc, bool UndefSrc) const; virtual void anchor(); protected: /// Commutes the operands in the given instruction by changing the operands /// order and/or changing the instruction's opcode and/or the immediate value /// operand. /// /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands /// to be commuted. /// /// Do not call this method for a non-commutable instruction or /// non-commutable operands. /// Even though the instruction is commutable, the method may still /// fail to commute the operands, null pointer is returned in such cases. MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned CommuteOpIdx1, unsigned CommuteOpIdx2) const override; public: explicit SystemZInstrInfo(SystemZSubtarget &STI); // Override TargetInstrInfo. Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override; Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override; bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const override; bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const override; unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const override; unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const override; bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override; bool canInsertSelect(const MachineBasicBlock &, ArrayRef Cond, Register, Register, Register, int &, int &, int &) const override; void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const override; MachineInstr *optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const override; bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override; bool isPredicable(const MachineInstr &MI) const override; bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override; bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumCyclesT, unsigned ExtraPredCyclesT, MachineBasicBlock &FMBB, unsigned NumCyclesF, unsigned ExtraPredCyclesF, BranchProbability Probability) const override; bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override; bool PredicateInstruction(MachineInstr &MI, ArrayRef Pred) const override; void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override; void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override; bool useMachineCombiner() const override { return true; } bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override; std::optional getInverseOpcode(unsigned Opcode) const override; MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS = nullptr, VirtRegMap *VRM = nullptr) const override; MachineInstr *foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS = nullptr) const override; bool expandPostRAPseudo(MachineInstr &MBBI) const override; bool reverseBranchCondition(SmallVectorImpl &Cond) const override; // Return the SystemZRegisterInfo, which this class owns. const SystemZRegisterInfo &getRegisterInfo() const { return RI; } // Return the size in bytes of MI. unsigned getInstSizeInBytes(const MachineInstr &MI) const override; // Return true if MI is a conditional or unconditional branch. // When returning true, set Cond to the mask of condition-code // values on which the instruction will branch, and set Target // to the operand that contains the branch target. This target // can be a register or a basic block. SystemZII::Branch getBranchInfo(const MachineInstr &MI) const; // Get the load and store opcodes for a given register class. void getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &LoadOpcode, unsigned &StoreOpcode) const; // Opcode is the opcode of an instruction that has an address operand, // and the caller wants to perform that instruction's operation on an // address that has displacement Offset. Return the opcode of a suitable // instruction (which might be Opcode itself) or 0 if no such instruction // exists. MI may be passed in order to allow examination of physical // register operands (i.e. if a VR32/64 reg ended up as an FP or Vector reg). unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset, const MachineInstr *MI = nullptr) const; // Return true if Opcode has a mapping in 12 <-> 20 bit displacements. bool hasDisplacementPairInsn(unsigned Opcode) const; // If Opcode is a load instruction that has a LOAD AND TEST form, // return the opcode for the testing form, otherwise return 0. unsigned getLoadAndTest(unsigned Opcode) const; // Return true if ROTATE AND ... SELECTED BITS can be used to select bits // Mask of the R2 operand, given that only the low BitSize bits of Mask are // significant. Set Start and End to the I3 and I4 operands if so. bool isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const; // If Opcode is a COMPARE opcode for which an associated fused COMPARE AND * // operation exists, return the opcode for the latter, otherwise return 0. // MI, if nonnull, is the compare instruction. unsigned getFusedCompare(unsigned Opcode, SystemZII::FusedCompareType Type, const MachineInstr *MI = nullptr) const; // Try to find all CC users of the compare instruction (MBBI) and update // all of them to maintain equivalent behavior after swapping the compare // operands. Return false if not all users can be conclusively found and // handled. The compare instruction is *not* changed. bool prepareCompareSwapOperands(MachineBasicBlock::iterator MBBI) const; // If Opcode is a LOAD opcode for with an associated LOAD AND TRAP // operation exists, returh the opcode for the latter, otherwise return 0. unsigned getLoadAndTrap(unsigned Opcode) const; // Emit code before MBBI in MI to move immediate value Value into // physical register Reg. void loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const; // Perform target specific instruction verification. bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override; // Sometimes, it is possible for the target to tell, even without // aliasing information, that two MIs access different memory // addresses. This function returns true if two MIs access different // memory addresses and false otherwise. bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override; bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const override; }; } // end namespace llvm #endif // LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H