//===-- RISCVInstrInfoZb.td - RISC-V Bitmanip instructions -*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard Bitmanip // extensions, versions: // Zba - 1.0 // Zbb - 1.0 // Zbc - 1.0 // Zbs - 1.0 // // This file also describes RISC-V instructions from the Zbk* extensions in // Cryptography Extensions Volume I: Scalar & Entropy Source Instructions, // versions: // Zbkb - 1.0 // Zbkc - 1.0 // Zbkx - 1.0 // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// def SDTIntShiftAddOp : SDTypeProfile<1, 3, [ // shl_add SDTCisSameAs<0, 1>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisInt<2>, SDTCisInt<3> ]>; def riscv_shl_add : SDNode<"RISCVISD::SHL_ADD", SDTIntShiftAddOp>; def riscv_clzw : SDNode<"RISCVISD::CLZW", SDT_RISCVIntUnaryOpW>; def riscv_ctzw : SDNode<"RISCVISD::CTZW", SDT_RISCVIntUnaryOpW>; def riscv_rolw : SDNode<"RISCVISD::ROLW", SDT_RISCVIntBinOpW>; def riscv_rorw : SDNode<"RISCVISD::RORW", SDT_RISCVIntBinOpW>; def riscv_brev8 : SDNode<"RISCVISD::BREV8", SDTIntUnaryOp>; def riscv_orc_b : SDNode<"RISCVISD::ORC_B", SDTIntUnaryOp>; def riscv_zip : SDNode<"RISCVISD::ZIP", SDTIntUnaryOp>; def riscv_unzip : SDNode<"RISCVISD::UNZIP", SDTIntUnaryOp>; def riscv_absw : SDNode<"RISCVISD::ABSW", SDTIntUnaryOp>; def riscv_clmul : SDNode<"RISCVISD::CLMUL", SDTIntBinOp>; def riscv_clmulh : SDNode<"RISCVISD::CLMULH", SDTIntBinOp>; def riscv_clmulr : SDNode<"RISCVISD::CLMULR", SDTIntBinOp>; def UImmLog2XLenHalfAsmOperand : AsmOperandClass { let Name = "UImmLog2XLenHalf"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidUImmLog2XLenHalf"; } def shfl_uimm : RISCVOp, ImmLeafis64Bit()) return isUInt<5>(Imm); return isUInt<4>(Imm); }]> { let ParserMatchClass = UImmLog2XLenHalfAsmOperand; let DecoderMethod = "decodeUImmOperand<5>"; let OperandType = "OPERAND_UIMM_SHFL"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; if (STI.getTargetTriple().isArch64Bit()) return isUInt<5>(Imm); return isUInt<4>(Imm); }]; } def BCLRXForm : SDNodeXFormgetTargetConstant(llvm::countr_one(N->getZExtValue()), SDLoc(N), N->getValueType(0)); }]>; def SingleBitSetMaskToIndex : SDNodeXFormgetTargetConstant(llvm::countr_zero(N->getZExtValue()), SDLoc(N), N->getValueType(0)); }]>; // Checks if this mask has a single 0 bit and cannot be used with ANDI. def BCLRMask : ImmLeafis64Bit()) return !isInt<12>(Imm) && isPowerOf2_64(~Imm); return !isInt<12>(Imm) && isPowerOf2_32(~Imm); }], BCLRXForm>; // Checks if this mask has a single 1 bit and cannot be used with ORI/XORI. def SingleBitSetMask : ImmLeafis64Bit()) return !isInt<12>(Imm) && isPowerOf2_64(Imm); return !isInt<12>(Imm) && isPowerOf2_32(Imm); }], SingleBitSetMaskToIndex>; // Check if (or r, i) can be optimized to (BSETI (BSETI r, i0), i1), // in which i = (1 << i0) | (1 << i1). def BSETINVTwoBitsMask : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; // The immediate should not be a simm12. if (isInt<12>(N->getSExtValue())) return false; // The immediate must have exactly two bits set. return llvm::popcount(N->getZExtValue()) == 2; }]>; def BSETINVTwoBitsMaskHigh : SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(llvm::Log2_64(I), SDLoc(N), N->getValueType(0)); }]>; // Check if (or r, imm) can be optimized to (BSETI (ORI r, i0), i1), // in which imm = i0 | (1 << i1). def BSETINVORIMask : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; // The immediate should not be a simm12. if (isInt<12>(N->getSExtValue())) return false; // There should be only one set bit from bit 11 to the top. return isPowerOf2_64(N->getZExtValue() & ~0x7ff); }]>; def BSETINVORIMaskLow : SDNodeXFormgetTargetConstant(N->getZExtValue() & 0x7ff, SDLoc(N), N->getValueType(0)); }]>; // Check if (and r, i) can be optimized to (BCLRI (BCLRI r, i0), i1), // in which i = ~((1<hasOneUse()) return false; // The immediate should not be a simm12. if (isInt<12>(N->getSExtValue())) return false; // The immediate must have exactly two bits clear. return (unsigned)llvm::popcount(N->getZExtValue()) == Subtarget->getXLen() - 2; }]>; def BCLRITwoBitsMaskLow : SDNodeXFormgetTargetConstant(llvm::countr_zero(~N->getZExtValue()), SDLoc(N), N->getValueType(0)); }]>; def BCLRITwoBitsMaskHigh : SDNodeXFormgetSExtValue(); if (!Subtarget->is64Bit()) I |= 0xffffffffull << 32; return CurDAG->getTargetConstant(llvm::Log2_64(~I), SDLoc(N), N->getValueType(0)); }]>; // Check if (and r, i) can be optimized to (BCLRI (ANDI r, i0), i1), // in which i = i0 & ~(1<hasOneUse()) return false; // The immediate should not be a simm12. if (isInt<12>(N->getSExtValue())) return false; // There should be only one clear bit from bit 11 to the top. uint64_t I = N->getZExtValue() | 0x7ff; return Subtarget->is64Bit() ? isPowerOf2_64(~I) : isPowerOf2_32(~I); }]>; def BCLRIANDIMaskLow : SDNodeXFormgetTargetConstant((N->getZExtValue() & 0x7ff) | ~0x7ffull, SDLoc(N), N->getValueType(0)); }]>; def CSImm12MulBy4 : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; int64_t C = N->getSExtValue(); // Skip if C is simm12, an lui, or can be optimized by the PatLeaf AddiPair. return !isInt<13>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 2>(C); }]>; def CSImm12MulBy8 : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; int64_t C = N->getSExtValue(); // Skip if C is simm12, an lui or can be optimized by the PatLeaf AddiPair or // CSImm12MulBy4. return !isInt<14>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 3>(C); }]>; def SimmShiftRightBy2XForm : SDNodeXFormgetTargetConstant(N->getSExtValue() >> 2, SDLoc(N), N->getValueType(0)); }]>; def SimmShiftRightBy3XForm : SDNodeXFormgetTargetConstant(N->getSExtValue() >> 3, SDLoc(N), N->getValueType(0)); }]>; // Pattern to exclude simm12 immediates from matching, namely `non_imm12`. // GISel currently doesn't support PatFrag for leaf nodes, so `non_imm12` // cannot be implemented in that way. To reuse patterns between the two // ISels, we instead create PatFrag on operators that use `non_imm12`. class binop_with_non_imm12 : PatFrag<(ops node:$x, node:$y), (binop node:$x, node:$y), [{ auto *C = dyn_cast(Operands[1]); return !C || !isInt<12>(C->getSExtValue()); }]> { let PredicateCodeUsesOperands = 1; let GISelPredicateCode = [{ const MachineOperand &ImmOp = *Operands[1]; const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); if (ImmOp.isReg() && ImmOp.getReg()) if (auto Val = getIConstantVRegValWithLookThrough(ImmOp.getReg(), MRI)) { // We do NOT want immediates that fit in 12 bits. return !isInt<12>(Val->Value.getSExtValue()); } return true; }]; } def add_non_imm12 : binop_with_non_imm12; def add_like_non_imm12 : binop_with_non_imm12; def Shifted32OnesMask : IntImmLeaf 0 && TrailingZeros < 32 && Imm == UINT64_C(0xFFFFFFFF) << TrailingZeros; }], TrailingZeros>; def sh1add_op : ComplexPattern", [], [], 6>; def sh2add_op : ComplexPattern", [], [], 6>; def sh3add_op : ComplexPattern", [], [], 6>; def sh1add_uw_op : ComplexPattern", [], [], 6>; def sh2add_uw_op : ComplexPattern", [], [], 6>; def sh3add_uw_op : ComplexPattern", [], [], 6>; //===----------------------------------------------------------------------===// // Instruction class templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class RVBUnary imm12, bits<3> funct3, RISCVOpcode opcode, string opcodestr> : RVInstIUnary; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class RVBShift_ri imm11_7, bits<3> funct3, RISCVOpcode opcode, string opcodestr> : RVInstIShift; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class RVBShiftW_ri imm11_5, bits<3> funct3, RISCVOpcode opcode, string opcodestr> : RVInstIShiftW; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZbbOrZbkb] in { def ANDN : ALU_rr<0b0100000, 0b111, "andn">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def ORN : ALU_rr<0b0100000, 0b110, "orn">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def XNOR : ALU_rr<0b0100000, 0b100, "xnor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; } // Predicates = [HasStdExtZbbOrZbkb] let Predicates = [HasStdExtZba] in { def SH1ADD : ALU_rr<0b0010000, 0b010, "sh1add">, Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; def SH2ADD : ALU_rr<0b0010000, 0b100, "sh2add">, Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; def SH3ADD : ALU_rr<0b0010000, 0b110, "sh3add">, Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; } // Predicates = [HasStdExtZba] let Predicates = [HasStdExtZba, IsRV64] in { def SLLI_UW : RVBShift_ri<0b00001, 0b001, OPC_OP_IMM_32, "slli.uw">, Sched<[WriteShiftImm32, ReadShiftImm32]>; def ADD_UW : ALUW_rr<0b0000100, 0b000, "add.uw">, Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; def SH1ADD_UW : ALUW_rr<0b0010000, 0b010, "sh1add.uw">, Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; def SH2ADD_UW : ALUW_rr<0b0010000, 0b100, "sh2add.uw">, Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; def SH3ADD_UW : ALUW_rr<0b0010000, 0b110, "sh3add.uw">, Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; } // Predicates = [HasStdExtZba, IsRV64] let Predicates = [HasStdExtZbbOrZbkb] in { def ROL : ALU_rr<0b0110000, 0b001, "rol">, Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>; def ROR : ALU_rr<0b0110000, 0b101, "ror">, Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>; def RORI : RVBShift_ri<0b01100, 0b101, OPC_OP_IMM, "rori">, Sched<[WriteRotateImm, ReadRotateImm]>; } // Predicates = [HasStdExtZbbOrZbkb] let Predicates = [HasStdExtZbbOrZbkb, IsRV64], IsSignExtendingOpW = 1 in { def ROLW : ALUW_rr<0b0110000, 0b001, "rolw">, Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>; def RORW : ALUW_rr<0b0110000, 0b101, "rorw">, Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>; def RORIW : RVBShiftW_ri<0b0110000, 0b101, OPC_OP_IMM_32, "roriw">, Sched<[WriteRotateImm32, ReadRotateImm32]>; } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] let Predicates = [HasStdExtZbs] in { def BCLR : ALU_rr<0b0100100, 0b001, "bclr">, Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; def BSET : ALU_rr<0b0010100, 0b001, "bset">, Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; def BINV : ALU_rr<0b0110100, 0b001, "binv">, Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; let IsSignExtendingOpW = 1 in def BEXT : ALU_rr<0b0100100, 0b101, "bext">, Sched<[WriteBEXT, ReadSingleBit, ReadSingleBit]>; def BCLRI : RVBShift_ri<0b01001, 0b001, OPC_OP_IMM, "bclri">, Sched<[WriteSingleBitImm, ReadSingleBitImm]>; def BSETI : RVBShift_ri<0b00101, 0b001, OPC_OP_IMM, "bseti">, Sched<[WriteSingleBitImm, ReadSingleBitImm]>; def BINVI : RVBShift_ri<0b01101, 0b001, OPC_OP_IMM, "binvi">, Sched<[WriteSingleBitImm, ReadSingleBitImm]>; let IsSignExtendingOpW = 1 in def BEXTI : RVBShift_ri<0b01001, 0b101, OPC_OP_IMM, "bexti">, Sched<[WriteBEXTI, ReadSingleBitImm]>; } // Predicates = [HasStdExtZbs] // These instructions were named xperm.n and xperm.b in the last version of // the draft bit manipulation specification they were included in. However, we // use the mnemonics given to them in the ratified Zbkx extension. let Predicates = [HasStdExtZbkx] in { def XPERM4 : ALU_rr<0b0010100, 0b010, "xperm4">, Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>; def XPERM8 : ALU_rr<0b0010100, 0b100, "xperm8">, Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>; } // Predicates = [HasStdExtZbkx] let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in { def CLZ : RVBUnary<0b011000000000, 0b001, OPC_OP_IMM, "clz">, Sched<[WriteCLZ, ReadCLZ]>; def CTZ : RVBUnary<0b011000000001, 0b001, OPC_OP_IMM, "ctz">, Sched<[WriteCTZ, ReadCTZ]>; def CPOP : RVBUnary<0b011000000010, 0b001, OPC_OP_IMM, "cpop">, Sched<[WriteCPOP, ReadCPOP]>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in { def CLZW : RVBUnary<0b011000000000, 0b001, OPC_OP_IMM_32, "clzw">, Sched<[WriteCLZ32, ReadCLZ32]>; def CTZW : RVBUnary<0b011000000001, 0b001, OPC_OP_IMM_32, "ctzw">, Sched<[WriteCTZ32, ReadCTZ32]>; def CPOPW : RVBUnary<0b011000000010, 0b001, OPC_OP_IMM_32, "cpopw">, Sched<[WriteCPOP32, ReadCPOP32]>; } // Predicates = [HasStdExtZbb, IsRV64] let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in { def SEXT_B : RVBUnary<0b011000000100, 0b001, OPC_OP_IMM, "sext.b">, Sched<[WriteIALU, ReadIALU]>; def SEXT_H : RVBUnary<0b011000000101, 0b001, OPC_OP_IMM, "sext.h">, Sched<[WriteIALU, ReadIALU]>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbc] in { def CLMULR : ALU_rr<0b0000101, 0b010, "clmulr", Commutable=1>, Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; } // Predicates = [HasStdExtZbc] let Predicates = [HasStdExtZbcOrZbkc] in { def CLMUL : ALU_rr<0b0000101, 0b001, "clmul", Commutable=1>, Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; def CLMULH : ALU_rr<0b0000101, 0b011, "clmulh", Commutable=1>, Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; } // Predicates = [HasStdExtZbcOrZbkc] let Predicates = [HasStdExtZbb] in { def MIN : ALU_rr<0b0000101, 0b100, "min", Commutable=1>, Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>; def MINU : ALU_rr<0b0000101, 0b101, "minu", Commutable=1>, Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>; def MAX : ALU_rr<0b0000101, 0b110, "max", Commutable=1>, Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>; def MAXU : ALU_rr<0b0000101, 0b111, "maxu", Commutable=1>, Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbkb] in { def PACK : ALU_rr<0b0000100, 0b100, "pack">, Sched<[WritePACK, ReadPACK, ReadPACK]>; let IsSignExtendingOpW = 1 in def PACKH : ALU_rr<0b0000100, 0b111, "packh">, Sched<[WritePACK, ReadPACK, ReadPACK]>; } // Predicates = [HasStdExtZbkb] let Predicates = [HasStdExtZbkb, IsRV64], IsSignExtendingOpW = 1 in def PACKW : ALUW_rr<0b0000100, 0b100, "packw">, Sched<[WritePACK32, ReadPACK32, ReadPACK32]>; let Predicates = [HasStdExtZbb, IsRV32] in { def ZEXT_H_RV32 : RVBUnary<0b000010000000, 0b100, OPC_OP, "zext.h">, Sched<[WriteIALU, ReadIALU]>; } // Predicates = [HasStdExtZbb, IsRV32] let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in { def ZEXT_H_RV64 : RVBUnary<0b000010000000, 0b100, OPC_OP_32, "zext.h">, Sched<[WriteIALU, ReadIALU]>; } // Predicates = [HasStdExtZbb, IsRV64] let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in { def REV8_RV32 : RVBUnary<0b011010011000, 0b101, OPC_OP_IMM, "rev8">, Sched<[WriteREV8, ReadREV8]>; } // Predicates = [HasStdExtZbbOrZbkb, IsRV32] let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { def REV8_RV64 : RVBUnary<0b011010111000, 0b101, OPC_OP_IMM, "rev8">, Sched<[WriteREV8, ReadREV8]>; } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] let Predicates = [HasStdExtZbb] in { def ORC_B : RVBUnary<0b001010000111, 0b101, OPC_OP_IMM, "orc.b">, Sched<[WriteORCB, ReadORCB]>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbkb] in def BREV8 : RVBUnary<0b011010000111, 0b101, OPC_OP_IMM, "brev8">, Sched<[WriteBREV8, ReadBREV8]>; let Predicates = [HasStdExtZbkb, IsRV32] in { def ZIP_RV32 : RVBUnary<0b000010001111, 0b001, OPC_OP_IMM, "zip">, Sched<[WriteZIP, ReadZIP]>; def UNZIP_RV32 : RVBUnary<0b000010001111, 0b101, OPC_OP_IMM, "unzip">, Sched<[WriteZIP, ReadZIP]>; } // Predicates = [HasStdExtZbkb, IsRV32] //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZba, IsRV64] in { def : InstAlias<"zext.w $rd, $rs", (ADD_UW GPR:$rd, GPR:$rs, X0)>; } // Predicates = [HasStdExtZba, IsRV64] let Predicates = [HasStdExtZbb] in { def : InstAlias<"ror $rd, $rs1, $shamt", (RORI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbb, IsRV64] in { def : InstAlias<"rorw $rd, $rs1, $shamt", (RORIW GPR:$rd, GPR:$rs1, uimm5:$shamt), 0>; } // Predicates = [HasStdExtZbb, IsRV64] let Predicates = [HasStdExtZbs] in { def : InstAlias<"bset $rd, $rs1, $shamt", (BSETI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; def : InstAlias<"bclr $rd, $rs1, $shamt", (BCLRI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; def : InstAlias<"binv $rd, $rs1, $shamt", (BINVI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; def : InstAlias<"bext $rd, $rs1, $shamt", (BEXTI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; } // Predicates = [HasStdExtZbs] let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in { def : InstAlias<"zext.h $rd, $rs", (PACK GPR:$rd, GPR:$rs, X0)>; } // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in { def : InstAlias<"zext.h $rd, $rs", (PACKW GPR:$rd, GPR:$rs, X0)>; } // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] //===----------------------------------------------------------------------===// // Codegen patterns //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZbbOrZbkb] in { def : Pat<(XLenVT (and GPR:$rs1, (not GPR:$rs2))), (ANDN GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (or GPR:$rs1, (not GPR:$rs2))), (ORN GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (xor GPR:$rs1, (not GPR:$rs2))), (XNOR GPR:$rs1, GPR:$rs2)>; } // Predicates = [HasStdExtZbbOrZbkb] let Predicates = [HasStdExtZbbOrZbkb] in { def : PatGprGpr, ROL>; def : PatGprGpr, ROR>; def : PatGprImm; // There's no encoding for roli in the the 'B' extension as it can be // implemented with rori by negating the immediate. def : Pat<(XLenVT (rotl GPR:$rs1, uimmlog2xlen:$shamt)), (RORI GPR:$rs1, (ImmSubFromXLen uimmlog2xlen:$shamt))>; } // Predicates = [HasStdExtZbbOrZbkb] let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { def : PatGprGpr, ROLW>; def : PatGprGpr, RORW>; def : PatGprImm; def : Pat<(riscv_rolw GPR:$rs1, uimm5:$rs2), (RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>; } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] let Predicates = [HasStdExtZbs] in { def : Pat<(XLenVT (and (not (shiftop 1, (XLenVT GPR:$rs2))), GPR:$rs1)), (BCLR GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (and (rotl -2, (XLenVT GPR:$rs2)), GPR:$rs1)), (BCLR GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (or (shiftop 1, (XLenVT GPR:$rs2)), GPR:$rs1)), (BSET GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (xor (shiftop 1, (XLenVT GPR:$rs2)), GPR:$rs1)), (BINV GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (and (shiftop GPR:$rs1, (XLenVT GPR:$rs2)), 1)), (BEXT GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (shiftop 1, (XLenVT GPR:$rs2))), (BSET (XLenVT X0), GPR:$rs2)>; def : Pat<(XLenVT (not (shiftop -1, (XLenVT GPR:$rs2)))), (ADDI (XLenVT (BSET (XLenVT X0), GPR:$rs2)), -1)>; def : Pat<(XLenVT (and GPR:$rs1, BCLRMask:$mask)), (BCLRI GPR:$rs1, BCLRMask:$mask)>; def : Pat<(XLenVT (or GPR:$rs1, SingleBitSetMask:$mask)), (BSETI GPR:$rs1, SingleBitSetMask:$mask)>; def : Pat<(XLenVT (xor GPR:$rs1, SingleBitSetMask:$mask)), (BINVI GPR:$rs1, SingleBitSetMask:$mask)>; def : Pat<(XLenVT (and (srl GPR:$rs1, uimmlog2xlen:$shamt), (XLenVT 1))), (BEXTI GPR:$rs1, uimmlog2xlen:$shamt)>; def : Pat<(XLenVT (seteq (XLenVT (and GPR:$rs1, SingleBitSetMask:$mask)), 0)), (BEXTI (XLenVT (XORI GPR:$rs1, -1)), SingleBitSetMask:$mask)>; def : Pat<(XLenVT (or GPR:$r, BSETINVTwoBitsMask:$i)), (BSETI (XLenVT (BSETI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))), (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>; def : Pat<(XLenVT (xor GPR:$r, BSETINVTwoBitsMask:$i)), (BINVI (XLenVT (BINVI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))), (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>; def : Pat<(XLenVT (or GPR:$r, BSETINVORIMask:$i)), (BSETI (XLenVT (ORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))), (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>; def : Pat<(XLenVT (xor GPR:$r, BSETINVORIMask:$i)), (BINVI (XLenVT (XORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))), (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>; def : Pat<(XLenVT (and GPR:$r, BCLRITwoBitsMask:$i)), (BCLRI (XLenVT (BCLRI GPR:$r, (BCLRITwoBitsMaskLow BCLRITwoBitsMask:$i))), (BCLRITwoBitsMaskHigh BCLRITwoBitsMask:$i))>; def : Pat<(XLenVT (and GPR:$r, BCLRIANDIMask:$i)), (BCLRI (XLenVT (ANDI GPR:$r, (BCLRIANDIMaskLow BCLRIANDIMask:$i))), (BCLRITwoBitsMaskHigh BCLRIANDIMask:$i))>; } // Predicates = [HasStdExtZbs] let Predicates = [HasStdExtZbb] in def : PatGpr; let Predicates = [HasStdExtZbkb] in def : PatGpr; let Predicates = [HasStdExtZbkb, IsRV32] in { // We treat zip and unzip as separate instructions, so match it directly. def : PatGpr; def : PatGpr; } // Predicates = [HasStdExtZbkb, IsRV32] let Predicates = [HasStdExtZbb] in { def : PatGpr; def : PatGpr; def : PatGpr; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbb, IsRV64] in { def : PatGpr; def : PatGpr; def : Pat<(i64 (ctpop (i64 (zexti32 (i64 GPR:$rs1))))), (CPOPW GPR:$rs1)>; def : Pat<(i64 (riscv_absw GPR:$rs1)), (MAX GPR:$rs1, (XLenVT (SUBW (XLenVT X0), GPR:$rs1)))>; } // Predicates = [HasStdExtZbb, IsRV64] let Predicates = [HasStdExtZbb] in { def : Pat<(XLenVT (sext_inreg GPR:$rs1, i8)), (SEXT_B GPR:$rs1)>; def : Pat<(XLenVT (sext_inreg GPR:$rs1, i16)), (SEXT_H GPR:$rs1)>; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbb] in { def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; } // Predicates = [HasStdExtZbb] let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in def : PatGpr; let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in def : PatGpr; let Predicates = [HasStdExtZbkb] in { def : Pat<(or (and (shl GPR:$rs2, (XLenVT 8)), 0xFFFF), (zexti8 (XLenVT GPR:$rs1))), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(or (shl (zexti8 (XLenVT GPR:$rs2)), (XLenVT 8)), (zexti8 (XLenVT GPR:$rs1))), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(and (or (shl GPR:$rs2, (XLenVT 8)), (zexti8 (XLenVT GPR:$rs1))), 0xFFFF), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(binop_allhusers (shl GPR:$rs2, (XLenVT 8)), (zexti8 (XLenVT GPR:$rs1))), (PACKH GPR:$rs1, GPR:$rs2)>; } // Predicates = [HasStdExtZbkb] let Predicates = [HasStdExtZbkb, IsRV32] in def : Pat<(i32 (or (zexti16 (i32 GPR:$rs1)), (shl GPR:$rs2, (i32 16)))), (PACK GPR:$rs1, GPR:$rs2)>; let Predicates = [HasStdExtZbkb, IsRV64] in { def : Pat<(i64 (or (zexti32 (i64 GPR:$rs1)), (shl GPR:$rs2, (i64 32)))), (PACK GPR:$rs1, GPR:$rs2)>; def : Pat<(binop_allwusers (shl GPR:$rs2, (i64 16)), (zexti16 (i64 GPR:$rs1))), (PACKW GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (or (sext_inreg (shl GPR:$rs2, (i64 16)), i32), (zexti16 (i64 GPR:$rs1)))), (PACKW GPR:$rs1, GPR:$rs2)>; } // Predicates = [HasStdExtZbkb, IsRV64] let Predicates = [HasStdExtZbb, IsRV32] in def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV32 GPR:$rs)>; let Predicates = [HasStdExtZbb, IsRV64] in def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>; let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (PACK GPR:$rs, (XLenVT X0))>; let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (PACKW GPR:$rs, (XLenVT X0))>; let Predicates = [HasStdExtZba] in { foreach i = {1,2,3} in { defvar shxadd = !cast("SH"#i#"ADD"); def : Pat<(XLenVT (add_like_non_imm12 (shl GPR:$rs1, (XLenVT i)), GPR:$rs2)), (shxadd GPR:$rs1, GPR:$rs2)>; def : Pat<(XLenVT (riscv_shl_add GPR:$rs1, (XLenVT i), GPR:$rs2)), (shxadd GPR:$rs1, GPR:$rs2)>; defvar pat = !cast("sh"#i#"add_op"); // More complex cases use a ComplexPattern. def : Pat<(XLenVT (add_like_non_imm12 pat:$rs1, GPR:$rs2)), (shxadd pat:$rs1, GPR:$rs2)>; } def : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy4:$i), (SH2ADD (XLenVT (ADDI (XLenVT X0), (SimmShiftRightBy2XForm CSImm12MulBy4:$i))), GPR:$r)>; def : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy8:$i), (SH3ADD (XLenVT (ADDI (XLenVT X0), (SimmShiftRightBy3XForm CSImm12MulBy8:$i))), GPR:$r)>; } // Predicates = [HasStdExtZba] let Predicates = [HasStdExtZba, IsRV64] in { def : Pat<(i64 (shl (and GPR:$rs1, 0xFFFFFFFF), uimm5:$shamt)), (SLLI_UW GPR:$rs1, uimm5:$shamt)>; // Match a shifted 0xffffffff mask. Use SRLI to clear the LSBs and SLLI_UW to // mask and shift. def : Pat<(i64 (and GPR:$rs1, Shifted32OnesMask:$mask)), (SLLI_UW (XLenVT (SRLI GPR:$rs1, Shifted32OnesMask:$mask)), Shifted32OnesMask:$mask)>; def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFF), GPR:$rs2)), (ADD_UW GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (and GPR:$rs, 0xFFFFFFFF)), (ADD_UW GPR:$rs, (XLenVT X0))>; foreach i = {1,2,3} in { defvar shxadd_uw = !cast("SH"#i#"ADD_UW"); def : Pat<(i64 (add_like_non_imm12 (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 i)), (XLenVT GPR:$rs2))), (shxadd_uw GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (riscv_shl_add (and GPR:$rs1, 0xFFFFFFFF), (i64 i), GPR:$rs2)), (shxadd_uw GPR:$rs1, GPR:$rs2)>; } def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 1)), 0x1FFFFFFFF), (XLenVT GPR:$rs2))), (SH1ADD_UW GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 2)), 0x3FFFFFFFF), (XLenVT GPR:$rs2))), (SH2ADD_UW GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 3)), 0x7FFFFFFFF), (XLenVT GPR:$rs2))), (SH3ADD_UW GPR:$rs1, GPR:$rs2)>; // More complex cases use a ComplexPattern. foreach i = {1,2,3} in { defvar pat = !cast("sh"#i#"add_uw_op"); def : Pat<(i64 (add_like_non_imm12 pat:$rs1, (XLenVT GPR:$rs2))), (!cast("SH"#i#"ADD_UW") pat:$rs1, GPR:$rs2)>; } def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFE), (XLenVT GPR:$rs2))), (SH1ADD (XLenVT (SRLIW GPR:$rs1, 1)), GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFC), (XLenVT GPR:$rs2))), (SH2ADD (XLenVT (SRLIW GPR:$rs1, 2)), GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFF8), (XLenVT GPR:$rs2))), (SH3ADD (XLenVT (SRLIW GPR:$rs1, 3)), GPR:$rs2)>; // Use SRLI to clear the LSBs and SHXADD_UW to mask and shift. def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x1FFFFFFFE), (XLenVT GPR:$rs2))), (SH1ADD_UW (XLenVT (SRLI GPR:$rs1, 1)), GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x3FFFFFFFC), (XLenVT GPR:$rs2))), (SH2ADD_UW (XLenVT (SRLI GPR:$rs1, 2)), GPR:$rs2)>; def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x7FFFFFFF8), (XLenVT GPR:$rs2))), (SH3ADD_UW (XLenVT (SRLI GPR:$rs1, 3)), GPR:$rs2)>; } // Predicates = [HasStdExtZba, IsRV64] let Predicates = [HasStdExtZbcOrZbkc] in { def : PatGprGpr; def : PatGprGpr; } // Predicates = [HasStdExtZbcOrZbkc] let Predicates = [HasStdExtZbc] in def : PatGprGpr; let Predicates = [HasStdExtZbkx] in { def : PatGprGpr; def : PatGprGpr; } // Predicates = [HasStdExtZbkx] //===----------------------------------------------------------------------===// // Experimental RV64 i32 legalization patterns. //===----------------------------------------------------------------------===// def BCLRMaski32 : ImmLeaf(Imm) && isPowerOf2_32(~Imm); }]>; def SingleBitSetMaski32 : ImmLeaf(Imm) && isPowerOf2_32(Imm); }]>; let Predicates = [HasStdExtZbb, IsRV64] in { def : PatGpr; def : PatGpr; def : PatGpr; def : Pat<(i32 (sext_inreg GPR:$rs1, i8)), (SEXT_B GPR:$rs1)>; def : Pat<(i32 (sext_inreg GPR:$rs1, i16)), (SEXT_H GPR:$rs1)>; def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>; } // Predicates = [HasStdExtZbb, IsRV64] let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in { def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (PACKW GPR:$rs, (XLenVT X0))>; } let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { def : Pat<(i32 (and GPR:$rs1, (not GPR:$rs2))), (ANDN GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (or GPR:$rs1, (not GPR:$rs2))), (ORN GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (xor GPR:$rs1, (not GPR:$rs2))), (XNOR GPR:$rs1, GPR:$rs2)>; def : PatGprGpr, ROLW, i32, i64>; def : PatGprGpr, RORW, i32, i64>; def : PatGprImm; def : Pat<(i32 (rotl GPR:$rs1, uimm5:$rs2)), (RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>; } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] let Predicates = [HasStdExtZbkb, IsRV64] in { def : Pat<(or (and (shl GPR:$rs2, (i64 8)), 0xFFFF), (zexti8i32 (i32 GPR:$rs1))), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(or (shl (zexti8i32 (i32 GPR:$rs2)), (i64 8)), (zexti8i32 (i32 GPR:$rs1))), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(and (anyext (or (shl GPR:$rs2, (XLenVT 8)), (zexti8i32 (i32 GPR:$rs1)))), 0xFFFF), (PACKH GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (or (shl GPR:$rs2, (i64 16)), (zexti16i32 (i32 GPR:$rs1)))), (PACKW GPR:$rs1, GPR:$rs2)>; } // Predicates = [HasStdExtZbkb, IsRV64] let Predicates = [HasStdExtZba, IsRV64] in { def : Pat<(shl (i64 (zext i32:$rs1)), uimm5:$shamt), (SLLI_UW GPR:$rs1, uimm5:$shamt)>; def : Pat<(i64 (add_like_non_imm12 (zext GPR:$rs1), GPR:$rs2)), (ADD_UW GPR:$rs1, GPR:$rs2)>; def : Pat<(zext GPR:$src), (ADD_UW GPR:$src, (XLenVT X0))>; foreach i = {1,2,3} in { defvar shxadd = !cast("SH"#i#"ADD"); def : Pat<(i32 (add_like_non_imm12 (shl GPR:$rs1, (i64 i)), GPR:$rs2)), (shxadd GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (riscv_shl_add GPR:$rs1, (i32 i), GPR:$rs2)), (shxadd GPR:$rs1, GPR:$rs2)>; } } let Predicates = [HasStdExtZbs, IsRV64] in { def : Pat<(i32 (and (not (shiftop 1, (i64 GPR:$rs2))), GPR:$rs1)), (BCLR GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (and (rotl -2, (i64 GPR:$rs2)), GPR:$rs1)), (BCLR GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (or (shiftop 1, (i64 GPR:$rs2)), GPR:$rs1)), (BSET GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (xor (shiftop 1, (i64 GPR:$rs2)), GPR:$rs1)), (BINV GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (and (shiftop GPR:$rs1, (i64 GPR:$rs2)), 1)), (BEXT GPR:$rs1, GPR:$rs2)>; def : Pat<(i64 (and (anyext (i32 (shiftop GPR:$rs1, (i64 GPR:$rs2)))), 1)), (BEXT GPR:$rs1, GPR:$rs2)>; def : Pat<(i32 (shiftop 1, (i64 GPR:$rs2))), (BSET (XLenVT X0), GPR:$rs2)>; def : Pat<(i32 (not (shiftop -1, (i64 GPR:$rs2)))), (ADDI (i32 (BSET (XLenVT X0), GPR:$rs2)), -1)>; def : Pat<(i32 (and (srl GPR:$rs1, uimm5:$shamt), (i32 1))), (BEXTI GPR:$rs1, uimm5:$shamt)>; def : Pat<(i32 (and GPR:$rs1, BCLRMaski32:$mask)), (BCLRI GPR:$rs1, (i64 (BCLRXForm $mask)))>; def : Pat<(i32 (or GPR:$rs1, SingleBitSetMaski32:$mask)), (BSETI GPR:$rs1, (i64 (SingleBitSetMaskToIndex $mask)))>; def : Pat<(i32 (xor GPR:$rs1, SingleBitSetMaski32:$mask)), (BINVI GPR:$rs1, (i64 (SingleBitSetMaskToIndex $mask)))>; } // Predicates = [HasStdExtZbs, IsRV64]