//===-- SparcAsmParser.cpp - Parse Sparc assembly to MCInst instructions --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/SparcMCExpr.h" #include "MCTargetDesc/SparcMCTargetDesc.h" #include "TargetInfo/SparcTargetInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCAsmMacro.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include using namespace llvm; // The generated AsmMatcher SparcGenAsmMatcher uses "Sparc" as the target // namespace. But SPARC backend uses "SP" as its namespace. namespace llvm { namespace Sparc { using namespace SP; } // end namespace Sparc } // end namespace llvm namespace { class SparcOperand; class SparcAsmParser : public MCTargetAsmParser { MCAsmParser &Parser; const MCRegisterInfo &MRI; enum class TailRelocKind { Load_GOT, Add_TLS, Load_TLS, Call_TLS }; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "SparcGenAsmMatcher.inc" /// } // public interface of the MCTargetAsmParser. bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; ParseStatus parseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; // Custom parse functions for Sparc specific operands. ParseStatus parseMEMOperand(OperandVector &Operands); ParseStatus parseMembarTag(OperandVector &Operands); ParseStatus parseASITag(OperandVector &Operands); ParseStatus parsePrefetchTag(OperandVector &Operands); template ParseStatus parseTailRelocSym(OperandVector &Operands); template ParseStatus parseShiftAmtImm(OperandVector &Operands); ParseStatus parseCallTarget(OperandVector &Operands); ParseStatus parseOperand(OperandVector &Operands, StringRef Name); ParseStatus parseSparcAsmOperand(std::unique_ptr &Operand, bool isCall = false); ParseStatus parseBranchModifiers(OperandVector &Operands); ParseStatus parseExpression(int64_t &Val); // Helper function for dealing with %lo / %hi in PIC mode. const SparcMCExpr *adjustPICRelocation(SparcMCExpr::VariantKind VK, const MCExpr *subExpr); // Helper function to see if current token can start an expression. bool isPossibleExpression(const AsmToken &Token); // Check if mnemonic is valid. MatchResultTy mnemonicIsValid(StringRef Mnemonic, unsigned VariantID); // returns true if Tok is matched to a register and returns register in RegNo. MCRegister matchRegisterName(const AsmToken &Tok, unsigned &RegKind); bool matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc); bool is64Bit() const { return getSTI().getTargetTriple().getArch() == Triple::sparcv9; } bool expandSET(MCInst &Inst, SMLoc IDLoc, SmallVectorImpl &Instructions); bool expandSETX(MCInst &Inst, SMLoc IDLoc, SmallVectorImpl &Instructions); SMLoc getLoc() const { return getParser().getTok().getLoc(); } public: SparcAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, sti, MII), Parser(parser), MRI(*Parser.getContext().getRegisterInfo()) { Parser.addAliasForDirective(".half", ".2byte"); Parser.addAliasForDirective(".uahalf", ".2byte"); Parser.addAliasForDirective(".word", ".4byte"); Parser.addAliasForDirective(".uaword", ".4byte"); Parser.addAliasForDirective(".nword", is64Bit() ? ".8byte" : ".4byte"); if (is64Bit()) Parser.addAliasForDirective(".xword", ".8byte"); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); } }; } // end anonymous namespace static const MCPhysReg IntRegs[32] = { Sparc::G0, Sparc::G1, Sparc::G2, Sparc::G3, Sparc::G4, Sparc::G5, Sparc::G6, Sparc::G7, Sparc::O0, Sparc::O1, Sparc::O2, Sparc::O3, Sparc::O4, Sparc::O5, Sparc::O6, Sparc::O7, Sparc::L0, Sparc::L1, Sparc::L2, Sparc::L3, Sparc::L4, Sparc::L5, Sparc::L6, Sparc::L7, Sparc::I0, Sparc::I1, Sparc::I2, Sparc::I3, Sparc::I4, Sparc::I5, Sparc::I6, Sparc::I7 }; static const MCPhysReg DoubleRegs[32] = { Sparc::D0, Sparc::D1, Sparc::D2, Sparc::D3, Sparc::D4, Sparc::D5, Sparc::D6, Sparc::D7, Sparc::D8, Sparc::D9, Sparc::D10, Sparc::D11, Sparc::D12, Sparc::D13, Sparc::D14, Sparc::D15, Sparc::D16, Sparc::D17, Sparc::D18, Sparc::D19, Sparc::D20, Sparc::D21, Sparc::D22, Sparc::D23, Sparc::D24, Sparc::D25, Sparc::D26, Sparc::D27, Sparc::D28, Sparc::D29, Sparc::D30, Sparc::D31 }; static const MCPhysReg QuadFPRegs[32] = { Sparc::Q0, Sparc::Q1, Sparc::Q2, Sparc::Q3, Sparc::Q4, Sparc::Q5, Sparc::Q6, Sparc::Q7, Sparc::Q8, Sparc::Q9, Sparc::Q10, Sparc::Q11, Sparc::Q12, Sparc::Q13, Sparc::Q14, Sparc::Q15 }; static const MCPhysReg IntPairRegs[] = { Sparc::G0_G1, Sparc::G2_G3, Sparc::G4_G5, Sparc::G6_G7, Sparc::O0_O1, Sparc::O2_O3, Sparc::O4_O5, Sparc::O6_O7, Sparc::L0_L1, Sparc::L2_L3, Sparc::L4_L5, Sparc::L6_L7, Sparc::I0_I1, Sparc::I2_I3, Sparc::I4_I5, Sparc::I6_I7}; static const MCPhysReg CoprocPairRegs[] = { Sparc::C0_C1, Sparc::C2_C3, Sparc::C4_C5, Sparc::C6_C7, Sparc::C8_C9, Sparc::C10_C11, Sparc::C12_C13, Sparc::C14_C15, Sparc::C16_C17, Sparc::C18_C19, Sparc::C20_C21, Sparc::C22_C23, Sparc::C24_C25, Sparc::C26_C27, Sparc::C28_C29, Sparc::C30_C31}; namespace { /// SparcOperand - Instances of this class represent a parsed Sparc machine /// instruction. class SparcOperand : public MCParsedAsmOperand { public: enum RegisterKind { rk_None, rk_IntReg, rk_IntPairReg, rk_FloatReg, rk_DoubleReg, rk_QuadReg, rk_CoprocReg, rk_CoprocPairReg, rk_Special, }; private: enum KindTy { k_Token, k_Register, k_Immediate, k_MemoryReg, k_MemoryImm, k_ASITag, k_PrefetchTag, } Kind; SMLoc StartLoc, EndLoc; struct Token { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; RegisterKind Kind; }; struct ImmOp { const MCExpr *Val; }; struct MemOp { unsigned Base; unsigned OffsetReg; const MCExpr *Off; }; union { struct Token Tok; struct RegOp Reg; struct ImmOp Imm; struct MemOp Mem; unsigned ASI; unsigned Prefetch; }; public: SparcOperand(KindTy K) : Kind(K) {} bool isToken() const override { return Kind == k_Token; } bool isReg() const override { return Kind == k_Register; } bool isImm() const override { return Kind == k_Immediate; } bool isMem() const override { return isMEMrr() || isMEMri(); } bool isMEMrr() const { return Kind == k_MemoryReg; } bool isMEMri() const { return Kind == k_MemoryImm; } bool isMembarTag() const { return Kind == k_Immediate; } bool isASITag() const { return Kind == k_ASITag; } bool isPrefetchTag() const { return Kind == k_PrefetchTag; } bool isTailRelocSym() const { return Kind == k_Immediate; } bool isCallTarget() const { if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) return CE->getValue() % 4 == 0; return true; } bool isShiftAmtImm5() const { if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) return isUInt<5>(CE->getValue()); return false; } bool isShiftAmtImm6() const { if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) return isUInt<6>(CE->getValue()); return false; } bool isIntReg() const { return (Kind == k_Register && Reg.Kind == rk_IntReg); } bool isFloatReg() const { return (Kind == k_Register && Reg.Kind == rk_FloatReg); } bool isFloatOrDoubleReg() const { return (Kind == k_Register && (Reg.Kind == rk_FloatReg || Reg.Kind == rk_DoubleReg)); } bool isCoprocReg() const { return (Kind == k_Register && Reg.Kind == rk_CoprocReg); } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } MCRegister getReg() const override { assert((Kind == k_Register) && "Invalid access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert((Kind == k_Immediate) && "Invalid access!"); return Imm.Val; } unsigned getMemBase() const { assert((Kind == k_MemoryReg || Kind == k_MemoryImm) && "Invalid access!"); return Mem.Base; } unsigned getMemOffsetReg() const { assert((Kind == k_MemoryReg) && "Invalid access!"); return Mem.OffsetReg; } const MCExpr *getMemOff() const { assert((Kind == k_MemoryImm) && "Invalid access!"); return Mem.Off; } unsigned getASITag() const { assert((Kind == k_ASITag) && "Invalid access!"); return ASI; } unsigned getPrefetchTag() const { assert((Kind == k_PrefetchTag) && "Invalid access!"); return Prefetch; } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } void print(raw_ostream &OS) const override { switch (Kind) { case k_Token: OS << "Token: " << getToken() << "\n"; break; case k_Register: OS << "Reg: #" << getReg() << "\n"; break; case k_Immediate: OS << "Imm: " << getImm() << "\n"; break; case k_MemoryReg: OS << "Mem: " << getMemBase() << "+" << getMemOffsetReg() << "\n"; break; case k_MemoryImm: assert(getMemOff() != nullptr); OS << "Mem: " << getMemBase() << "+" << *getMemOff() << "\n"; break; case k_ASITag: OS << "ASI tag: " << getASITag() << "\n"; break; case k_PrefetchTag: OS << "Prefetch tag: " << getPrefetchTag() << "\n"; break; } } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getImm(); addExpr(Inst, Expr); } void addShiftAmtImm5Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addShiftAmtImm6Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addExpr(MCInst &Inst, const MCExpr *Expr) const{ // Add as immediate when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addMEMrrOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase())); assert(getMemOffsetReg() != 0 && "Invalid offset"); Inst.addOperand(MCOperand::createReg(getMemOffsetReg())); } void addMEMriOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase())); const MCExpr *Expr = getMemOff(); addExpr(Inst, Expr); } void addASITagOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getASITag())); } void addPrefetchTagOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getPrefetchTag())); } void addMembarTagOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getImm(); addExpr(Inst, Expr); } void addCallTargetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addTailRelocSymOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } static std::unique_ptr CreateToken(StringRef Str, SMLoc S) { auto Op = std::make_unique(k_Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateReg(unsigned RegNum, unsigned Kind, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Register); Op->Reg.RegNum = RegNum; Op->Reg.Kind = (SparcOperand::RegisterKind)Kind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateASITag(unsigned Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_ASITag); Op->ASI = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreatePrefetchTag(unsigned Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_PrefetchTag); Op->Prefetch = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static bool MorphToIntPairReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); assert(Op.Reg.Kind == rk_IntReg); unsigned regIdx = 32; if (Reg >= Sparc::G0 && Reg <= Sparc::G7) regIdx = Reg - Sparc::G0; else if (Reg >= Sparc::O0 && Reg <= Sparc::O7) regIdx = Reg - Sparc::O0 + 8; else if (Reg >= Sparc::L0 && Reg <= Sparc::L7) regIdx = Reg - Sparc::L0 + 16; else if (Reg >= Sparc::I0 && Reg <= Sparc::I7) regIdx = Reg - Sparc::I0 + 24; if (regIdx % 2 || regIdx > 31) return false; Op.Reg.RegNum = IntPairRegs[regIdx / 2]; Op.Reg.Kind = rk_IntPairReg; return true; } static bool MorphToDoubleReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); assert(Op.Reg.Kind == rk_FloatReg); unsigned regIdx = Reg - Sparc::F0; if (regIdx % 2 || regIdx > 31) return false; Op.Reg.RegNum = DoubleRegs[regIdx / 2]; Op.Reg.Kind = rk_DoubleReg; return true; } static bool MorphToQuadReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = 0; switch (Op.Reg.Kind) { default: llvm_unreachable("Unexpected register kind!"); case rk_FloatReg: regIdx = Reg - Sparc::F0; if (regIdx % 4 || regIdx > 31) return false; Reg = QuadFPRegs[regIdx / 4]; break; case rk_DoubleReg: regIdx = Reg - Sparc::D0; if (regIdx % 2 || regIdx > 31) return false; Reg = QuadFPRegs[regIdx / 2]; break; } Op.Reg.RegNum = Reg; Op.Reg.Kind = rk_QuadReg; return true; } static bool MorphToCoprocPairReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); assert(Op.Reg.Kind == rk_CoprocReg); unsigned regIdx = 32; if (Reg >= Sparc::C0 && Reg <= Sparc::C31) regIdx = Reg - Sparc::C0; if (regIdx % 2 || regIdx > 31) return false; Op.Reg.RegNum = CoprocPairRegs[regIdx / 2]; Op.Reg.Kind = rk_CoprocPairReg; return true; } static std::unique_ptr MorphToMEMrr(unsigned Base, std::unique_ptr Op) { unsigned offsetReg = Op->getReg(); Op->Kind = k_MemoryReg; Op->Mem.Base = Base; Op->Mem.OffsetReg = offsetReg; Op->Mem.Off = nullptr; return Op; } static std::unique_ptr CreateMEMr(unsigned Base, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_MemoryReg); Op->Mem.Base = Base; Op->Mem.OffsetReg = Sparc::G0; // always 0 Op->Mem.Off = nullptr; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr MorphToMEMri(unsigned Base, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryImm; Op->Mem.Base = Base; Op->Mem.OffsetReg = 0; Op->Mem.Off = Imm; return Op; } }; } // end anonymous namespace #define GET_MATCHER_IMPLEMENTATION #define GET_REGISTER_MATCHER #define GET_MNEMONIC_SPELL_CHECKER #include "SparcGenAsmMatcher.inc" // Use a custom function instead of the one from SparcGenAsmMatcher // so we can differentiate between unavailable and unknown instructions. SparcAsmParser::MatchResultTy SparcAsmParser::mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) { // Process all MnemonicAliases to remap the mnemonic. applyMnemonicAliases(Mnemonic, getAvailableFeatures(), VariantID); // Find the appropriate table for this asm variant. const MatchEntry *Start, *End; switch (VariantID) { default: llvm_unreachable("invalid variant!"); case 0: Start = std::begin(MatchTable0); End = std::end(MatchTable0); break; } // Search the table. auto MnemonicRange = std::equal_range(Start, End, Mnemonic, LessOpcode()); if (MnemonicRange.first == MnemonicRange.second) return Match_MnemonicFail; for (const MatchEntry *it = MnemonicRange.first, *ie = MnemonicRange.second; it != ie; ++it) { const FeatureBitset &RequiredFeatures = FeatureBitsets[it->RequiredFeaturesIdx]; if ((getAvailableFeatures() & RequiredFeatures) == RequiredFeatures) return Match_Success; } return Match_MissingFeature; } bool SparcAsmParser::expandSET(MCInst &Inst, SMLoc IDLoc, SmallVectorImpl &Instructions) { MCOperand MCRegOp = Inst.getOperand(0); MCOperand MCValOp = Inst.getOperand(1); assert(MCRegOp.isReg()); assert(MCValOp.isImm() || MCValOp.isExpr()); // the imm operand can be either an expression or an immediate. bool IsImm = Inst.getOperand(1).isImm(); int64_t RawImmValue = IsImm ? MCValOp.getImm() : 0; // Allow either a signed or unsigned 32-bit immediate. if (RawImmValue < -2147483648LL || RawImmValue > 4294967295LL) { return Error(IDLoc, "set: argument must be between -2147483648 and 4294967295"); } // If the value was expressed as a large unsigned number, that's ok. // We want to see if it "looks like" a small signed number. int32_t ImmValue = RawImmValue; // For 'set' you can't use 'or' with a negative operand on V9 because // that would splat the sign bit across the upper half of the destination // register, whereas 'set' is defined to zero the high 32 bits. bool IsEffectivelyImm13 = IsImm && ((is64Bit() ? 0 : -4096) <= ImmValue && ImmValue < 4096); const MCExpr *ValExpr; if (IsImm) ValExpr = MCConstantExpr::create(ImmValue, getContext()); else ValExpr = MCValOp.getExpr(); MCOperand PrevReg = MCOperand::createReg(Sparc::G0); // If not just a signed imm13 value, then either we use a 'sethi' with a // following 'or', or a 'sethi' by itself if there are no more 1 bits. // In either case, start with the 'sethi'. if (!IsEffectivelyImm13) { MCInst TmpInst; const MCExpr *Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_HI, ValExpr); TmpInst.setLoc(IDLoc); TmpInst.setOpcode(SP::SETHIi); TmpInst.addOperand(MCRegOp); TmpInst.addOperand(MCOperand::createExpr(Expr)); Instructions.push_back(TmpInst); PrevReg = MCRegOp; } // The low bits require touching in 3 cases: // * A non-immediate value will always require both instructions. // * An effectively imm13 value needs only an 'or' instruction. // * Otherwise, an immediate that is not effectively imm13 requires the // 'or' only if bits remain after clearing the 22 bits that 'sethi' set. // If the low bits are known zeros, there's nothing to do. // In the second case, and only in that case, must we NOT clear // bits of the immediate value via the %lo() assembler function. // Note also, the 'or' instruction doesn't mind a large value in the case // where the operand to 'set' was 0xFFFFFzzz - it does exactly what you mean. if (!IsImm || IsEffectivelyImm13 || (ImmValue & 0x3ff)) { MCInst TmpInst; const MCExpr *Expr; if (IsEffectivelyImm13) Expr = ValExpr; else Expr = adjustPICRelocation(SparcMCExpr::VK_Sparc_LO, ValExpr); TmpInst.setLoc(IDLoc); TmpInst.setOpcode(SP::ORri); TmpInst.addOperand(MCRegOp); TmpInst.addOperand(PrevReg); TmpInst.addOperand(MCOperand::createExpr(Expr)); Instructions.push_back(TmpInst); } return false; } bool SparcAsmParser::expandSETX(MCInst &Inst, SMLoc IDLoc, SmallVectorImpl &Instructions) { MCOperand MCRegOp = Inst.getOperand(0); MCOperand MCValOp = Inst.getOperand(1); MCOperand MCTmpOp = Inst.getOperand(2); assert(MCRegOp.isReg() && MCTmpOp.isReg()); assert(MCValOp.isImm() || MCValOp.isExpr()); // the imm operand can be either an expression or an immediate. bool IsImm = MCValOp.isImm(); int64_t ImmValue = IsImm ? MCValOp.getImm() : 0; const MCExpr *ValExpr = IsImm ? MCConstantExpr::create(ImmValue, getContext()) : MCValOp.getExpr(); // Very small immediates can be expressed directly as a single `or`. if (IsImm && isInt<13>(ImmValue)) { // or rd, val, rd Instructions.push_back(MCInstBuilder(SP::ORri) .addReg(MCRegOp.getReg()) .addReg(Sparc::G0) .addExpr(ValExpr)); return false; } // Otherwise, first we set the lower half of the register. // sethi %hi(val), rd Instructions.push_back( MCInstBuilder(SP::SETHIi) .addReg(MCRegOp.getReg()) .addExpr(adjustPICRelocation(SparcMCExpr::VK_Sparc_HI, ValExpr))); // or rd, %lo(val), rd Instructions.push_back( MCInstBuilder(SP::ORri) .addReg(MCRegOp.getReg()) .addReg(MCRegOp.getReg()) .addExpr(adjustPICRelocation(SparcMCExpr::VK_Sparc_LO, ValExpr))); // Small positive immediates can be expressed as a single `sethi`+`or` // combination, so we can just return here. if (IsImm && isUInt<32>(ImmValue)) return false; // For bigger immediates, we need to generate the upper half, then shift and // merge it with the lower half that has just been generated above. // sethi %hh(val), tmp Instructions.push_back( MCInstBuilder(SP::SETHIi) .addReg(MCTmpOp.getReg()) .addExpr(adjustPICRelocation(SparcMCExpr::VK_Sparc_HH, ValExpr))); // or tmp, %hm(val), tmp Instructions.push_back( MCInstBuilder(SP::ORri) .addReg(MCTmpOp.getReg()) .addReg(MCTmpOp.getReg()) .addExpr(adjustPICRelocation(SparcMCExpr::VK_Sparc_HM, ValExpr))); // sllx tmp, 32, tmp Instructions.push_back(MCInstBuilder(SP::SLLXri) .addReg(MCTmpOp.getReg()) .addReg(MCTmpOp.getReg()) .addImm(32)); // or tmp, rd, rd Instructions.push_back(MCInstBuilder(SP::ORrr) .addReg(MCRegOp.getReg()) .addReg(MCTmpOp.getReg()) .addReg(MCRegOp.getReg())); return false; } bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; SmallVector Instructions; unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { case Match_Success: { switch (Inst.getOpcode()) { default: Inst.setLoc(IDLoc); Instructions.push_back(Inst); break; case SP::SET: if (expandSET(Inst, IDLoc, Instructions)) return true; break; case SP::SETX: if (expandSETX(Inst, IDLoc, Instructions)) return true; break; } for (const MCInst &I : Instructions) { Out.emitInstruction(I, getSTI()); } return false; } case Match_MissingFeature: return Error(IDLoc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((SparcOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction mnemonic"); } llvm_unreachable("Implement any new match types added!"); } bool SparcAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess()) return Error(StartLoc, "invalid register name"); return false; } ParseStatus SparcAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = Parser.getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); Reg = Sparc::NoRegister; if (getLexer().getKind() != AsmToken::Percent) return ParseStatus::NoMatch; Parser.Lex(); unsigned RegKind = SparcOperand::rk_None; Reg = matchRegisterName(Tok, RegKind); if (Reg) { Parser.Lex(); return ParseStatus::Success; } getLexer().UnLex(Tok); return ParseStatus::NoMatch; } bool SparcAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // Validate and reject unavailable mnemonics early before // running any operand parsing. // This is needed because some operands (mainly memory ones) // differ between V8 and V9 ISA and so any operand parsing errors // will cause IAS to bail out before it reaches MatchAndEmitInstruction // (where the instruction as a whole, including the mnemonic, is validated // once again just before emission). // As a nice side effect this also allows us to reject unknown // instructions and suggest replacements. MatchResultTy MS = mnemonicIsValid(Name, 0); switch (MS) { case Match_Success: break; case Match_MissingFeature: return Error(NameLoc, "instruction requires a CPU feature not currently enabled"); case Match_MnemonicFail: return Error(NameLoc, "invalid instruction mnemonic" + SparcMnemonicSpellCheck(Name, getAvailableFeatures(), 0)); default: llvm_unreachable("invalid return status!"); } // First operand in MCInst is instruction mnemonic. Operands.push_back(SparcOperand::CreateToken(Name, NameLoc)); // apply mnemonic aliases, if any, so that we can parse operands correctly. applyMnemonicAliases(Name, getAvailableFeatures(), 0); if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (getLexer().is(AsmToken::Comma)) { if (!parseBranchModifiers(Operands).isSuccess()) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } } if (!parseOperand(Operands, Name).isSuccess()) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } while (getLexer().is(AsmToken::Comma) || getLexer().is(AsmToken::Plus)) { if (getLexer().is(AsmToken::Plus)) { // Plus tokens are significant in software_traps (p83, sparcv8.pdf). We must capture them. Operands.push_back(SparcOperand::CreateToken("+", Parser.getTok().getLoc())); } Parser.Lex(); // Eat the comma or plus. // Parse and remember the operand. if (!parseOperand(Operands, Name).isSuccess()) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } Parser.Lex(); // Consume the EndOfStatement. return false; } ParseStatus SparcAsmParser::parseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getString(); if (IDVal == ".register") { // For now, ignore .register directive. Parser.eatToEndOfStatement(); return ParseStatus::Success; } if (IDVal == ".proc") { // For compatibility, ignore this directive. // (It's supposed to be an "optimization" in the Sun assembler) Parser.eatToEndOfStatement(); return ParseStatus::Success; } // Let the MC layer to handle other directives. return ParseStatus::NoMatch; } ParseStatus SparcAsmParser::parseMEMOperand(OperandVector &Operands) { SMLoc S, E; std::unique_ptr LHS; if (!parseSparcAsmOperand(LHS).isSuccess()) return ParseStatus::NoMatch; // Single immediate operand if (LHS->isImm()) { Operands.push_back(SparcOperand::MorphToMEMri(Sparc::G0, std::move(LHS))); return ParseStatus::Success; } if (!LHS->isIntReg()) return Error(LHS->getStartLoc(), "invalid register kind for this operand"); AsmToken Tok = getLexer().getTok(); // The plus token may be followed by a register or an immediate value, the // minus one is always interpreted as sign for the immediate value if (Tok.is(AsmToken::Plus) || Tok.is(AsmToken::Minus)) { (void)Parser.parseOptionalToken(AsmToken::Plus); std::unique_ptr RHS; if (!parseSparcAsmOperand(RHS).isSuccess()) return ParseStatus::NoMatch; if (RHS->isReg() && !RHS->isIntReg()) return Error(RHS->getStartLoc(), "invalid register kind for this operand"); Operands.push_back( RHS->isImm() ? SparcOperand::MorphToMEMri(LHS->getReg(), std::move(RHS)) : SparcOperand::MorphToMEMrr(LHS->getReg(), std::move(RHS))); return ParseStatus::Success; } Operands.push_back(SparcOperand::CreateMEMr(LHS->getReg(), S, E)); return ParseStatus::Success; } template ParseStatus SparcAsmParser::parseShiftAmtImm(OperandVector &Operands) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); // This is a register, not an immediate if (getLexer().getKind() == AsmToken::Percent) return ParseStatus::NoMatch; const MCExpr *Expr; if (getParser().parseExpression(Expr)) return ParseStatus::Failure; const MCConstantExpr *CE = dyn_cast(Expr); if (!CE) return Error(S, "constant expression expected"); if (!isUInt(CE->getValue())) return Error(S, "immediate shift value out of range"); Operands.push_back(SparcOperand::CreateImm(Expr, S, E)); return ParseStatus::Success; } template ParseStatus SparcAsmParser::parseTailRelocSym(OperandVector &Operands) { SMLoc S = getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); auto MatchesKind = [](SparcMCExpr::VariantKind VK) -> bool { switch (Kind) { case TailRelocKind::Load_GOT: // Non-TLS relocations on ld (or ldx). // ld [%rr + %rr], %rr, %rel(sym) return VK == SparcMCExpr::VK_Sparc_GOTDATA_OP; case TailRelocKind::Add_TLS: // TLS relocations on add. // add %rr, %rr, %rr, %rel(sym) switch (VK) { case SparcMCExpr::VK_Sparc_TLS_GD_ADD: case SparcMCExpr::VK_Sparc_TLS_IE_ADD: case SparcMCExpr::VK_Sparc_TLS_LDM_ADD: case SparcMCExpr::VK_Sparc_TLS_LDO_ADD: return true; default: return false; } case TailRelocKind::Load_TLS: // TLS relocations on ld (or ldx). // ld[x] %addr, %rr, %rel(sym) switch (VK) { case SparcMCExpr::VK_Sparc_TLS_IE_LD: case SparcMCExpr::VK_Sparc_TLS_IE_LDX: return true; default: return false; } case TailRelocKind::Call_TLS: // TLS relocations on call. // call sym, %rel(sym) switch (VK) { case SparcMCExpr::VK_Sparc_TLS_GD_CALL: case SparcMCExpr::VK_Sparc_TLS_LDM_CALL: return true; default: return false; } } llvm_unreachable("Unhandled SparcAsmParser::TailRelocKind enum"); }; if (getLexer().getKind() != AsmToken::Percent) return Error(getLoc(), "expected '%' for operand modifier"); const AsmToken Tok = Parser.getTok(); getParser().Lex(); // Eat '%' if (getLexer().getKind() != AsmToken::Identifier) return Error(getLoc(), "expected valid identifier for operand modifier"); StringRef Name = getParser().getTok().getIdentifier(); SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(Name); if (VK == SparcMCExpr::VK_Sparc_None) return Error(getLoc(), "invalid operand modifier"); if (!MatchesKind(VK)) { // Did not match the specified set of relocation types, put '%' back. getLexer().UnLex(Tok); return ParseStatus::NoMatch; } Parser.Lex(); // Eat the identifier. if (getLexer().getKind() != AsmToken::LParen) return Error(getLoc(), "expected '('"); getParser().Lex(); // Eat '(' const MCExpr *SubExpr; if (getParser().parseParenExpression(SubExpr, E)) return ParseStatus::Failure; const MCExpr *Val = adjustPICRelocation(VK, SubExpr); Operands.push_back(SparcOperand::CreateImm(Val, S, E)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parseMembarTag(OperandVector &Operands) { SMLoc S = Parser.getTok().getLoc(); const MCExpr *EVal; int64_t ImmVal = 0; std::unique_ptr Mask; if (parseSparcAsmOperand(Mask).isSuccess()) { if (!Mask->isImm() || !Mask->getImm()->evaluateAsAbsolute(ImmVal) || ImmVal < 0 || ImmVal > 127) return Error(S, "invalid membar mask number"); } while (getLexer().getKind() == AsmToken::Hash) { SMLoc TagStart = getLexer().getLoc(); Parser.Lex(); // Eat the '#'. unsigned MaskVal = StringSwitch(Parser.getTok().getString()) .Case("LoadLoad", 0x1) .Case("StoreLoad", 0x2) .Case("LoadStore", 0x4) .Case("StoreStore", 0x8) .Case("Lookaside", 0x10) .Case("MemIssue", 0x20) .Case("Sync", 0x40) .Default(0); Parser.Lex(); // Eat the identifier token. if (!MaskVal) return Error(TagStart, "unknown membar tag"); ImmVal |= MaskVal; if (getLexer().getKind() == AsmToken::Pipe) Parser.Lex(); // Eat the '|'. } EVal = MCConstantExpr::create(ImmVal, getContext()); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SparcOperand::CreateImm(EVal, S, E)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parseASITag(OperandVector &Operands) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = Parser.getTok().getEndLoc(); int64_t ASIVal = 0; if (getLexer().getKind() != AsmToken::Hash) { // If the ASI tag provided is not a named tag, then it // must be a constant expression. ParseStatus ParseExprStatus = parseExpression(ASIVal); if (!ParseExprStatus.isSuccess()) return ParseExprStatus; if (!isUInt<8>(ASIVal)) return Error(S, "invalid ASI number, must be between 0 and 255"); Operands.push_back(SparcOperand::CreateASITag(ASIVal, S, E)); return ParseStatus::Success; } // For now we only support named tags for 64-bit/V9 systems. // TODO: add support for 32-bit/V8 systems. SMLoc TagStart = getLexer().peekTok(false).getLoc(); Parser.Lex(); // Eat the '#'. const StringRef ASIName = Parser.getTok().getString(); const SparcASITag::ASITag *ASITag = SparcASITag::lookupASITagByName(ASIName); if (!ASITag) ASITag = SparcASITag::lookupASITagByAltName(ASIName); Parser.Lex(); // Eat the identifier token. if (!ASITag) return Error(TagStart, "unknown ASI tag"); ASIVal = ASITag->Encoding; Operands.push_back(SparcOperand::CreateASITag(ASIVal, S, E)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parsePrefetchTag(OperandVector &Operands) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = Parser.getTok().getEndLoc(); int64_t PrefetchVal = 0; if (getLexer().getKind() != AsmToken::Hash) { // If the prefetch tag provided is not a named tag, then it // must be a constant expression. ParseStatus ParseExprStatus = parseExpression(PrefetchVal); if (!ParseExprStatus.isSuccess()) return ParseExprStatus; if (!isUInt<8>(PrefetchVal)) return Error(S, "invalid prefetch number, must be between 0 and 31"); Operands.push_back(SparcOperand::CreatePrefetchTag(PrefetchVal, S, E)); return ParseStatus::Success; } SMLoc TagStart = getLexer().peekTok(false).getLoc(); Parser.Lex(); // Eat the '#'. const StringRef PrefetchName = Parser.getTok().getString(); const SparcPrefetchTag::PrefetchTag *PrefetchTag = SparcPrefetchTag::lookupPrefetchTagByName(PrefetchName); Parser.Lex(); // Eat the identifier token. if (!PrefetchTag) return Error(TagStart, "unknown prefetch tag"); PrefetchVal = PrefetchTag->Encoding; Operands.push_back(SparcOperand::CreatePrefetchTag(PrefetchVal, S, E)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parseCallTarget(OperandVector &Operands) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1); switch (getLexer().getKind()) { default: return ParseStatus::NoMatch; case AsmToken::LParen: case AsmToken::Integer: case AsmToken::Identifier: case AsmToken::Dot: break; } const MCExpr *DestValue; if (getParser().parseExpression(DestValue)) return ParseStatus::NoMatch; bool IsPic = getContext().getObjectFileInfo()->isPositionIndependent(); SparcMCExpr::VariantKind Kind = IsPic ? SparcMCExpr::VK_Sparc_WPLT30 : SparcMCExpr::VK_Sparc_WDISP30; const MCExpr *DestExpr = SparcMCExpr::create(Kind, DestValue, getContext()); Operands.push_back(SparcOperand::CreateImm(DestExpr, S, E)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (Res.isSuccess() || Res.isFailure()) return Res; if (getLexer().is(AsmToken::LBrac)) { // Memory operand Operands.push_back(SparcOperand::CreateToken("[", Parser.getTok().getLoc())); Parser.Lex(); // Eat the [ if (Mnemonic == "cas" || Mnemonic == "casl" || Mnemonic == "casa" || Mnemonic == "casx" || Mnemonic == "casxl" || Mnemonic == "casxa") { SMLoc S = Parser.getTok().getLoc(); if (getLexer().getKind() != AsmToken::Percent) return ParseStatus::NoMatch; Parser.Lex(); // eat % unsigned RegKind; MCRegister Reg = matchRegisterName(Parser.getTok(), RegKind); if (!Reg) return ParseStatus::NoMatch; Parser.Lex(); // Eat the identifier token. SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1); Operands.push_back(SparcOperand::CreateReg(Reg, RegKind, S, E)); Res = ParseStatus::Success; } else { Res = parseMEMOperand(Operands); } if (!Res.isSuccess()) return Res; if (!getLexer().is(AsmToken::RBrac)) return ParseStatus::Failure; Operands.push_back(SparcOperand::CreateToken("]", Parser.getTok().getLoc())); Parser.Lex(); // Eat the ] // Parse an optional address-space identifier after the address. // This will be either an immediate constant expression, or, on 64-bit // processors, the %asi register. if (getLexer().is(AsmToken::Percent)) { SMLoc S = Parser.getTok().getLoc(); if (!is64Bit()) return Error( S, "malformed ASI tag, must be a constant integer expression"); Parser.Lex(); // Eat the %. const AsmToken Tok = Parser.getTok(); if (Tok.is(AsmToken::Identifier) && Tok.getString() == "asi") { // Here we patch the MEM operand from [base + %g0] into [base + 0] // as memory operations with ASI tag stored in %asi register needs // to use immediate offset. We need to do this because Reg addressing // will be parsed as Reg+G0 initially. // This allows forms such as `ldxa [%o0] %asi, %o0` to parse correctly. SparcOperand &OldMemOp = (SparcOperand &)*Operands[Operands.size() - 2]; if (OldMemOp.isMEMrr()) { if (OldMemOp.getMemOffsetReg() != Sparc::G0) { return Error(S, "invalid operand for instruction"); } Operands[Operands.size() - 2] = SparcOperand::MorphToMEMri( OldMemOp.getMemBase(), SparcOperand::CreateImm(MCConstantExpr::create(0, getContext()), OldMemOp.getStartLoc(), OldMemOp.getEndLoc())); } Parser.Lex(); // Eat the identifier. // In this context, we convert the register operand into // a plain "%asi" token since the register access is already // implicit in the instruction definition and encoding. // See LoadASI/StoreASI in SparcInstrInfo.td. Operands.push_back(SparcOperand::CreateToken("%asi", S)); return ParseStatus::Success; } return Error(S, "malformed ASI tag, must be %asi, a constant integer " "expression, or a named tag"); } // If we're not at the end of statement and the next token is not a comma, // then it is an immediate ASI value. if (getLexer().isNot(AsmToken::EndOfStatement) && getLexer().isNot(AsmToken::Comma)) return parseASITag(Operands); return ParseStatus::Success; } std::unique_ptr Op; Res = parseSparcAsmOperand(Op, (Mnemonic == "call")); if (!Res.isSuccess() || !Op) return ParseStatus::Failure; // Push the parsed operand into the list of operands Operands.push_back(std::move(Op)); return ParseStatus::Success; } ParseStatus SparcAsmParser::parseSparcAsmOperand(std::unique_ptr &Op, bool isCall) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *EVal; Op = nullptr; switch (getLexer().getKind()) { default: break; case AsmToken::Percent: { Parser.Lex(); // Eat the '%'. unsigned RegKind; if (MCRegister Reg = matchRegisterName(Parser.getTok(), RegKind)) { StringRef Name = Parser.getTok().getString(); Parser.Lex(); // Eat the identifier token. E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); if (Reg == Sparc::ICC && Name == "xcc") Op = SparcOperand::CreateToken("%xcc", S); else Op = SparcOperand::CreateReg(Reg, RegKind, S, E); break; } if (matchSparcAsmModifiers(EVal, E)) { E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Op = SparcOperand::CreateImm(EVal, S, E); } break; } case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Integer: case AsmToken::LParen: case AsmToken::Dot: case AsmToken::Identifier: if (getParser().parseExpression(EVal, E)) break; int64_t Res; if (!EVal->evaluateAsAbsolute(Res)) { SparcMCExpr::VariantKind Kind = SparcMCExpr::VK_Sparc_13; if (getContext().getObjectFileInfo()->isPositionIndependent()) { if (isCall) Kind = SparcMCExpr::VK_Sparc_WPLT30; else Kind = SparcMCExpr::VK_Sparc_GOT13; } EVal = SparcMCExpr::create(Kind, EVal, getContext()); } Op = SparcOperand::CreateImm(EVal, S, E); break; } return Op ? ParseStatus::Success : ParseStatus::Failure; } ParseStatus SparcAsmParser::parseBranchModifiers(OperandVector &Operands) { // parse (,a|,pn|,pt)+ while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma if (!getLexer().is(AsmToken::Identifier)) return ParseStatus::Failure; StringRef modName = Parser.getTok().getString(); if (modName == "a" || modName == "pn" || modName == "pt") { Operands.push_back(SparcOperand::CreateToken(modName, Parser.getTok().getLoc())); Parser.Lex(); // eat the identifier. } } return ParseStatus::Success; } ParseStatus SparcAsmParser::parseExpression(int64_t &Val) { AsmToken Tok = getLexer().getTok(); if (!isPossibleExpression(Tok)) return ParseStatus::NoMatch; return getParser().parseAbsoluteExpression(Val); } MCRegister SparcAsmParser::matchRegisterName(const AsmToken &Tok, unsigned &RegKind) { RegKind = SparcOperand::rk_None; if (!Tok.is(AsmToken::Identifier)) return SP::NoRegister; StringRef Name = Tok.getString(); MCRegister Reg = MatchRegisterName(Name.lower()); if (!Reg) Reg = MatchRegisterAltName(Name.lower()); if (Reg) { // Some registers have identical spellings. The generated matcher might // have chosen one or another spelling, e.g. "%fp" or "%i6" might have been // matched to either SP::I6 or SP::I6_I7. Other parts of SparcAsmParser // are not prepared for this, so we do some canonicalization. // See the note in SparcRegisterInfo.td near ASRRegs register class. if (Reg == SP::ASR4 && Name == "tick") { RegKind = SparcOperand::rk_Special; return SP::TICK; } if (MRI.getRegClass(SP::IntRegsRegClassID).contains(Reg)) { RegKind = SparcOperand::rk_IntReg; return Reg; } if (MRI.getRegClass(SP::FPRegsRegClassID).contains(Reg)) { RegKind = SparcOperand::rk_FloatReg; return Reg; } if (MRI.getRegClass(SP::CoprocRegsRegClassID).contains(Reg)) { RegKind = SparcOperand::rk_CoprocReg; return Reg; } // Canonicalize G0_G1 ... G30_G31 etc. to G0 ... G30. if (MRI.getRegClass(SP::IntPairRegClassID).contains(Reg)) { RegKind = SparcOperand::rk_IntReg; return MRI.getSubReg(Reg, SP::sub_even); } // Canonicalize D0 ... D15 to F0 ... F30. if (MRI.getRegClass(SP::DFPRegsRegClassID).contains(Reg)) { // D16 ... D31 do not have sub-registers. if (MCRegister SubReg = MRI.getSubReg(Reg, SP::sub_even)) { RegKind = SparcOperand::rk_FloatReg; return SubReg; } RegKind = SparcOperand::rk_DoubleReg; return Reg; } // The generated matcher does not currently return QFP registers. // If it changes, we will need to handle them in a similar way. assert(!MRI.getRegClass(SP::QFPRegsRegClassID).contains(Reg)); // Canonicalize C0_C1 ... C30_C31 to C0 ... C30. if (MRI.getRegClass(SP::CoprocPairRegClassID).contains(Reg)) { RegKind = SparcOperand::rk_CoprocReg; return MRI.getSubReg(Reg, SP::sub_even); } // Other registers do not need special handling. RegKind = SparcOperand::rk_Special; return Reg; } // If we still have no match, try custom parsing. // Not all registers and their spellings are modeled in td files. // %r0 - %r31 int64_t RegNo = 0; if (Name.starts_with_insensitive("r") && !Name.substr(1, 2).getAsInteger(10, RegNo) && RegNo < 31) { RegKind = SparcOperand::rk_IntReg; return IntRegs[RegNo]; } if (Name == "xcc") { // FIXME:: check 64bit. RegKind = SparcOperand::rk_Special; return SP::ICC; } // JPS1 extension - aliases for ASRs // Section 5.2.11 - Ancillary State Registers (ASRs) if (Name == "pcr") { RegKind = SparcOperand::rk_Special; return SP::ASR16; } if (Name == "pic") { RegKind = SparcOperand::rk_Special; return SP::ASR17; } if (Name == "dcr") { RegKind = SparcOperand::rk_Special; return SP::ASR18; } if (Name == "gsr") { RegKind = SparcOperand::rk_Special; return SP::ASR19; } if (Name == "set_softint") { RegKind = SparcOperand::rk_Special; return SP::ASR20; } if (Name == "clear_softint") { RegKind = SparcOperand::rk_Special; return SP::ASR21; } if (Name == "softint") { RegKind = SparcOperand::rk_Special; return SP::ASR22; } if (Name == "tick_cmpr") { RegKind = SparcOperand::rk_Special; return SP::ASR23; } if (Name == "stick" || Name == "sys_tick") { RegKind = SparcOperand::rk_Special; return SP::ASR24; } if (Name == "stick_cmpr" || Name == "sys_tick_cmpr") { RegKind = SparcOperand::rk_Special; return SP::ASR25; } return SP::NoRegister; } // Determine if an expression contains a reference to the symbol // "_GLOBAL_OFFSET_TABLE_". static bool hasGOTReference(const MCExpr *Expr) { switch (Expr->getKind()) { case MCExpr::Target: if (const SparcMCExpr *SE = dyn_cast(Expr)) return hasGOTReference(SE->getSubExpr()); break; case MCExpr::Constant: break; case MCExpr::Binary: { const MCBinaryExpr *BE = cast(Expr); return hasGOTReference(BE->getLHS()) || hasGOTReference(BE->getRHS()); } case MCExpr::SymbolRef: { const MCSymbolRefExpr &SymRef = *cast(Expr); return (SymRef.getSymbol().getName() == "_GLOBAL_OFFSET_TABLE_"); } case MCExpr::Unary: return hasGOTReference(cast(Expr)->getSubExpr()); } return false; } const SparcMCExpr * SparcAsmParser::adjustPICRelocation(SparcMCExpr::VariantKind VK, const MCExpr *subExpr) { // When in PIC mode, "%lo(...)" and "%hi(...)" behave differently. // If the expression refers contains _GLOBAL_OFFSET_TABLE, it is // actually a %pc10 or %pc22 relocation. Otherwise, they are interpreted // as %got10 or %got22 relocation. if (getContext().getObjectFileInfo()->isPositionIndependent()) { switch(VK) { default: break; case SparcMCExpr::VK_Sparc_LO: VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC10 : SparcMCExpr::VK_Sparc_GOT10); break; case SparcMCExpr::VK_Sparc_HI: VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC22 : SparcMCExpr::VK_Sparc_GOT22); break; } } return SparcMCExpr::create(VK, subExpr, getContext()); } bool SparcAsmParser::matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc) { AsmToken Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return false; StringRef name = Tok.getString(); SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(name); switch (VK) { case SparcMCExpr::VK_Sparc_None: Error(getLoc(), "invalid operand modifier"); return false; case SparcMCExpr::VK_Sparc_GOTDATA_OP: case SparcMCExpr::VK_Sparc_TLS_GD_ADD: case SparcMCExpr::VK_Sparc_TLS_GD_CALL: case SparcMCExpr::VK_Sparc_TLS_IE_ADD: case SparcMCExpr::VK_Sparc_TLS_IE_LD: case SparcMCExpr::VK_Sparc_TLS_IE_LDX: case SparcMCExpr::VK_Sparc_TLS_LDM_ADD: case SparcMCExpr::VK_Sparc_TLS_LDM_CALL: case SparcMCExpr::VK_Sparc_TLS_LDO_ADD: // These are special-cased at tablegen level. return false; default: break; } Parser.Lex(); // Eat the identifier. if (Parser.getTok().getKind() != AsmToken::LParen) return false; Parser.Lex(); // Eat the LParen token. const MCExpr *subExpr; if (Parser.parseParenExpression(subExpr, EndLoc)) return false; EVal = adjustPICRelocation(VK, subExpr); return true; } bool SparcAsmParser::isPossibleExpression(const AsmToken &Token) { switch (Token.getKind()) { case AsmToken::LParen: case AsmToken::Integer: case AsmToken::Identifier: case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Tilde: return true; default: return false; } } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSparcAsmParser() { RegisterMCAsmParser A(getTheSparcTarget()); RegisterMCAsmParser B(getTheSparcV9Target()); RegisterMCAsmParser C(getTheSparcelTarget()); } unsigned SparcAsmParser::validateTargetOperandClass(MCParsedAsmOperand &GOp, unsigned Kind) { SparcOperand &Op = (SparcOperand &)GOp; if (Op.isFloatOrDoubleReg()) { switch (Kind) { default: break; case MCK_DFPRegs: if (!Op.isFloatReg() || SparcOperand::MorphToDoubleReg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_QFPRegs: if (SparcOperand::MorphToQuadReg(Op)) return MCTargetAsmParser::Match_Success; break; } } if (Op.isIntReg() && Kind == MCK_IntPair) { if (SparcOperand::MorphToIntPairReg(Op)) return MCTargetAsmParser::Match_Success; } if (Op.isCoprocReg() && Kind == MCK_CoprocPair) { if (SparcOperand::MorphToCoprocPairReg(Op)) return MCTargetAsmParser::Match_Success; } return Match_InvalidOperand; }