//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file contains the required infrastructure to support code generation /// for the standard 'V' (Vector) extension, version 1.0. /// /// This file is included from RISCVInstrInfoV.td /// /// Overview of our vector instruction pseudos. Many of the instructions /// have behavior which depends on the value of VTYPE. Several core aspects of /// the compiler - e.g. register allocation - depend on fields in this /// configuration register. The details of which fields matter differ by the /// specific instruction, but the common dimensions are: /// /// LMUL/EMUL - Most instructions can write to differently sized register groups /// depending on LMUL. /// /// Masked vs Unmasked - Many instructions which allow a mask disallow register /// overlap. As a result, masked vs unmasked require different register /// allocation constraints. /// /// Policy - For each of mask and tail policy, there are three options: /// * "Undisturbed" - As defined in the specification, required to preserve the /// exact bit pattern of inactive lanes. /// * "Agnostic" - As defined in the specification, required to either preserve /// the exact bit pattern of inactive lanes, or produce the bit pattern -1 for /// those lanes. Note that each lane can make this choice independently. /// Instructions which produce masks (and only those instructions) also have the /// option of producing a result as-if VL had been VLMAX. /// * "Undefined" - The bit pattern of the inactive lanes is unspecified, and /// can be changed without impacting the semantics of the program. Note that /// this concept does not exist in the specification, and requires source /// knowledge to be preserved. /// /// SEW - Some instructions have semantics which depend on SEW. This is /// relatively rare, and mostly impacts scheduling and cost estimation. /// /// We have two techniques we use to represent the impact of these fields: /// * For fields which don't impact register classes, we largely use /// dummy operands on the pseudo instructions which convey information /// about the value of VTYPE. /// * For fields which do impact register classes (and a few bits of /// legacy - see policy discussion below), we define a family of pseudo /// instructions for each actual instruction. Said differently, we encode /// each of the preceding fields which are relevant for a given instruction /// in the opcode space. /// /// Currently, the policy is represented via the following instrinsic families: /// * _MASK - Can represent all three policy states for both tail and mask. If /// passthrough is IMPLICIT_DEF (or NoReg), then represents "undefined". /// Otherwise, policy operand and tablegen flags drive the interpretation. /// (If policy operand is not present - there are a couple, though we're /// rapidly removing them - a non-undefined policy defaults to "tail /// agnostic", and "mask undisturbed". Since this is the only variant with /// a mask, all other variants are "mask undefined". /// * Unsuffixed w/ both passthrough and policy operand. Can represent all /// three policy states. If passthrough is IMPLICIT_DEF (or NoReg), then /// represents "undefined". Otherwise, policy operand and tablegen flags /// drive the interpretation. /// * Unsuffixed w/o passthrough or policy operand -- Does not have a /// passthrough operand, and thus represents the "undefined" state. Note /// that terminology in code frequently refers to these as "TA" which is /// confusing. We're in the process of migrating away from this /// representation. /// //===----------------------------------------------------------------------===// def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>, SDTCisInt<1>]>>; def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB", SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>; // Operand that is allowed to be a register other than X0, a 5 bit unsigned // immediate, or -1. -1 means VLMAX. This allows us to pick between VSETIVLI and // VSETVLI opcodes using the same pseudo instructions. def AVL : RegisterOperand { let OperandNamespace = "RISCVOp"; let OperandType = "OPERAND_AVL"; } // X0 has special meaning for vsetvl/vsetvli. // rd | rs1 | AVL value | Effect on vl //-------------------------------------------------------------- // !X0 | X0 | VLMAX | Set vl to VLMAX // X0 | X0 | Value in vl | Keep current vl, just change vtype. def VLOp : ComplexPattern; def DecImm : SDNodeXFormgetTargetConstant(N->getSExtValue() - 1, SDLoc(N), N->getValueType(0)); }]>; defvar TAIL_AGNOSTIC = 1; defvar TU_MU = 0; defvar TA_MA = 3; //===----------------------------------------------------------------------===// // Utilities. //===----------------------------------------------------------------------===// class PseudoToVInst { defvar AffixSubsts = [["Pseudo", ""], ["_E64", ""], ["_E32", ""], ["_E16", ""], ["_E8", ""], ["FPR64", "F"], ["FPR32", "F"], ["FPR16", "F"], ["_TIED", ""], ["_MASK", ""], ["_B64", ""], ["_B32", ""], ["_B16", ""], ["_B8", ""], ["_B4", ""], ["_B2", ""], ["_B1", ""], ["_MF8", ""], ["_MF4", ""], ["_MF2", ""], ["_M1", ""], ["_M2", ""], ["_M4", ""], ["_M8", ""], ["_SE", ""], ["_RM", ""] ]; string VInst = !foldl(PseudoInst, AffixSubsts, Acc, AffixSubst, !subst(AffixSubst[0], AffixSubst[1], Acc)); } // This class describes information associated to the LMUL. class LMULInfo { bits<3> value = lmul; // This is encoded as the vlmul field of vtype. VReg vrclass = regclass; VReg wvrclass = wregclass; VReg f8vrclass = f8regclass; VReg f4vrclass = f4regclass; VReg f2vrclass = f2regclass; string MX = mx; int octuple = oct; } // Associate LMUL with tablegen records of register classes. def V_M1 : LMULInfo<0b000, 8, VR, VRM2, VR, VR, VR, "M1">; def V_M2 : LMULInfo<0b001, 16, VRM2, VRM4, VR, VR, VR, "M2">; def V_M4 : LMULInfo<0b010, 32, VRM4, VRM8, VRM2, VR, VR, "M4">; def V_M8 : LMULInfo<0b011, 64, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">; def V_MF8 : LMULInfo<0b101, 1, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">; def V_MF4 : LMULInfo<0b110, 2, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">; def V_MF2 : LMULInfo<0b111, 4, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">; // Used to iterate over all possible LMULs. defvar MxList = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // For floating point which don't need MF8. defvar MxListF = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Used for widening and narrowing instructions as it doesn't contain M8. defvar MxListW = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4]; // Used for widening reductions. It can contain M8 because wider operands are // scalar operands. defvar MxListWRed = MxList; // For floating point which don't need MF8. defvar MxListFW = [V_MF4, V_MF2, V_M1, V_M2, V_M4]; // For widening floating-point Reduction as it doesn't contain MF8. It can // contain M8 because wider operands are scalar operands. defvar MxListFWRed = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf2 defvar MxListVF2 = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf4 and vector crypto instructions defvar MxListVF4 = [V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf8 defvar MxListVF8 = [V_M1, V_M2, V_M4, V_M8]; class MxSet { list m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]); } class FPR_Info { RegisterClass fprclass = !cast("FPR" # sew); string FX = "FPR" # sew; int SEW = sew; list MxList = MxSet.m; list MxListFW = !if(!eq(sew, 64), [], !listremove(MxList, [V_M8])); } def SCALAR_F16 : FPR_Info<16>; def SCALAR_F32 : FPR_Info<32>; def SCALAR_F64 : FPR_Info<64>; // BF16 uses the same register class as F16. def SCALAR_BF16 : FPR_Info<16>; defvar FPList = [SCALAR_F16, SCALAR_F32, SCALAR_F64]; // Used for widening instructions. It excludes F64. defvar FPListW = [SCALAR_F16, SCALAR_F32]; // Used for widening bf16 instructions. defvar BFPListW = [SCALAR_BF16]; class NFSet { defvar lmul = !shl(1, m.value); list L = NFList.L; } class octuple_to_str { string ret = !cond(!eq(octuple, 1): "MF8", !eq(octuple, 2): "MF4", !eq(octuple, 4): "MF2", !eq(octuple, 8): "M1", !eq(octuple, 16): "M2", !eq(octuple, 32): "M4", !eq(octuple, 64): "M8"); } def VLOpFrag : PatFrag<(ops), (XLenVT (VLOp (XLenVT AVL:$vl)))>; // Output pattern for X0 used to represent VLMAX in the pseudo instructions. // We can't use X0 register becuase the AVL operands use GPRNoX0. // This must be kept in sync with RISCV::VLMaxSentinel. def VLMax : OutPatFrag<(ops), (XLenVT -1)>; def SelectFPImm : ComplexPattern; // List of EEW. defvar EEWList = [8, 16, 32, 64]; class SegRegClass { VReg RC = !cast("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX, !eq(m.value, V_MF4.value): V_M1.MX, !eq(m.value, V_MF2.value): V_M1.MX, true: m.MX)); } //===----------------------------------------------------------------------===// // Vector register and vector group type information. //===----------------------------------------------------------------------===// class VTypeInfo { ValueType Vector = Vec; ValueType Mask = Mas; int SEW = Sew; int Log2SEW = !logtwo(Sew); VReg RegClass = M.vrclass; LMULInfo LMul = M; ValueType Scalar = Scal; RegisterClass ScalarRegClass = ScalarReg; // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this type. For scalable vectors this is VLMax. OutPatFrag AVL = VLMax; string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X", !eq(Scal, f16) : "FPR16", !eq(Scal, bf16) : "FPR16", !eq(Scal, f32) : "FPR32", !eq(Scal, f64) : "FPR64"); } class GroupVTypeInfo : VTypeInfo { ValueType VectorM1 = VecM1; } defset list AllVectors = { defset list AllIntegerVectors = { defset list NoGroupIntegerVectors = { defset list FractionalGroupIntegerVectors = { def VI8MF8: VTypeInfo; def VI8MF4: VTypeInfo; def VI8MF2: VTypeInfo; def VI16MF4: VTypeInfo; def VI16MF2: VTypeInfo; def VI32MF2: VTypeInfo; } def VI8M1: VTypeInfo; def VI16M1: VTypeInfo; def VI32M1: VTypeInfo; def VI64M1: VTypeInfo; } defset list GroupIntegerVectors = { def VI8M2: GroupVTypeInfo; def VI8M4: GroupVTypeInfo; def VI8M8: GroupVTypeInfo; def VI16M2: GroupVTypeInfo; def VI16M4: GroupVTypeInfo; def VI16M8: GroupVTypeInfo; def VI32M2: GroupVTypeInfo; def VI32M4: GroupVTypeInfo; def VI32M8: GroupVTypeInfo; def VI64M2: GroupVTypeInfo; def VI64M4: GroupVTypeInfo; def VI64M8: GroupVTypeInfo; } } defset list AllFloatVectors = { defset list NoGroupFloatVectors = { defset list FractionalGroupFloatVectors = { def VF16MF4: VTypeInfo; def VF16MF2: VTypeInfo; def VF32MF2: VTypeInfo; } def VF16M1: VTypeInfo; def VF32M1: VTypeInfo; def VF64M1: VTypeInfo; } defset list GroupFloatVectors = { def VF16M2: GroupVTypeInfo; def VF16M4: GroupVTypeInfo; def VF16M8: GroupVTypeInfo; def VF32M2: GroupVTypeInfo; def VF32M4: GroupVTypeInfo; def VF32M8: GroupVTypeInfo; def VF64M2: GroupVTypeInfo; def VF64M4: GroupVTypeInfo; def VF64M8: GroupVTypeInfo; } } defset list AllBFloatVectors = { defset list NoGroupBFloatVectors = { defset list FractionalGroupBFloatVectors = { def VBF16MF4: VTypeInfo; def VBF16MF2: VTypeInfo; } def VBF16M1: VTypeInfo; } defset list GroupBFloatVectors = { def VBF16M2: GroupVTypeInfo; def VBF16M4: GroupVTypeInfo; def VBF16M8: GroupVTypeInfo; } } } // This functor is used to obtain the int vector type that has the same SEW and // multiplier as the input parameter type class GetIntVTypeInfo { // Equivalent integer vector type. Eg. // VI8M1 → VI8M1 (identity) // VF64M4 → VI64M4 VTypeInfo Vti = !cast(!subst("VBF", "VI", !subst("VF", "VI", !cast(vti)))); } class MTypeInfo { ValueType Mask = Mas; // {SEW, VLMul} values set a valid VType to deal with this mask type. // we assume SEW=1 and set corresponding LMUL. vsetvli insertion will // look for SEW=1 to optimize based on surrounding instructions. int SEW = 1; int Log2SEW = 0; LMULInfo LMul = M; string BX = Bx; // Appendix of mask operations. // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this mask type. For scalable masks this is // VLMax. OutPatFrag AVL = VLMax; } defset list AllMasks = { // vbool_t, = SEW/LMUL, we assume SEW=8 and corresponding LMUL. def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; } class VTypeInfoToWide { VTypeInfo Vti = vti; VTypeInfo Wti = wti; } class VTypeInfoToFraction { VTypeInfo Vti = vti; VTypeInfo Fti = fti; } defset list AllWidenableIntVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllWidenableFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllFractionableVF2IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllFractionableVF4IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllFractionableVF8IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllWidenableIntToFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllWidenableBFloatToFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } // This class holds the record of the RISCVVPseudoTable below. // This represents the information we need in codegen for each pseudo. // The definition should be consistent with `struct PseudoInfo` in // RISCVInstrInfo.h. class RISCVVPseudo { Pseudo Pseudo = !cast(NAME); // Used as a key. Instruction BaseInstr = !cast(PseudoToVInst.VInst); // SEW = 0 is used to denote that the Pseudo is not SEW specific (or unknown). bits<8> SEW = 0; bit NeedBeInPseudoTable = 1; } // The actual table. def RISCVVPseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let FilterClassField = "NeedBeInPseudoTable"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr" ]; let PrimaryKey = [ "Pseudo" ]; let PrimaryKeyName = "getPseudoInfo"; let PrimaryKeyEarlyOut = true; } def RISCVVInversePseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr", "VLMul", "SEW"]; let PrimaryKey = [ "BaseInstr", "VLMul", "SEW"]; let PrimaryKeyName = "getBaseInfo"; let PrimaryKeyEarlyOut = true; } def RISCVVIntrinsicsTable : GenericTable { let FilterClass = "RISCVVIntrinsic"; let CppTypeName = "RISCVVIntrinsicInfo"; let Fields = ["IntrinsicID", "ScalarOperand", "VLOperand"]; let PrimaryKey = ["IntrinsicID"]; let PrimaryKeyName = "getRISCVVIntrinsicInfo"; } // Describes the relation of a masked pseudo to the unmasked variants. // Note that all masked variants (in this table) have exactly one // unmasked variant. For all but compares, both the masked and // unmasked variant have a passthru and policy operand. For compares, // neither has a policy op, and only the masked version has a passthru. class RISCVMaskedPseudo MaskIdx, bit ActiveAffectsRes=false> { Pseudo MaskedPseudo = !cast(NAME); Pseudo UnmaskedPseudo = !cast(!subst("_MASK", "", NAME)); bits<4> MaskOpIdx = MaskIdx; bit ActiveElementsAffectResult = ActiveAffectsRes; } def RISCVMaskedPseudosTable : GenericTable { let FilterClass = "RISCVMaskedPseudo"; let CppTypeName = "RISCVMaskedPseudoInfo"; let Fields = ["MaskedPseudo", "UnmaskedPseudo", "MaskOpIdx", "ActiveElementsAffectResult"]; let PrimaryKey = ["MaskedPseudo"]; let PrimaryKeyName = "getMaskedPseudoInfo"; } class RISCVVLE S, bits<3> L> { bits<1> Masked = M; bits<1> Strided = Str; bits<1> FF = F; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast(NAME); } def lookupMaskedIntrinsicByUnmasked : SearchIndex { let Table = RISCVMaskedPseudosTable; let Key = ["UnmaskedPseudo"]; } def RISCVVLETable : GenericTable { let FilterClass = "RISCVVLE"; let CppTypeName = "VLEPseudo"; let Fields = ["Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Strided", "FF", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVLEPseudo"; } class RISCVVSE S, bits<3> L> { bits<1> Masked = M; bits<1> Strided = Str; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast(NAME); } def RISCVVSETable : GenericTable { let FilterClass = "RISCVVSE"; let CppTypeName = "VSEPseudo"; let Fields = ["Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Strided", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVSEPseudo"; } class RISCVVLX_VSX S, bits<3> L, bits<3> IL> { bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast(NAME); } class RISCVVLX S, bits<3> L, bits<3> IL> : RISCVVLX_VSX; class RISCVVSX S, bits<3> L, bits<3> IL> : RISCVVLX_VSX; class RISCVVLX_VSXTable : GenericTable { let CppTypeName = "VLX_VSXPseudo"; let Fields = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; } def RISCVVLXTable : RISCVVLX_VSXTable { let FilterClass = "RISCVVLX"; let PrimaryKeyName = "getVLXPseudo"; } def RISCVVSXTable : RISCVVLX_VSXTable { let FilterClass = "RISCVVSX"; let PrimaryKeyName = "getVSXPseudo"; } class RISCVVLSEG N, bit M, bit Str, bit F, bits<3> S, bits<3> L> { bits<4> NF = N; bits<1> Masked = M; bits<1> Strided = Str; bits<1> FF = F; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast(NAME); } def RISCVVLSEGTable : GenericTable { let FilterClass = "RISCVVLSEG"; let CppTypeName = "VLSEGPseudo"; let Fields = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVLSEGPseudo"; } class RISCVVLXSEG N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> { bits<4> NF = N; bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast(NAME); } def RISCVVLXSEGTable : GenericTable { let FilterClass = "RISCVVLXSEG"; let CppTypeName = "VLXSEGPseudo"; let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; let PrimaryKeyName = "getVLXSEGPseudo"; } class RISCVVSSEG N, bit M, bit Str, bits<3> S, bits<3> L> { bits<4> NF = N; bits<1> Masked = M; bits<1> Strided = Str; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast(NAME); } def RISCVVSSEGTable : GenericTable { let FilterClass = "RISCVVSSEG"; let CppTypeName = "VSSEGPseudo"; let Fields = ["NF", "Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Strided", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVSSEGPseudo"; } class RISCVVSXSEG N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> { bits<4> NF = N; bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast(NAME); } def RISCVVSXSEGTable : GenericTable { let FilterClass = "RISCVVSXSEG"; let CppTypeName = "VSXSEGPseudo"; let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; let PrimaryKeyName = "getVSXSEGPseudo"; } //===----------------------------------------------------------------------===// // Helpers to define the different pseudo instructions. //===----------------------------------------------------------------------===// // The destination vector register group for a masked vector instruction cannot // overlap the source mask register (v0), unless the destination vector register // is being written with a mask value (e.g., comparisons) or the scalar result // of a reduction. class GetVRegNoV0 { VReg R = !cond(!eq(VRegClass, VR) : VRNoV0, !eq(VRegClass, VRM2) : VRM2NoV0, !eq(VRegClass, VRM4) : VRM4NoV0, !eq(VRegClass, VRM8) : VRM8NoV0, !eq(VRegClass, VRN2M1) : VRN2M1NoV0, !eq(VRegClass, VRN2M2) : VRN2M2NoV0, !eq(VRegClass, VRN2M4) : VRN2M4NoV0, !eq(VRegClass, VRN3M1) : VRN3M1NoV0, !eq(VRegClass, VRN3M2) : VRN3M2NoV0, !eq(VRegClass, VRN4M1) : VRN4M1NoV0, !eq(VRegClass, VRN4M2) : VRN4M2NoV0, !eq(VRegClass, VRN5M1) : VRN5M1NoV0, !eq(VRegClass, VRN6M1) : VRN6M1NoV0, !eq(VRegClass, VRN7M1) : VRN7M1NoV0, !eq(VRegClass, VRN8M1) : VRN8M1NoV0, true : VRegClass); } class VPseudo : Pseudo, RISCVVPseudo { let BaseInstr = instr; let VLMul = m.value; let SEW = sew; } class GetVTypePredicates { list Predicates = !cond(!eq(vti.Scalar, f16) : [HasVInstructionsF16], !eq(vti.Scalar, bf16) : [HasVInstructionsBF16], !eq(vti.Scalar, f32) : [HasVInstructionsAnyF], !eq(vti.Scalar, f64) : [HasVInstructionsF64], !eq(vti.SEW, 64) : [HasVInstructionsI64], true : [HasVInstructions]); } class VPseudoUSLoadNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSLoadMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSLoadFFNoMask : Pseudo<(outs RetClass:$rd, GPR:$vl), (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSLoadFFMask : Pseudo<(outs GetVRegNoV0.R:$rd, GPR:$vl), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoSLoadNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoSLoadMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoILoadNoMask LMUL, bit Ordered, bit EarlyClobber, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLX { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $dest", "$rd = $dest"); let TargetOverlapConstraintType = TargetConstraintType; } class VPseudoILoadMask LMUL, bit Ordered, bit EarlyClobber, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLX { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $merge", "$rd = $merge"); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSStoreNoMask : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUSStoreMask : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSStoreNoMask : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSStoreMask : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoNullaryNoMask : Pseudo<(outs RegClass:$rd), (ins RegClass:$merge, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoNullaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints ="$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let UsesMaskPolicy = 1; let HasVecPolicyOp = 1; } // Nullary for pseudo instructions. They are expanded in // RISCVExpandPseudoInsts pass. class VPseudoNullaryPseudoM : Pseudo<(outs VR:$rd), (ins AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; // BaseInstr is not used in RISCVExpandPseudoInsts pass. // Just fill a corresponding real v-inst to pass tablegen check. let BaseInstr = !cast(BaseInst); // We exclude them from RISCVVPseudoTable. let NeedBeInPseudoTable = 0; } class VPseudoUnaryNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoUnaryNoMaskNoPolicy : Pseudo<(outs RetClass:$rd), (ins OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUnaryNoMaskRoundingMode : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUnaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, OpClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUnaryMaskRoundingMode : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, OpClass:$rs2, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUnaryMask_NoExcept : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, OpClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []> { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let usesCustomInserter = 1; } class VPseudoUnaryNoMask_FRM : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, ixlenimm:$frm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; } class VPseudoUnaryMask_FRM : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, OpClass:$rs2, VMaskOp:$vm, ixlenimm:$frm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; } class VPseudoUnaryNoMaskGPROut : Pseudo<(outs GPR:$rd), (ins VR:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUnaryMaskGPROut : Pseudo<(outs GPR:$rd), (ins VR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } // Mask can be V0~V31 class VPseudoUnaryAnyMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, VR:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryNoMask : Pseudo<(outs RetClass:$rd), (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryNoMaskPolicy : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoBinaryNoMaskRoundingMode : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = UsesVXRM_; } class VPseudoBinaryMaskPolicyRoundingMode : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; let UsesVXRM = UsesVXRM_; } // Special version of VPseudoBinaryNoMask where we pretend the first source is // tied to the destination. // This allows maskedoff and rs2 to be the same register. class VPseudoTiedBinaryNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs2"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let isConvertibleToThreeAddress = 1; let IsTiedPseudo = 1; } class VPseudoTiedBinaryNoMaskRoundingMode : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs2, Op2Class:$rs1, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs2"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let isConvertibleToThreeAddress = 1; let IsTiedPseudo = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoIStoreNoMask LMUL, bit Ordered>: Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVVSX { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoIStoreMask LMUL, bit Ordered>: Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVVSX { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryMaskPolicy : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoTernaryMaskPolicy : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoTernaryMaskPolicyRoundingMode : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } // Like VPseudoBinaryMaskPolicy, but output can be V0 and there is no policy. class VPseudoBinaryMOutMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let UsesMaskPolicy = 1; } // Special version of VPseudoBinaryMaskPolicy where we pretend the first source // is tied to the destination so we can workaround the earlyclobber constraint. // This allows maskedoff and rs2 to be the same register. class VPseudoTiedBinaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let IsTiedPseudo = 1; } class VPseudoTiedBinaryMaskRoundingMode : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let IsTiedPseudo = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoBinaryCarry : Pseudo<(outs RetClass:$rd), !if(CarryIn, (ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl, ixlenimm:$sew), (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew)), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let VLMul = MInfo.value; } class VPseudoTiedBinaryCarryIn : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 0; let VLMul = MInfo.value; } class VPseudoTernaryNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoTernaryNoMaskWithPolicy : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVecPolicyOp = 1; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoTernaryNoMaskWithPolicyRoundingMode : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVecPolicyOp = 1; let HasVLOp = 1; let HasSEWOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUSSegLoadNoMask NF> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSSegLoadMask NF> : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSSegLoadFFNoMask NF> : Pseudo<(outs RetClass:$rd, GPR:$vl), (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSSegLoadFFMask NF> : Pseudo<(outs GetVRegNoV0.R:$rd, GPR:$vl), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoSSegLoadNoMask NF> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $merge"; } class VPseudoSSegLoadMask NF> : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, GPR:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoISegLoadNoMask LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, GPRMem:$rs1, IdxClass:$offset, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLXSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoISegLoadMask LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPRMem:$rs1, IdxClass:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLXSEG { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSSegStoreNoMask NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUSSegStoreMask NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSSegStoreNoMask NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSSegStoreMask NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, GPR: $offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoISegStoreNoMask LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSXSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoISegStoreMask LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSXSEG { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } multiclass VPseudoUSLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoUSLoadNoMask, VLESched; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSLoadMask, RISCVMaskedPseudo, VLESched; } } } } multiclass VPseudoFFLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "FF_V_" # LInfo: VPseudoUSLoadFFNoMask, VLFSched; def "E" # eew # "FF_V_" # LInfo # "_MASK": VPseudoUSLoadFFMask, RISCVMaskedPseudo, VLFSched; } } } } multiclass VPseudoLoadMask { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; defvar WriteVLDM_MX = !cast("WriteVLDM_" # mx); let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSLoadNoMask, Sched<[WriteVLDM_MX, ReadVLDX]>; } } } multiclass VPseudoSLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoSLoadNoMask, VLSSched; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSLoadMask, RISCVMaskedPseudo, VLSSched; } } } } multiclass VPseudoILoad { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str.ret; defvar idxEMUL = !cast("V_" # IdxLInfo); defvar Vreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; defvar HasConstraint = !ne(dataEEW, idxEEW); defvar TypeConstraints = !if(!eq(dataEEW, idxEEW), 1, !if(!gt(dataEEW, idxEEW), !if(!ge(idxEMULOctuple, 8), 3, 1), 2)); let VLMul = dataEMUL.value in { def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoILoadNoMask, VLXSched; def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoILoadMask, RISCVMaskedPseudo, VLXSched; } } } } } } multiclass VPseudoUSStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoUSStoreNoMask, VSESched; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask, VSESched; } } } } multiclass VPseudoStoreMask { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; defvar WriteVSTM_MX = !cast("WriteVSTM_" # mx); let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSStoreNoMask, Sched<[WriteVSTM_MX, ReadVSTX]>; } } } multiclass VPseudoSStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoSStoreNoMask, VSSSched; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSStoreMask, VSSSched; } } } } multiclass VPseudoIStore { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str.ret; defvar idxEMUL = !cast("V_" # IdxLInfo); defvar Vreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoIStoreNoMask, VSXSched; def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoIStoreMask, VSXSched; } } } } } } multiclass VPseudoVPOP_M { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMaskGPROut, SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>; def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut, SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>; } } } multiclass VPseudoV1ST_M { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" #mti.BX : VPseudoUnaryNoMaskGPROut, SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>; def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut, SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>; } } } multiclass VPseudoVSFS_M { defvar constraint = "@earlyclobber $rd"; foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMaskNoPolicy, SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx, forceMergeOpRead=true>; let ForceTailAgnostic = true in def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask, SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVID_V { foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoNullaryNoMask, SchedNullary<"WriteVIdxV", mx, forceMergeOpRead=true>; def "_V_" # mx # "_MASK" : VPseudoNullaryMask, RISCVMaskedPseudo, SchedNullary<"WriteVIdxV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoNullaryPseudoM { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoNullaryPseudoM, SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mti.LMul.MX>; } } } multiclass VPseudoVIOTA_M { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVIotaV", "ReadVIotaV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVIotaV", "ReadVIotaV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVCPR_V { foreach m = MxList in { defvar mx = m.MX; defvar sews = SchedSEWSet.val; let VLMul = m.value in foreach e = sews in { defvar suffix = "_" # m.MX # "_E" # e; let SEW = e in def _VM # suffix : VPseudoUnaryAnyMask, SchedBinary<"WriteVCompressV", "ReadVCompressV", "ReadVCompressV", mx, e>; } } } multiclass VPseudoBinary { let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoBinaryNoMaskPolicy; def suffix # "_MASK" : VPseudoBinaryMaskPolicy, RISCVMaskedPseudo; } } multiclass VPseudoBinaryRoundingMode { let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoBinaryNoMaskRoundingMode; def suffix # "_MASK" : VPseudoBinaryMaskPolicyRoundingMode, RISCVMaskedPseudo; } } multiclass VPseudoBinaryM { let VLMul = MInfo.value, isCommutable = Commutable in { def "_" # MInfo.MX : VPseudoBinaryNoMask; let ForceTailAgnostic = true in def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMOutMask, RISCVMaskedPseudo; } } multiclass VPseudoBinaryEmul { let VLMul = lmul.value, SEW=sew in { defvar suffix = !if(sew, "_" # lmul.MX # "_E" # sew, "_" # lmul.MX); def suffix # "_" # emul.MX : VPseudoBinaryNoMaskPolicy; def suffix # "_" # emul.MX # "_MASK" : VPseudoBinaryMaskPolicy, RISCVMaskedPseudo; } } multiclass VPseudoTiedBinary { let VLMul = MInfo.value in { def "_" # MInfo.MX # "_TIED": VPseudoTiedBinaryNoMask; def "_" # MInfo.MX # "_MASK_TIED" : VPseudoTiedBinaryMask, RISCVMaskedPseudo; } } multiclass VPseudoTiedBinaryRoundingMode { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let VLMul = MInfo.value in { def suffix # "_TIED": VPseudoTiedBinaryNoMaskRoundingMode; def suffix # "_MASK_TIED" : VPseudoTiedBinaryMaskRoundingMode, RISCVMaskedPseudo; } } multiclass VPseudoBinaryV_VV { defm _VV : VPseudoBinary; } multiclass VPseudoBinaryV_VV_RM { defm _VV : VPseudoBinaryRoundingMode; } multiclass VPseudoBinaryFV_VV_RM { defm _VV : VPseudoBinaryRoundingMode; } multiclass VPseudoVGTR_EI16_VV { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; foreach sew = EEWList in { defvar dataEMULOctuple = m.octuple; // emul = lmul * 16 / sew defvar idxEMULOctuple = !srl(!mul(dataEMULOctuple, 16), !logtwo(sew)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar emulMX = octuple_to_str.ret; defvar emul = !cast("V_" # emulMX); defvar sews = SchedSEWSet.val; foreach e = sews in { defm _VV : VPseudoBinaryEmul, SchedBinary<"WriteVRGatherEI16VV", "ReadVRGatherEI16VV_data", "ReadVRGatherEI16VV_index", mx, e, forceMergeOpRead=true>; } } } } } multiclass VPseudoBinaryV_VX { defm "_VX" : VPseudoBinary; } multiclass VPseudoBinaryV_VX_RM { defm "_VX" : VPseudoBinaryRoundingMode; } multiclass VPseudoVSLD1_VX { foreach m = MxList in { defm "_VX" : VPseudoBinary, SchedBinary<"WriteVISlide1X", "ReadVISlideV", "ReadVISlideX", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoBinaryV_VF { defm "_V" # f.FX : VPseudoBinary; } multiclass VPseudoBinaryV_VF_RM { defm "_V" # f.FX : VPseudoBinaryRoundingMode; } multiclass VPseudoVSLD1_VF { foreach f = FPList in { foreach m = f.MxList in { defm "_V" #f.FX : VPseudoBinary, SchedBinary<"WriteVFSlide1F", "ReadVFSlideV", "ReadVFSlideF", m.MX, forceMergeOpRead=true>; } } } multiclass VPseudoBinaryV_VI { defm _VI : VPseudoBinary; } multiclass VPseudoBinaryV_VI_RM { defm _VI : VPseudoBinaryRoundingMode; } multiclass VPseudoVALU_MM { foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value, isCommutable = Commutable in { def "_MM_" # mx : VPseudoBinaryNoMask, SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mx>; } } } // We use earlyclobber here due to // * The destination EEW is smaller than the source EEW and the overlap is // in the lowest-numbered part of the source register group is legal. // Otherwise, it is illegal. // * The destination EEW is greater than the source EEW, the source EMUL is // at least 1, and the overlap is in the highest-numbered part of the // destination register group is legal. Otherwise, it is illegal. multiclass VPseudoBinaryW_VV { defm _VV : VPseudoBinary; } multiclass VPseudoBinaryW_VV_RM { defm _VV : VPseudoBinaryRoundingMode; } multiclass VPseudoBinaryW_VX { defm "_VX" : VPseudoBinary; } multiclass VPseudoBinaryW_VI { defm "_VI" : VPseudoBinary; } multiclass VPseudoBinaryW_VF_RM { defm "_V" # f.FX : VPseudoBinaryRoundingMode; } multiclass VPseudoBinaryW_WV { defm _WV : VPseudoBinary; defm _WV : VPseudoTiedBinary; } multiclass VPseudoBinaryW_WV_RM { defm _WV : VPseudoBinaryRoundingMode; defm _WV : VPseudoTiedBinaryRoundingMode; } multiclass VPseudoBinaryW_WX { defm "_WX" : VPseudoBinary; } multiclass VPseudoBinaryW_WF_RM { defm "_W" # f.FX : VPseudoBinaryRoundingMode; } // Narrowing instructions like vnsrl/vnsra/vnclip(u) don't need @earlyclobber // if the source and destination have an LMUL<=1. This matches this overlap // exception from the spec. // "The destination EEW is smaller than the source EEW and the overlap is in the // lowest-numbered part of the source register group." multiclass VPseudoBinaryV_WV { defm _WV : VPseudoBinary; } multiclass VPseudoBinaryV_WV_RM { defm _WV : VPseudoBinaryRoundingMode; } multiclass VPseudoBinaryV_WX { defm _WX : VPseudoBinary; } multiclass VPseudoBinaryV_WX_RM { defm _WX : VPseudoBinaryRoundingMode; } multiclass VPseudoBinaryV_WI { defm _WI : VPseudoBinary; } multiclass VPseudoBinaryV_WI_RM { defm _WI : VPseudoBinaryRoundingMode; } // For vadc and vsbc, the instruction encoding is reserved if the destination // vector register is v0. // For vadc and vsbc, CarryIn == 1 and CarryOut == 0 multiclass VPseudoBinaryV_VM { let isCommutable = Commutable in def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry.R, m.vrclass)), m.vrclass, m.vrclass, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_VM { let isCommutable = Commutable in def "_VVM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, m.vrclass, m>; } multiclass VPseudoBinaryV_XM { def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry.R, m.vrclass)), m.vrclass, GPR, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_XM { def "_VXM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, GPR, m>; } multiclass VPseudoVMRG_FM { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; def "_V" # f.FX # "M_" # mx : VPseudoTiedBinaryCarryIn.R, m.vrclass, f.fprclass, m>, SchedBinary<"WriteVFMergeV", "ReadVFMergeV", "ReadVFMergeF", mx, forceMasked=1, forceMergeOpRead=true>; } } } multiclass VPseudoBinaryV_IM { def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry.R, m.vrclass)), m.vrclass, simm5, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_IM { def "_VIM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, simm5, m>; } multiclass VPseudoUnaryVMV_V_X_I { foreach m = MxList in { let VLMul = m.value in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVIMovV", "ReadVIMovV", mx, forceMergeOpRead=true>; def "_X_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVIMovX", "ReadVIMovX", mx, forceMergeOpRead=true>; def "_I_" # mx : VPseudoUnaryNoMask, SchedNullary<"WriteVIMovI", mx, forceMergeOpRead=true>; } } } } multiclass VPseudoVMV_F { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_" # f.FX # "_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVFMovV", "ReadVFMovF", mx, forceMergeOpRead=true>; } } } } multiclass VPseudoVCLS_V { foreach m = MxListF in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVFClassV", "ReadVFClassV", mx, forceMergeOpRead=true>; def "_V_" # mx # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVFClassV", "ReadVFClassV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVSQR_V_RM { foreach m = MxListF in { defvar mx = m.MX; defvar sews = SchedSEWSet.val; let VLMul = m.value in foreach e = sews in { defvar suffix = "_" # mx # "_E" # e; let SEW = e in { def "_V" # suffix : VPseudoUnaryNoMaskRoundingMode, SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e, forceMergeOpRead=true>; def "_V" #suffix # "_MASK" : VPseudoUnaryMaskRoundingMode, RISCVMaskedPseudo, SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e, forceMergeOpRead=true>; } } } } multiclass VPseudoVRCP_V { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { let VLMul = m.value in { def "_V_" # mx # "_E" # e : VPseudoUnaryNoMask, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; def "_V_" # mx # "_E" # e # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; } } } } multiclass VPseudoVRCP_V_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { let VLMul = m.value in { def "_V_" # mx # "_E" # e : VPseudoUnaryNoMaskRoundingMode, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; def "_V_" # mx # "_E" # e # "_MASK" : VPseudoUnaryMaskRoundingMode, RISCVMaskedPseudo, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; } } } } multiclass PseudoVEXT_VF2 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF2 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF4"), !eq(mx, "MF2"), !eq(mx, "M1")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } multiclass PseudoVEXT_VF4 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF4 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF2"), !eq(mx, "M1"), !eq(mx, "M2")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } multiclass PseudoVEXT_VF8 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF8 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "M1"), !eq(mx, "M2"), !eq(mx, "M4")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } // The destination EEW is 1 since "For the purposes of register group overlap // constraints, mask elements have EEW=1." // The source EEW is 8, 16, 32, or 64. // When the destination EEW is different from source EEW, we need to use // @earlyclobber to avoid the overlap between destination and source registers. // We don't need @earlyclobber for LMUL<=1 since that matches this overlap // exception from the spec // "The destination EEW is smaller than the source EEW and the overlap is in the // lowest-numbered part of the source register group". // With LMUL<=1 the source and dest occupy a single register so any overlap // is in the lowest-numbered part. multiclass VPseudoBinaryM_VV { defm _VV : VPseudoBinaryM; } multiclass VPseudoBinaryM_VX { defm "_VX" : VPseudoBinaryM; } multiclass VPseudoBinaryM_VF { defm "_V" # f.FX : VPseudoBinaryM; } multiclass VPseudoBinaryM_VI { defm _VI : VPseudoBinaryM; } multiclass VPseudoVGTR_VV_VX_VI { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVRGatherVX", "ReadVRGatherVX_data", "ReadVRGatherVX_index", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI, SchedUnary<"WriteVRGatherVI", "ReadVRGatherVI_data", mx, forceMergeOpRead=true>; defvar sews = SchedSEWSet.val; foreach e = sews in { defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVRGatherVV", "ReadVRGatherVV_data", "ReadVRGatherVV_index", mx, e, forceMergeOpRead=true>; } } } multiclass VPseudoVSALU_VV_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI, SchedUnary<"WriteVSALUI", "ReadVSALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSHT_VV_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVShiftV", "ReadVShiftV", "ReadVShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVShiftX", "ReadVShiftV", "ReadVShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI, SchedUnary<"WriteVShiftI", "ReadVShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSSHT_VV_VX_VI_RM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM, SchedBinary<"WriteVSShiftV", "ReadVSShiftV", "ReadVSShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM, SchedBinary<"WriteVSShiftX", "ReadVSShiftV", "ReadVSShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI_RM, SchedUnary<"WriteVSShiftI", "ReadVSShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVALU_VV_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI, SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSALU_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSMUL_VV_VX_RM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM, SchedBinary<"WriteVSMulV", "ReadVSMulV", "ReadVSMulV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM, SchedBinary<"WriteVSMulX", "ReadVSMulV", "ReadVSMulX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVAALU_VV_VX_RM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM, SchedBinary<"WriteVAALUV", "ReadVAALUV", "ReadVAALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM, SchedBinary<"WriteVAALUX", "ReadVAALUV", "ReadVAALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVMINMAX_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVIMinMaxV", "ReadVIMinMaxV", "ReadVIMinMaxV", mx>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIMinMaxX", "ReadVIMinMaxV", "ReadVIMinMaxX", mx>; } } multiclass VPseudoVMUL_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVIMulV", "ReadVIMulV", "ReadVIMulV", mx>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIMulX", "ReadVIMulV", "ReadVIMulX", mx>; } } multiclass VPseudoVDIV_VV_VX { foreach m = MxList in { defvar mx = m.MX; defvar sews = SchedSEWSet.val; foreach e = sews in { defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVIDivV", "ReadVIDivV", "ReadVIDivV", mx, e>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIDivX", "ReadVIDivV", "ReadVIDivX", mx, e>; } } } multiclass VPseudoVFMUL_VV_VF_RM { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryFV_VV_RM, SchedBinary<"WriteVFMulV", "ReadVFMulV", "ReadVFMulV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM, SchedBinary<"WriteVFMulF", "ReadVFMulV", "ReadVFMulF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFDIV_VV_VF_RM { foreach m = MxListF in { defvar mx = m.MX; defvar sews = SchedSEWSet.val; foreach e = sews in { defm "" : VPseudoBinaryFV_VV_RM, SchedBinary<"WriteVFDivV", "ReadVFDivV", "ReadVFDivV", mx, e, forceMergeOpRead=true>; } } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM, SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFRDIV_VF_RM { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM, SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VV_VX { foreach m = MxList in { defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", m.MX, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVSGNJ_VV_VF { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVFSgnjV", "ReadVFSgnjV", "ReadVFSgnjV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF, SchedBinary<"WriteVFSgnjF", "ReadVFSgnjV", "ReadVFSgnjF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVMAX_VV_VF { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryV_VV, SchedBinary<"WriteVFMinMaxV", "ReadVFMinMaxV", "ReadVFMinMaxV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF, SchedBinary<"WriteVFMinMaxF", "ReadVFMinMaxV", "ReadVFMinMaxF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VV_VF_RM { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryFV_VV_RM, SchedBinary<"WriteVFALUV", "ReadVFALUV", "ReadVFALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM, SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VF_RM { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM, SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VX, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI, SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWALU_VV_VX { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_VV, SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_VX, SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWMUL_VV_VX { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_VV, SchedBinary<"WriteVIWMulV", "ReadVIWMulV", "ReadVIWMulV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_VX, SchedBinary<"WriteVIWMulX", "ReadVIWMulV", "ReadVIWMulX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWMUL_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryW_VV_RM, SchedBinary<"WriteVFWMulV", "ReadVFWMulV", "ReadVFWMulV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_VF_RM, SchedBinary<"WriteVFWMulF", "ReadVFWMulV", "ReadVFWMulF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVWALU_WV_WX { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_WV, SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_WX, SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVFWALU_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryW_VV_RM, SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_VF_RM, SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFWALU_WV_WF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm "" : VPseudoBinaryW_WV_RM, SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_WF_RM, SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVMRG_VM_XM_IM { foreach m = MxList in { defvar mx = m.MX; def "_VVM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, m.vrclass, m>, SchedBinary<"WriteVIMergeV", "ReadVIMergeV", "ReadVIMergeV", mx, forceMergeOpRead=true>; def "_VXM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, GPR, m>, SchedBinary<"WriteVIMergeX", "ReadVIMergeV", "ReadVIMergeX", mx, forceMergeOpRead=true>; def "_VIM" # "_" # m.MX: VPseudoTiedBinaryCarryIn.R, m.vrclass, simm5, m>, SchedUnary<"WriteVIMergeI", "ReadVIMergeV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALU_VM_XM_IM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTiedBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_IM, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALU_VM_XM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTiedBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_VM_XM_IM { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_IM, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_VM_XM { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_V_X_I { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_IM, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_V_X { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVNCLP_WV_WX_WI_RM { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryV_WV_RM, SchedBinary<"WriteVNClipV", "ReadVNClipV", "ReadVNClipV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WX_RM, SchedBinary<"WriteVNClipX", "ReadVNClipV", "ReadVNClipX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WI_RM, SchedUnary<"WriteVNClipI", "ReadVNClipV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVNSHT_WV_WX_WI { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryV_WV, SchedBinary<"WriteVNShiftV", "ReadVNShiftV", "ReadVNShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WX, SchedBinary<"WriteVNShiftX", "ReadVNShiftV", "ReadVNShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WI, SchedUnary<"WriteVNShiftI", "ReadVNShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoTernaryWithTailPolicy { let VLMul = MInfo.value, SEW=sew in { defvar mx = MInfo.MX; def "_" # mx # "_E" # sew : VPseudoTernaryNoMaskWithPolicy; def "_" # mx # "_E" # sew # "_MASK" : VPseudoTernaryMaskPolicy, RISCVMaskedPseudo; } } multiclass VPseudoTernaryWithTailPolicyRoundingMode { let VLMul = MInfo.value, SEW=sew in { defvar mx = MInfo.MX; def "_" # mx # "_E" # sew : VPseudoTernaryNoMaskWithPolicyRoundingMode; def "_" # mx # "_E" # sew # "_MASK" : VPseudoTernaryMaskPolicyRoundingMode, RISCVMaskedPseudo; } } multiclass VPseudoTernaryWithPolicy { let VLMul = MInfo.value in { let isCommutable = Commutable in def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy, RISCVMaskedPseudo; } } multiclass VPseudoTernaryWithPolicyRoundingMode { let VLMul = MInfo.value in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let isCommutable = Commutable in def suffix : VPseudoTernaryNoMaskWithPolicyRoundingMode; def suffix # "_MASK" : VPseudoBinaryMaskPolicyRoundingMode, RISCVMaskedPseudo; } } multiclass VPseudoTernaryV_VV_AAXA { defm _VV : VPseudoTernaryWithPolicy; } multiclass VPseudoTernaryV_VV_AAXA_RM { defm _VV : VPseudoTernaryWithPolicyRoundingMode; } multiclass VPseudoTernaryV_VX_AAXA { defm "_VX" : VPseudoTernaryWithPolicy; } multiclass VPseudoTernaryV_VF_AAXA_RM { defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode; } multiclass VPseudoTernaryW_VV { defvar constraint = "@earlyclobber $rd"; defm _VV : VPseudoTernaryWithPolicy; } multiclass VPseudoTernaryW_VV_RM { defvar constraint = "@earlyclobber $rd"; defm _VV : VPseudoTernaryWithPolicyRoundingMode; } multiclass VPseudoTernaryW_VX { defvar constraint = "@earlyclobber $rd"; defm "_VX" : VPseudoTernaryWithPolicy; } multiclass VPseudoTernaryW_VF_RM { defvar constraint = "@earlyclobber $rd"; defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode; } multiclass VPseudoVSLDVWithPolicy { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy, RISCVMaskedPseudo; } } multiclass VPseudoVSLDV_VX { defm _VX : VPseudoVSLDVWithPolicy; } multiclass VPseudoVSLDV_VI { defm _VI : VPseudoVSLDVWithPolicy; } multiclass VPseudoVMAC_VV_VX_AAXA { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTernaryV_VV_AAXA, SchedTernary<"WriteVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV", mx>; defm "" : VPseudoTernaryV_VX_AAXA, SchedTernary<"WriteVIMulAddX", "ReadVIMulAddV", "ReadVIMulAddX", "ReadVIMulAddV", mx>; } } multiclass VPseudoVMAC_VV_VF_AAXA_RM { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm "" : VPseudoTernaryV_VV_AAXA_RM, SchedTernary<"WriteVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV", m.MX, e>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoTernaryV_VF_AAXA_RM, SchedTernary<"WriteVFMulAddF", "ReadVFMulAddV", "ReadVFMulAddF", "ReadVFMulAddV", m.MX, f.SEW>; } } } multiclass VPseudoVSLD_VX_VI { defvar WriteSlideX = !if(slidesUp, "WriteVSlideUpX", "WriteVSlideDownX"); foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoVSLDV_VX, SchedTernary; defm "" : VPseudoVSLDV_VI, SchedBinary<"WriteVSlideI", "ReadVISlideV", "ReadVISlideV", mx>; } } multiclass VPseudoVWMAC_VV_VX { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoTernaryW_VV, SchedTernary<"WriteVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV", mx>; defm "" : VPseudoTernaryW_VX, SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX", "ReadVIWMulAddV", mx>; } } multiclass VPseudoVWMAC_VX { foreach m = MxListW in { defm "" : VPseudoTernaryW_VX, SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX", "ReadVIWMulAddV", m.MX>; } } multiclass VPseudoVWMAC_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm "" : VPseudoTernaryW_VV_RM, SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", m.MX, e>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoTernaryW_VF_RM, SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF", "ReadVFWMulAddV", m.MX, f.SEW>; } } } multiclass VPseudoVWMAC_VV_VF_BF_RM { foreach m = MxListFW in { defvar mx = m.MX; foreach e = SchedSEWSet.val in defm "" : VPseudoTernaryW_VV_RM, SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", mx, e>; } foreach f = BFPListW in { foreach m = f.MxListFW in { defvar mx = m.MX; defm "" : VPseudoTernaryW_VF_RM, SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF", "ReadVFWMulAddV", mx, f.SEW>; } } } multiclass VPseudoVCMPM_VV_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VV, SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>; defm "" : VPseudoBinaryM_VX, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; defm "" : VPseudoBinaryM_VI, SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>; } } multiclass VPseudoVCMPM_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VV, SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>; defm "" : VPseudoBinaryM_VX, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; } } multiclass VPseudoVCMPM_VV_VF { foreach m = MxListF in { defm "" : VPseudoBinaryM_VV, SchedBinary<"WriteVFCmpV", "ReadVFCmpV", "ReadVFCmpV", m.MX>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryM_VF, SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>; } } } multiclass VPseudoVCMPM_VF { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryM_VF, SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>; } } } multiclass VPseudoVCMPM_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VX, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; defm "" : VPseudoBinaryM_VI, SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>; } } multiclass VPseudoVRED_VS { foreach m = MxList in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicy, SchedReduction<"WriteVIRedV_From", "ReadVIRedV", mx, e>; } } } multiclass VPseudoVREDMINMAX_VS { foreach m = MxList in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicy, SchedReduction<"WriteVIRedMinMaxV_From", "ReadVIRedV", mx, e>; } } } multiclass VPseudoVWRED_VS { foreach m = MxListWRed in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicy, SchedReduction<"WriteVIWRedV_From", "ReadVIWRedV", mx, e>; } } } multiclass VPseudoVFRED_VS_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode, SchedReduction<"WriteVFRedV_From", "ReadVFRedV", mx, e>; } } } multiclass VPseudoVFREDMINMAX_VS { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicy, SchedReduction<"WriteVFRedMinMaxV_From", "ReadVFRedV", mx, e>; } } } multiclass VPseudoVFREDO_VS_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode, SchedReduction<"WriteVFRedOV_From", "ReadVFRedOV", mx, e>; } } } multiclass VPseudoVFWRED_VS_RM { foreach m = MxListFWRed in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode, SchedReduction<"WriteVFWRedV_From", "ReadVFWRedV", mx, e>; } } } multiclass VPseudoVFWREDO_VS_RM { foreach m = MxListFWRed in { defvar mx = m.MX; foreach e = SchedSEWSet.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode, SchedReduction<"WriteVFWRedOV_From", "ReadVFWRedV", mx, e>; } } } multiclass VPseudoConversion { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let VLMul = MInfo.value, SEW=sew in { def suffix : VPseudoUnaryNoMask; def suffix # "_MASK" : VPseudoUnaryMask, RISCVMaskedPseudo; } } multiclass VPseudoConversionRoundingMode { let VLMul = MInfo.value, SEW=sew in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoUnaryNoMaskRoundingMode; def suffix # "_MASK" : VPseudoUnaryMaskRoundingMode, RISCVMaskedPseudo; } } multiclass VPseudoConversionRM { let VLMul = MInfo.value, SEW=sew in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoUnaryNoMask_FRM; def suffix # "_MASK" : VPseudoUnaryMask_FRM, RISCVMaskedPseudo; } } multiclass VPseudoConversionNoExcept { let VLMul = MInfo.value in { def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMask_NoExcept; } } multiclass VPseudoVCVTI_V { foreach m = MxListF in { defm _V : VPseudoConversion, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTI_V_RM { foreach m = MxListF in { defm _V : VPseudoConversionRoundingMode, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTI_RM_V { foreach m = MxListF in { defm _V : VPseudoConversionRM, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVFROUND_NOEXCEPT_V { foreach m = MxListF in { defm _V : VPseudoConversionNoExcept, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTF_V_RM { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm _V : VPseudoConversionRoundingMode, SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVCVTF_RM_V { foreach m = MxListF in { foreach e = SchedSEWSet.val in defm _V : VPseudoConversionRM, SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversion, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_V_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversionRoundingMode, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_RM_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversionRM, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTF_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { foreach e = SchedSEWSet.val in defm _V : VPseudoConversion, SchedUnary<"WriteVFWCvtIToFV", "ReadVFWCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTD_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm _V : VPseudoConversion, SchedUnary<"WriteVFWCvtFToFV", "ReadVFWCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversion, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversionRoundingMode, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_RM_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversionRM, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTF_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm _W : VPseudoConversionRoundingMode, SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTF_RM_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm _W : VPseudoConversionRM, SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTD_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm _W : VPseudoConversion, SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTD_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet.val in defm _W : VPseudoConversionRoundingMode, SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoUSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegLoadNoMask, VLSEGSched; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegLoadMask, VLSEGSched; } } } } } multiclass VPseudoUSSegLoadFF { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "FF_V_" # LInfo : VPseudoUSSegLoadFFNoMask, VLSEGFFSched; def nf # "E" # eew # "FF_V_" # LInfo # "_MASK" : VPseudoUSSegLoadFFMask, VLSEGFFSched; } } } } } multiclass VPseudoSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask, VLSSEGSched; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask, VLSSEGSched; } } } } } multiclass VPseudoISegLoad { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str.ret; defvar idxEMUL = !cast("V_" # IdxLInfo); defvar DataVreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { foreach nf = NFSet.L in { defvar Vreg = SegRegClass.RC; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoISegLoadNoMask, VLXSEGSched; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoISegLoadMask, VLXSEGSched; } } } } } } } multiclass VPseudoUSSegStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask, VSSEGSched; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask, VSSEGSched; } } } } } multiclass VPseudoSSegStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask, VSSSEGSched; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask, VSSSEGSched; } } } } } multiclass VPseudoISegStore { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str.ret; defvar idxEMUL = !cast("V_" # IdxLInfo); defvar DataVreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { foreach nf = NFSet.L in { defvar Vreg = SegRegClass.RC; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoISegStoreNoMask, VSXSEGSched; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoISegStoreMask, VSXSEGSched; } } } } } } } //===----------------------------------------------------------------------===// // Helpers to define the intrinsic patterns. //===----------------------------------------------------------------------===// class VPatUnaryNoMask : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), VLOpFrag)), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryNoMaskRoundingMode : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryNoMaskRTZ : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT 0b001), VLOpFrag)), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatUnaryMaskRoundingMode : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatUnaryMaskRTZ : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT 0b001), VLOpFrag, (XLenVT timm:$policy))), (!cast( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatMaskUnaryNoMask : Pat<(mti.Mask (!cast(intrinsic_name) (mti.Mask VR:$rs2), VLOpFrag)), (!cast(inst#"_M_"#mti.BX) (mti.Mask VR:$rs2), GPR:$vl, mti.Log2SEW)>; class VPatMaskUnaryMask : Pat<(mti.Mask (!cast(intrinsic_name#"_mask") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), VLOpFrag)), (!cast(inst#"_M_"#mti.BX#"_MASK") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), GPR:$vl, mti.Log2SEW, TU_MU)>; class VPatUnaryAnyMask : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), GPR:$vl, log2sew)>; class VPatBinaryM : Pat<(result_type (!cast(intrinsic_name) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; class VPatBinaryNoMaskTU : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew, TU_MU)>; class VPatBinaryNoMaskTURoundingMode : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast(inst) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TU_MU)>; // Same as VPatBinaryM but source operands are swapped. class VPatBinaryMSwapped : Pat<(result_type (!cast(intrinsic_name) (op2_type op2_kind:$rs2), (op1_type op1_reg_class:$rs1), VLOpFrag)), (!cast(inst) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; class VPatBinaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatBinaryMaskPolicy : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatBinaryMaskPolicyRoundingMode : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, sew, (XLenVT timm:$policy))>; // Same as VPatBinaryMask but source operands are swapped. class VPatBinaryMaskSwapped : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (op1_type op1_reg_class:$rs1), (mask_type V0), VLOpFrag)), (!cast(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatTiedBinaryNoMask : Pat<(result_type (!cast(intrinsic_name) (result_type (undef)), (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst#"_TIED") (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew, TAIL_AGNOSTIC)>; class VPatTiedBinaryNoMaskRoundingMode : Pat<(result_type (!cast(intrinsic_name) (result_type (undef)), (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast(inst#"_TIED") (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TAIL_AGNOSTIC)>; class VPatTiedBinaryNoMaskTU : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst#"_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), GPR:$vl, sew, TU_MU)>; class VPatTiedBinaryNoMaskTURoundingMode : Pat<(result_type (!cast(intrinsic_name) (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast(inst#"_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TU_MU)>; class VPatTiedBinaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_MASK_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTiedBinaryMaskRoundingMode : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_MASK_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryNoMaskTU : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, GPR:$vl, log2sew, TU_MU)>; class VPatTernaryNoMaskTURoundingMode : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; class VPatTernaryNoMaskWithPolicy : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_"#kind#"_"#vlmul.MX) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryNoMaskWithPolicyRoundingMode : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast(!if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatTernaryMaskPolicy : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast(inst#"_"#kind#"_"#vlmul.MX # "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryMaskPolicyRoundingMode : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast(!if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew) # "_MASK", inst#"_"#kind#"_"#vlmul.MX # "_MASK")) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatTernaryMaskTU : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), GPR:$vl, log2sew, TU_MU)>; class VPatTernaryMaskTURoundingMode : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; multiclass VPatUnaryS_M { foreach mti = AllMasks in { def : Pat<(XLenVT (!cast(intrinsic_name) (mti.Mask VR:$rs1), VLOpFrag)), (!cast(inst#"_M_"#mti.BX) $rs1, GPR:$vl, mti.Log2SEW)>; def : Pat<(XLenVT (!cast(intrinsic_name # "_mask") (mti.Mask VR:$rs1), (mti.Mask V0), VLOpFrag)), (!cast(inst#"_M_"#mti.BX#"_MASK") $rs1, (mti.Mask V0), GPR:$vl, mti.Log2SEW)>; } } multiclass VPatUnaryV_V_AnyMask vtilist> { foreach vti = vtilist in { let Predicates = GetVTypePredicates.Predicates in def : VPatUnaryAnyMask; } } multiclass VPatUnaryM_M { foreach mti = AllMasks in { def : VPatMaskUnaryNoMask; def : VPatMaskUnaryMask; } } multiclass VPatUnaryV_M { foreach vti = AllIntegerVectors in { let Predicates = GetVTypePredicates.Predicates in { def : VPatUnaryNoMask; def : VPatUnaryMask; } } } multiclass VPatUnaryV_VF fractionList> { foreach vtiTofti = fractionList in { defvar vti = vtiTofti.Vti; defvar fti = vtiTofti.Fti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in { def : VPatUnaryNoMask; def : VPatUnaryMask; } } } multiclass VPatUnaryV_V vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { let Predicates = GetVTypePredicates.Predicates in { def : VPatUnaryNoMask; def : VPatUnaryMask; } } } multiclass VPatUnaryV_V_RM vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { let Predicates = GetVTypePredicates.Predicates in { def : VPatUnaryNoMaskRoundingMode; def : VPatUnaryMaskRoundingMode; } } } multiclass VPatNullaryV { foreach vti = AllIntegerVectors in { let Predicates = GetVTypePredicates.Predicates in { def : Pat<(vti.Vector (!cast(intrinsic) (vti.Vector vti.RegClass:$merge), VLOpFrag)), (!cast(instruction#"_V_" # vti.LMul.MX) vti.RegClass:$merge, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (!cast(intrinsic # "_mask") (vti.Vector vti.RegClass:$merge), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast(instruction#"_V_" # vti.LMul.MX # "_MASK") vti.RegClass:$merge, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } } multiclass VPatNullaryM { foreach mti = AllMasks in def : Pat<(mti.Mask (!cast(intrinsic) VLOpFrag)), (!cast(inst#"_M_"#mti.BX) GPR:$vl, mti.Log2SEW)>; } multiclass VPatBinaryM { def : VPatBinaryM; def : VPatBinaryMask; } multiclass VPatBinary { def : VPatBinaryNoMaskTU; def : VPatBinaryMaskPolicy; } multiclass VPatBinaryRoundingMode { def : VPatBinaryNoMaskTURoundingMode; def : VPatBinaryMaskPolicyRoundingMode; } multiclass VPatBinaryMSwapped { def : VPatBinaryMSwapped; def : VPatBinaryMaskSwapped; } multiclass VPatBinaryCarryInTAIL { def : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; } multiclass VPatBinaryCarryIn { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; } multiclass VPatBinaryMaskOut { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; } multiclass VPatConversion { def : VPatUnaryNoMask; def : VPatUnaryMask; } multiclass VPatConversionRoundingMode { def : VPatUnaryNoMaskRoundingMode; def : VPatUnaryMaskRoundingMode; } multiclass VPatConversionRTZ { def : VPatUnaryNoMaskRTZ; def : VPatUnaryMaskRTZ; } multiclass VPatBinaryV_VV vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinary; } multiclass VPatBinaryV_VV_RM vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryRoundingMode; } multiclass VPatBinaryV_VV_INT vtilist> { foreach vti = vtilist in { defvar ivti = GetIntVTypeInfo.Vti; let Predicates = GetVTypePredicates.Predicates in defm : VPatBinary; } } multiclass VPatBinaryV_VV_INT_EEW vtilist> { foreach vti = vtilist in { // emul = lmul * eew / sew defvar vlmul = vti.LMul; defvar octuple_lmul = vlmul.octuple; defvar octuple_emul = !srl(!mul(octuple_lmul, eew), vti.Log2SEW); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emul_str = octuple_to_str.ret; defvar ivti = !cast("VI" # eew # emul_str); defvar inst = instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW # "_" # emul_str; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } } multiclass VPatBinaryV_VX vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates.Predicates in defm : VPatBinary; } } multiclass VPatBinaryV_VX_RM vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryV_VX_INT vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinary; } multiclass VPatBinaryV_VI vtilist, Operand imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinary; } multiclass VPatBinaryV_VI_RM vtilist, Operand imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryRoundingMode; } multiclass VPatBinaryM_MM { foreach mti = AllMasks in let Predicates = [HasVInstructions] in def : VPatBinaryM; } multiclass VPatBinaryW_VV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryW_VV_RM vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar name = !if(isSEWAware, instruction # "_VV_" # Vti.LMul.MX # "_E" # Vti.SEW, instruction # "_VV_" # Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryW_VX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "V"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryW_VX_RM vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "V"#Vti.ScalarSuffix; defvar name = !if(isSEWAware, instruction#"_"#kind#"_"#Vti.LMul.MX # "_E" # Vti.SEW, instruction#"_"#kind#"_"#Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryW_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in { def : VPatTiedBinaryNoMask; def : VPatBinaryNoMaskTU; let AddedComplexity = 1 in { def : VPatTiedBinaryNoMaskTU; def : VPatTiedBinaryMask; } def : VPatBinaryMaskPolicy; } } } multiclass VPatBinaryW_WV_RM vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar name = !if(isSEWAware, instruction # "_WV_" # Vti.LMul.MX # "_E" # Vti.SEW, instruction # "_WV_" # Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in { def : VPatTiedBinaryNoMaskRoundingMode; def : VPatBinaryNoMaskTURoundingMode; let AddedComplexity = 1 in { def : VPatTiedBinaryNoMaskTURoundingMode; def : VPatTiedBinaryMaskRoundingMode; } def : VPatBinaryMaskPolicyRoundingMode; } } } multiclass VPatBinaryW_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryW_WX_RM vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; defvar name = !if(isSEWAware, instruction#"_"#kind#"_"#Vti.LMul.MX#"_E"#Vti.SEW, instruction#"_"#kind#"_"#Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryV_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryV_WV_RM vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryV_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryV_WX_RM vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryV_WI vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinary; } } multiclass VPatBinaryV_WI_RM vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatBinaryRoundingMode; } } multiclass VPatBinaryV_VM vtilist = AllIntegerVectors> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_XM vtilist = AllIntegerVectors> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_IM { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_VM_TAIL { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryInTAIL; } multiclass VPatBinaryV_XM_TAIL { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryInTAIL; } multiclass VPatBinaryV_IM_TAIL { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryCarryInTAIL; } multiclass VPatBinaryV_V { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_X { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_I { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryMaskOut; } multiclass VPatBinaryM_VV vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryM; } multiclass VPatBinarySwappedM_VV vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryMSwapped; } multiclass VPatBinaryM_VX vtilist> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryM; } } multiclass VPatBinaryM_VI vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatBinaryM; } multiclass VPatBinaryV_VV_VX_VI vtilist, Operand ImmType = simm5> : VPatBinaryV_VV, VPatBinaryV_VX, VPatBinaryV_VI; multiclass VPatBinaryV_VV_VX_VI_RM vtilist, Operand ImmType> : VPatBinaryV_VV_RM, VPatBinaryV_VX_RM, VPatBinaryV_VI_RM; multiclass VPatBinaryV_VV_VX vtilist, bit isSEWAware = 0> : VPatBinaryV_VV, VPatBinaryV_VX; multiclass VPatBinaryV_VV_VX_RM vtilist, bit isSEWAware = 0> : VPatBinaryV_VV_RM, VPatBinaryV_VX_RM; multiclass VPatBinaryV_VX_VI vtilist> : VPatBinaryV_VX, VPatBinaryV_VI; multiclass VPatBinaryW_VV_VX vtilist> : VPatBinaryW_VV, VPatBinaryW_VX; multiclass VPatBinaryW_VV_VX_RM vtilist, bit isSEWAware = 0> : VPatBinaryW_VV_RM, VPatBinaryW_VX_RM; multiclass VPatBinaryW_WV_WX vtilist> : VPatBinaryW_WV, VPatBinaryW_WX; multiclass VPatBinaryW_WV_WX_RM vtilist, bit isSEWAware = 0> : VPatBinaryW_WV_RM, VPatBinaryW_WX_RM; multiclass VPatBinaryV_WV_WX_WI vtilist> : VPatBinaryV_WV, VPatBinaryV_WX, VPatBinaryV_WI; multiclass VPatBinaryV_WV_WX_WI_RM vtilist> : VPatBinaryV_WV_RM, VPatBinaryV_WX_RM, VPatBinaryV_WI_RM; multiclass VPatBinaryV_VM_XM_IM : VPatBinaryV_VM_TAIL, VPatBinaryV_XM_TAIL, VPatBinaryV_IM_TAIL; multiclass VPatBinaryM_VM_XM_IM : VPatBinaryV_VM, VPatBinaryV_XM, VPatBinaryV_IM; multiclass VPatBinaryM_V_X_I : VPatBinaryV_V, VPatBinaryV_X, VPatBinaryV_I; multiclass VPatBinaryV_VM_XM : VPatBinaryV_VM_TAIL, VPatBinaryV_XM_TAIL; multiclass VPatBinaryM_VM_XM : VPatBinaryV_VM, VPatBinaryV_XM; multiclass VPatBinaryM_V_X : VPatBinaryV_V, VPatBinaryV_X; multiclass VPatTernaryWithPolicy { def : VPatTernaryNoMaskWithPolicy; def : VPatTernaryMaskPolicy; } multiclass VPatTernaryWithPolicyRoundingMode { def : VPatTernaryNoMaskWithPolicyRoundingMode; def : VPatTernaryMaskPolicyRoundingMode; } multiclass VPatTernaryTU { def : VPatTernaryNoMaskTU; def : VPatTernaryMaskTU; } multiclass VPatTernaryTURoundingMode { def : VPatTernaryNoMaskTURoundingMode; def : VPatTernaryMaskTURoundingMode; } multiclass VPatTernaryV_VV_AAXA vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicy; } multiclass VPatTernaryV_VV_AAXA_RM vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicyRoundingMode; } multiclass VPatTernaryV_VX vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicy; } multiclass VPatTernaryV_VX_AAXA vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicy; } multiclass VPatTernaryV_VX_AAXA_RM vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicyRoundingMode; } multiclass VPatTernaryV_VI vtilist, Operand Imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryWithPolicy; } multiclass VPatTernaryW_VV vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatTernaryWithPolicy; } } multiclass VPatTernaryW_VV_RM vtilist, bit isSEWAware = 0> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatTernaryWithPolicyRoundingMode; } } multiclass VPatTernaryW_VX vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatTernaryWithPolicy; } } multiclass VPatTernaryW_VX_RM vtilist, bit isSEWAware = 0> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatTernaryWithPolicyRoundingMode< intrinsic, instruction, "V" #vti.ScalarSuffix, wti.Vector, vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wti.RegClass, vti.ScalarRegClass, vti.RegClass, isSEWAware>; } } multiclass VPatTernaryV_VV_VX_AAXA vtilist> : VPatTernaryV_VV_AAXA, VPatTernaryV_VX_AAXA; multiclass VPatTernaryV_VV_VX_AAXA_RM vtilist, bit isSEWAware = 0> : VPatTernaryV_VV_AAXA_RM, VPatTernaryV_VX_AAXA_RM; multiclass VPatTernaryV_VX_VI vtilist, Operand Imm_type> : VPatTernaryV_VX, VPatTernaryV_VI; multiclass VPatBinaryM_VV_VX_VI vtilist> : VPatBinaryM_VV, VPatBinaryM_VX, VPatBinaryM_VI; multiclass VPatTernaryW_VV_VX vtilist> : VPatTernaryW_VV, VPatTernaryW_VX; multiclass VPatTernaryW_VV_VX_RM vtilist, bit isSEWAware = 1> : VPatTernaryW_VV_RM, VPatTernaryW_VX_RM; multiclass VPatBinaryM_VV_VX vtilist> : VPatBinaryM_VV, VPatBinaryM_VX; multiclass VPatBinaryM_VX_VI vtilist> : VPatBinaryM_VX, VPatBinaryM_VI; multiclass VPatBinaryV_VV_VX_VI_INT vtilist, Operand ImmType> : VPatBinaryV_VV_INT, VPatBinaryV_VX_INT, VPatBinaryV_VI; multiclass VPatReductionV_VS { foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in { defvar vectorM1 = !cast(!if(IsFloat, "VF", "VI") # vti.SEW # "M1"); let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTU; } foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in { let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTU; } } multiclass VPatReductionV_VS_RM { foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in { defvar vectorM1 = !cast(!if(IsFloat, "VF", "VI") # vti.SEW # "M1"); let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTURoundingMode; } foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in { let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTURoundingMode; } } multiclass VPatReductionW_VS { foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in { defvar wtiSEW = !mul(vti.SEW, 2); if !le(wtiSEW, 64) then { defvar wtiM1 = !cast(!if(IsFloat, "VF", "VI") # wtiSEW # "M1"); let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTU; } } } multiclass VPatReductionW_VS_RM { foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in { defvar wtiSEW = !mul(vti.SEW, 2); if !le(wtiSEW, 64) then { defvar wtiM1 = !cast(!if(IsFloat, "VF", "VI") # wtiSEW # "M1"); let Predicates = GetVTypePredicates.Predicates in defm : VPatTernaryTURoundingMode; } } } multiclass VPatConversionVI_VF { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionVI_VF_RM { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionVI_VF_RTZ { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRTZ; } } multiclass VPatConversionVF_VI_RM { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionWI_VF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionWI_VF_RM { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionWI_VF_RTZ { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRTZ; } } multiclass VPatConversionWF_VI { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionWF_VF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; // Define vfwcvt.f.f.v for f16 when Zvfhmin is enable. let Predicates = !if(!eq(fvti.Scalar, f16), [HasVInstructionsF16Minimal], !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates)) in defm : VPatConversion; } } multiclass VPatConversionWF_VF_BF { foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionVI_WF { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionVI_WF_RM { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionVI_WF_RTZ { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRTZ; } } multiclass VPatConversionVF_WI_RM { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionVF_WF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversion; } } multiclass VPatConversionVF_WF_RM wlist = AllWidenableFloatVectors, bit isSEWAware = 0> { foreach fvtiToFWti = wlist in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatConversionVF_WF_RTZ wlist = AllWidenableFloatVectors, bit isSEWAware = 0> { foreach fvtiToFWti = wlist in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRTZ; } } multiclass VPatConversionVF_WF_BF_RM { foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates.Predicates, GetVTypePredicates.Predicates) in defm : VPatConversionRoundingMode; } } multiclass VPatCompare_VI { foreach vti = AllIntegerVectors in { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_VI_"#vti.LMul.MX); let Predicates = GetVTypePredicates.Predicates in def : Pat<(vti.Mask (Intr (vti.Vector vti.RegClass:$rs1), (vti.Scalar ImmType:$rs2), VLOpFrag)), (Pseudo vti.RegClass:$rs1, (DecImm ImmType:$rs2), GPR:$vl, vti.Log2SEW)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_VI_"#vti.LMul.MX#"_MASK"); let Predicates = GetVTypePredicates.Predicates in def : Pat<(vti.Mask (IntrMask (vti.Mask VR:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar ImmType:$rs2), (vti.Mask V0), VLOpFrag)), (PseudoMask VR:$merge, vti.RegClass:$rs1, (DecImm ImmType:$rs2), (vti.Mask V0), GPR:$vl, vti.Log2SEW)>; } } //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // Pseudo Instructions for CodeGen //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in { def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins), [(set GPR:$rd, (riscv_read_vlenb))]>, PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVLENB.Encoding, X0)>, Sched<[WriteRdVLENB]>; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1, Uses = [VL] in def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), []>, PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVL.Encoding, X0)>; foreach lmul = MxList in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1, Size = !mul(4, !sub(!mul(nf, 2), 1)) in { def "PseudoVSPILL" # nf # "_" # lmul.MX : Pseudo<(outs), (ins vreg:$rs1, GPR:$rs2), []>; } let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1, Size = !mul(4, !sub(!mul(nf, 2), 1)) in { def "PseudoVRELOAD" # nf # "_" # lmul.MX : Pseudo<(outs vreg:$rs1), (ins GPR:$rs2), []>; } } } /// Empty pseudo for RISCVInitUndefPass let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 0, isCodeGenOnly = 1 in { def PseudoRVVInitUndefM1 : Pseudo<(outs VR:$vd), (ins), [], "">; def PseudoRVVInitUndefM2 : Pseudo<(outs VRM2:$vd), (ins), [], "">; def PseudoRVVInitUndefM4 : Pseudo<(outs VRM4:$vd), (ins), [], "">; def PseudoRVVInitUndefM8 : Pseudo<(outs VRM8:$vd), (ins), [], "">; } //===----------------------------------------------------------------------===// // 6. Configuration-Setting Instructions //===----------------------------------------------------------------------===// // Pseudos. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in { // Due to rs1=X0 having special meaning, we need a GPRNoX0 register class for // the when we aren't using one of the special X0 encodings. Otherwise it could // be accidentally be made X0 by MachineIR optimizations. To satisfy the // verifier, we also need a GPRX0 instruction for the special encodings. def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPRNoX0:$rs1, VTypeIOp11:$vtypei), []>, Sched<[WriteVSETVLI, ReadVSETVLI]>; def PseudoVSETVLIX0 : Pseudo<(outs GPR:$rd), (ins GPRX0:$rs1, VTypeIOp11:$vtypei), []>, Sched<[WriteVSETVLI, ReadVSETVLI]>; def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp10:$vtypei), []>, Sched<[WriteVSETIVLI]>; } //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// // Pseudos Unit-Stride Loads and Stores defm PseudoVL : VPseudoUSLoad; defm PseudoVS : VPseudoUSStore; defm PseudoVLM : VPseudoLoadMask; defm PseudoVSM : VPseudoStoreMask; //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// // Vector Strided Loads and Stores defm PseudoVLS : VPseudoSLoad; defm PseudoVSS : VPseudoSStore; //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// // Vector Indexed Loads and Stores defm PseudoVLUX : VPseudoILoad; defm PseudoVLOX : VPseudoILoad; defm PseudoVSOX : VPseudoIStore; defm PseudoVSUX : VPseudoIStore; //===----------------------------------------------------------------------===// // 7.7. Unit-stride Fault-Only-First Loads //===----------------------------------------------------------------------===// // vleff may update VL register let Defs = [VL] in defm PseudoVL : VPseudoFFLoad; //===----------------------------------------------------------------------===// // 7.8. Vector Load/Store Segment Instructions //===----------------------------------------------------------------------===// defm PseudoVLSEG : VPseudoUSSegLoad; defm PseudoVLSSEG : VPseudoSSegLoad; defm PseudoVLOXSEG : VPseudoISegLoad; defm PseudoVLUXSEG : VPseudoISegLoad; defm PseudoVSSEG : VPseudoUSSegStore; defm PseudoVSSSEG : VPseudoSSegStore; defm PseudoVSOXSEG : VPseudoISegStore; defm PseudoVSUXSEG : VPseudoISegStore; // vlsegeff.v may update VL register let Defs = [VL] in { defm PseudoVLSEG : VPseudoUSSegLoadFF; } //===----------------------------------------------------------------------===// // 11. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVADD : VPseudoVALU_VV_VX_VI; defm PseudoVSUB : VPseudoVALU_VV_VX; defm PseudoVRSUB : VPseudoVALU_VX_VI; foreach vti = AllIntegerVectors in { // Match vrsub with 2 vector operands to vsub.vv by swapping operands. This // Occurs when legalizing vrsub.vx intrinsics for i64 on RV32 since we need // to use a more complex splat sequence. Add the pattern for all VTs for // consistency. let Predicates = GetVTypePredicates.Predicates in { def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs2), (vti.Vector vti.RegClass:$rs1), VLOpFrag)), (!cast("PseudoVSUB_VV_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs2, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vrsub_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs2), (vti.Vector vti.RegClass:$rs1), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast("PseudoVSUB_VV_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs2, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; // Match VSUB with a small immediate to vadd.vi by negating the immediate. def : Pat<(vti.Vector (int_riscv_vsub (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), VLOpFrag)), (!cast("PseudoVADD_VI_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, (NegImm simm5_plus1:$rs2), GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vsub_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast("PseudoVADD_VI_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, (NegImm simm5_plus1:$rs2), (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } //===----------------------------------------------------------------------===// // 11.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm PseudoVWADDU : VPseudoVWALU_VV_VX; defm PseudoVWSUBU : VPseudoVWALU_VV_VX; defm PseudoVWADD : VPseudoVWALU_VV_VX; defm PseudoVWSUB : VPseudoVWALU_VV_VX; defm PseudoVWADDU : VPseudoVWALU_WV_WX; defm PseudoVWSUBU : VPseudoVWALU_WV_WX; defm PseudoVWADD : VPseudoVWALU_WV_WX; defm PseudoVWSUB : VPseudoVWALU_WV_WX; //===----------------------------------------------------------------------===// // 11.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm PseudoVZEXT_VF2 : PseudoVEXT_VF2; defm PseudoVZEXT_VF4 : PseudoVEXT_VF4; defm PseudoVZEXT_VF8 : PseudoVEXT_VF8; defm PseudoVSEXT_VF2 : PseudoVEXT_VF2; defm PseudoVSEXT_VF4 : PseudoVEXT_VF4; defm PseudoVSEXT_VF8 : PseudoVEXT_VF8; //===----------------------------------------------------------------------===// // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm PseudoVADC : VPseudoVCALU_VM_XM_IM; defm PseudoVMADC : VPseudoVCALUM_VM_XM_IM; defm PseudoVMADC : VPseudoVCALUM_V_X_I; defm PseudoVSBC : VPseudoVCALU_VM_XM; defm PseudoVMSBC : VPseudoVCALUM_VM_XM; defm PseudoVMSBC : VPseudoVCALUM_V_X; //===----------------------------------------------------------------------===// // 11.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVAND : VPseudoVALU_VV_VX_VI; defm PseudoVOR : VPseudoVALU_VV_VX_VI; defm PseudoVXOR : VPseudoVALU_VV_VX_VI; //===----------------------------------------------------------------------===// // 11.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSLL : VPseudoVSHT_VV_VX_VI; defm PseudoVSRL : VPseudoVSHT_VV_VX_VI; defm PseudoVSRA : VPseudoVSHT_VV_VX_VI; //===----------------------------------------------------------------------===// // 11.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVNSRL : VPseudoVNSHT_WV_WX_WI; defm PseudoVNSRA : VPseudoVNSHT_WV_WX_WI; //===----------------------------------------------------------------------===// // 11.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm PseudoVMSEQ : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSNE : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSLTU : VPseudoVCMPM_VV_VX; defm PseudoVMSLT : VPseudoVCMPM_VV_VX; defm PseudoVMSLEU : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSLE : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSGTU : VPseudoVCMPM_VX_VI; defm PseudoVMSGT : VPseudoVCMPM_VX_VI; //===----------------------------------------------------------------------===// // 11.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm PseudoVMINU : VPseudoVMINMAX_VV_VX; defm PseudoVMIN : VPseudoVMINMAX_VV_VX; defm PseudoVMAXU : VPseudoVMINMAX_VV_VX; defm PseudoVMAX : VPseudoVMINMAX_VV_VX; //===----------------------------------------------------------------------===// // 11.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVMUL : VPseudoVMUL_VV_VX; defm PseudoVMULH : VPseudoVMUL_VV_VX; defm PseudoVMULHU : VPseudoVMUL_VV_VX; defm PseudoVMULHSU : VPseudoVMUL_VV_VX; //===----------------------------------------------------------------------===// // 11.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVDIVU : VPseudoVDIV_VV_VX; defm PseudoVDIV : VPseudoVDIV_VV_VX; defm PseudoVREMU : VPseudoVDIV_VV_VX; defm PseudoVREM : VPseudoVDIV_VV_VX; //===----------------------------------------------------------------------===// // 11.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVWMUL : VPseudoVWMUL_VV_VX; defm PseudoVWMULU : VPseudoVWMUL_VV_VX; defm PseudoVWMULSU : VPseudoVWMUL_VV_VX; //===----------------------------------------------------------------------===// // 11.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVMACC : VPseudoVMAC_VV_VX_AAXA; defm PseudoVNMSAC : VPseudoVMAC_VV_VX_AAXA; defm PseudoVMADD : VPseudoVMAC_VV_VX_AAXA; defm PseudoVNMSUB : VPseudoVMAC_VV_VX_AAXA; //===----------------------------------------------------------------------===// // 11.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVWMACCU : VPseudoVWMAC_VV_VX; defm PseudoVWMACC : VPseudoVWMAC_VV_VX; defm PseudoVWMACCSU : VPseudoVWMAC_VV_VX; defm PseudoVWMACCUS : VPseudoVWMAC_VX; //===----------------------------------------------------------------------===// // 11.15. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm PseudoVMERGE : VPseudoVMRG_VM_XM_IM; //===----------------------------------------------------------------------===// // 11.16. Vector Integer Move Instructions //===----------------------------------------------------------------------===// defm PseudoVMV_V : VPseudoUnaryVMV_V_X_I; //===----------------------------------------------------------------------===// // 12. Vector Fixed-Point Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVSADDU : VPseudoVSALU_VV_VX_VI; defm PseudoVSADD : VPseudoVSALU_VV_VX_VI; defm PseudoVSSUBU : VPseudoVSALU_VV_VX; defm PseudoVSSUB : VPseudoVSALU_VV_VX; } //===----------------------------------------------------------------------===// // 12.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVAADDU : VPseudoVAALU_VV_VX_RM; defm PseudoVAADD : VPseudoVAALU_VV_VX_RM; defm PseudoVASUBU : VPseudoVAALU_VV_VX_RM; defm PseudoVASUB : VPseudoVAALU_VV_VX_RM; //===----------------------------------------------------------------------===// // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVSMUL : VPseudoVSMUL_VV_VX_RM; } //===----------------------------------------------------------------------===// // 12.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSSRL : VPseudoVSSHT_VV_VX_VI_RM; defm PseudoVSSRA : VPseudoVSSHT_VV_VX_VI_RM; //===----------------------------------------------------------------------===// // 12.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVNCLIP : VPseudoVNCLP_WV_WX_WI_RM; defm PseudoVNCLIPU : VPseudoVNCLP_WV_WX_WI_RM; } } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 13. Vector Floating-Point Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in { //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasPostISelHook = 1 in { defm PseudoVFADD : VPseudoVALU_VV_VF_RM; defm PseudoVFSUB : VPseudoVALU_VV_VF_RM; defm PseudoVFRSUB : VPseudoVALU_VF_RM; } //===----------------------------------------------------------------------===// // 13.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWADD : VPseudoVFWALU_VV_VF_RM; defm PseudoVFWSUB : VPseudoVFWALU_VV_VF_RM; defm PseudoVFWADD : VPseudoVFWALU_WV_WF_RM; defm PseudoVFWSUB : VPseudoVFWALU_WV_WF_RM; } //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFMUL : VPseudoVFMUL_VV_VF_RM; defm PseudoVFDIV : VPseudoVFDIV_VV_VF_RM; defm PseudoVFRDIV : VPseudoVFRDIV_VF_RM; } //===----------------------------------------------------------------------===// // 13.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0 in { defm PseudoVFWMUL : VPseudoVWMUL_VV_VF_RM; } //===----------------------------------------------------------------------===// // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFMACC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMACC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMSAC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMSAC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMADD : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMADD : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMSUB : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMSUB : VPseudoVMAC_VV_VF_AAXA_RM; } //===----------------------------------------------------------------------===// // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWMACC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWNMACC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWMSAC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWNMSAC : VPseudoVWMAC_VV_VF_RM; let Predicates = [HasStdExtZvfbfwma] in defm PseudoVFWMACCBF16 : VPseudoVWMAC_VV_VF_BF_RM; } //===----------------------------------------------------------------------===// // 13.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0 in defm PseudoVFSQRT : VPseudoVSQR_V_RM; //===----------------------------------------------------------------------===// // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true in defm PseudoVFRSQRT7 : VPseudoVRCP_V; //===----------------------------------------------------------------------===// // 13.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0 in defm PseudoVFREC7 : VPseudoVRCP_V_RM; //===----------------------------------------------------------------------===// // 13.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { defm PseudoVFMIN : VPseudoVMAX_VV_VF; defm PseudoVFMAX : VPseudoVMAX_VV_VF; } //===----------------------------------------------------------------------===// // 13.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm PseudoVFSGNJ : VPseudoVSGNJ_VV_VF; defm PseudoVFSGNJN : VPseudoVSGNJ_VV_VF; defm PseudoVFSGNJX : VPseudoVSGNJ_VV_VF; //===----------------------------------------------------------------------===// // 13.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { defm PseudoVMFEQ : VPseudoVCMPM_VV_VF; defm PseudoVMFNE : VPseudoVCMPM_VV_VF; defm PseudoVMFLT : VPseudoVCMPM_VV_VF; defm PseudoVMFLE : VPseudoVCMPM_VV_VF; defm PseudoVMFGT : VPseudoVCMPM_VF; defm PseudoVMFGE : VPseudoVCMPM_VF; } //===----------------------------------------------------------------------===// // 13.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm PseudoVFCLASS : VPseudoVCLS_V; //===----------------------------------------------------------------------===// // 13.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// defm PseudoVFMERGE : VPseudoVMRG_FM; //===----------------------------------------------------------------------===// // 13.16. Vector Floating-Point Move Instruction //===----------------------------------------------------------------------===// defm PseudoVFMV_V : VPseudoVMV_F; //===----------------------------------------------------------------------===// // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFCVT_XU_F : VPseudoVCVTI_V_RM; defm PseudoVFCVT_X_F : VPseudoVCVTI_V_RM; } defm PseudoVFCVT_RM_XU_F : VPseudoVCVTI_RM_V; defm PseudoVFCVT_RM_X_F : VPseudoVCVTI_RM_V; defm PseudoVFCVT_RTZ_XU_F : VPseudoVCVTI_V; defm PseudoVFCVT_RTZ_X_F : VPseudoVCVTI_V; defm PseudoVFROUND_NOEXCEPT : VPseudoVFROUND_NOEXCEPT_V; let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFCVT_F_XU : VPseudoVCVTF_V_RM; defm PseudoVFCVT_F_X : VPseudoVCVTF_V_RM; } defm PseudoVFCVT_RM_F_XU : VPseudoVCVTF_RM_V; defm PseudoVFCVT_RM_F_X : VPseudoVCVTF_RM_V; } // mayRaiseFPException = true //===----------------------------------------------------------------------===// // 13.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWCVT_XU_F : VPseudoVWCVTI_V_RM; defm PseudoVFWCVT_X_F : VPseudoVWCVTI_V_RM; } defm PseudoVFWCVT_RM_XU_F : VPseudoVWCVTI_RM_V; defm PseudoVFWCVT_RM_X_F : VPseudoVWCVTI_RM_V; defm PseudoVFWCVT_RTZ_XU_F : VPseudoVWCVTI_V; defm PseudoVFWCVT_RTZ_X_F : VPseudoVWCVTI_V; defm PseudoVFWCVT_F_XU : VPseudoVWCVTF_V; defm PseudoVFWCVT_F_X : VPseudoVWCVTF_V; defm PseudoVFWCVT_F_F : VPseudoVWCVTD_V; defm PseudoVFWCVTBF16_F_F : VPseudoVWCVTD_V; } // mayRaiseFPException = true //===----------------------------------------------------------------------===// // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFNCVT_XU_F : VPseudoVNCVTI_W_RM; defm PseudoVFNCVT_X_F : VPseudoVNCVTI_W_RM; } defm PseudoVFNCVT_RM_XU_F : VPseudoVNCVTI_RM_W; defm PseudoVFNCVT_RM_X_F : VPseudoVNCVTI_RM_W; defm PseudoVFNCVT_RTZ_XU_F : VPseudoVNCVTI_W; defm PseudoVFNCVT_RTZ_X_F : VPseudoVNCVTI_W; let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFNCVT_F_XU : VPseudoVNCVTF_W_RM; defm PseudoVFNCVT_F_X : VPseudoVNCVTF_W_RM; } defm PseudoVFNCVT_RM_F_XU : VPseudoVNCVTF_RM_W; defm PseudoVFNCVT_RM_F_X : VPseudoVNCVTF_RM_W; let hasSideEffects = 0, hasPostISelHook = 1 in defm PseudoVFNCVT_F_F : VPseudoVNCVTD_W_RM; defm PseudoVFNCVTBF16_F_F : VPseudoVNCVTD_W_RM; defm PseudoVFNCVT_ROD_F_F : VPseudoVNCVTD_W; } // mayRaiseFPException = true } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 14. Vector Reduction Operations //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // 14.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVREDSUM : VPseudoVRED_VS; defm PseudoVREDAND : VPseudoVRED_VS; defm PseudoVREDOR : VPseudoVRED_VS; defm PseudoVREDXOR : VPseudoVRED_VS; defm PseudoVREDMINU : VPseudoVREDMINMAX_VS; defm PseudoVREDMIN : VPseudoVREDMINMAX_VS; defm PseudoVREDMAXU : VPseudoVREDMINMAX_VS; defm PseudoVREDMAX : VPseudoVREDMINMAX_VS; //===----------------------------------------------------------------------===// // 14.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// let IsRVVWideningReduction = 1 in { defm PseudoVWREDSUMU : VPseudoVWRED_VS; defm PseudoVWREDSUM : VPseudoVWRED_VS; } } // Predicates = [HasVInstructions] let Predicates = [HasVInstructionsAnyF] in { //===----------------------------------------------------------------------===// // 14.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0 in { defm PseudoVFREDOSUM : VPseudoVFREDO_VS_RM; defm PseudoVFREDUSUM : VPseudoVFRED_VS_RM; } let mayRaiseFPException = true in { defm PseudoVFREDMIN : VPseudoVFREDMINMAX_VS; defm PseudoVFREDMAX : VPseudoVFREDMINMAX_VS; } //===----------------------------------------------------------------------===// // 14.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// let IsRVVWideningReduction = 1, hasSideEffects = 0, mayRaiseFPException = true in { defm PseudoVFWREDUSUM : VPseudoVFWRED_VS_RM; defm PseudoVFWREDOSUM : VPseudoVFWREDO_VS_RM; } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 15. Vector Mask Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // 15.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVMAND: VPseudoVALU_MM; defm PseudoVMNAND: VPseudoVALU_MM; defm PseudoVMANDN: VPseudoVALU_MM; defm PseudoVMXOR: VPseudoVALU_MM; defm PseudoVMOR: VPseudoVALU_MM; defm PseudoVMNOR: VPseudoVALU_MM; defm PseudoVMORN: VPseudoVALU_MM; defm PseudoVMXNOR: VPseudoVALU_MM; // Pseudo instructions defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">; defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">; //===----------------------------------------------------------------------===// // 15.2. Vector mask population count vcpop //===----------------------------------------------------------------------===// let IsSignExtendingOpW = 1 in defm PseudoVCPOP: VPseudoVPOP_M; //===----------------------------------------------------------------------===// // 15.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// let IsSignExtendingOpW = 1 in defm PseudoVFIRST: VPseudoV1ST_M; //===----------------------------------------------------------------------===// // 15.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSBF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSIF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSOF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm PseudoVIOTA_M: VPseudoVIOTA_M; //===----------------------------------------------------------------------===// // 15.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// let isReMaterializable = 1 in defm PseudoVID : VPseudoVID_V; } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 16. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 16.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { let HasSEWOp = 1, BaseInstr = VMV_X_S in def PseudoVMV_X_S: Pseudo<(outs GPR:$rd), (ins VR:$rs2, ixlenimm:$sew), []>, Sched<[WriteVMovXS, ReadVMovXS]>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X, Constraints = "$rd = $rs1" in def PseudoVMV_S_X: Pseudo<(outs VR:$rd), (ins VR:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew), []>, Sched<[WriteVMovSX, ReadVMovSX_V, ReadVMovSX_X]>, RISCVVPseudo; } } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 16.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; let VLMul = m.value in { let HasSEWOp = 1, BaseInstr = VFMV_F_S in def "PseudoVFMV_" # f.FX # "_S_" # mx : Pseudo<(outs f.fprclass:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, Sched<[WriteVMovFS, ReadVMovFS]>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F, Constraints = "$rd = $rs1" in def "PseudoVFMV_S_" # f.FX # "_" # mx : Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, f.fprclass:$rs2, AVL:$vl, ixlenimm:$sew), []>, Sched<[WriteVMovSF, ReadVMovSF_V, ReadVMovSF_F]>, RISCVVPseudo; } } } } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 16.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { defm PseudoVSLIDEUP : VPseudoVSLD_VX_VI; defm PseudoVSLIDEDOWN : VPseudoVSLD_VX_VI; defm PseudoVSLIDE1UP : VPseudoVSLD1_VX<"@earlyclobber $rd">; defm PseudoVSLIDE1DOWN : VPseudoVSLD1_VX; } // Predicates = [HasVInstructions] let Predicates = [HasVInstructionsAnyF] in { defm PseudoVFSLIDE1UP : VPseudoVSLD1_VF<"@earlyclobber $rd">; defm PseudoVFSLIDE1DOWN : VPseudoVSLD1_VF; } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 16.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { defm PseudoVRGATHER : VPseudoVGTR_VV_VX_VI; defm PseudoVRGATHEREI16 : VPseudoVGTR_EI16_VV; //===----------------------------------------------------------------------===// // 16.5. Vector Compress Instruction //===----------------------------------------------------------------------===// defm PseudoVCOMPRESS : VPseudoVCPR_V; } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // Patterns. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>; defm : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8", AllFractionableVF8IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8", AllFractionableVF8IntVectors>; //===----------------------------------------------------------------------===// // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">; defm : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">; defm : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">; defm : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">; defm : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">; defm : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">; //===----------------------------------------------------------------------===// // 11.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors, uimm5>; foreach vti = AllIntegerVectors in { // Emit shift by 1 as an add since it might be faster. let Predicates = GetVTypePredicates.Predicates in { def : Pat<(vti.Vector (int_riscv_vsll (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (XLenVT 1), VLOpFrag)), (!cast("PseudoVADD_VV_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs1, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vsll_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (XLenVT 1), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast("PseudoVADD_VV_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs1, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } //===----------------------------------------------------------------------===// // 11.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>; defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>; defm : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>; defm : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>; // Match vmsgt with 2 vector operands to vmslt with the operands swapped. defm : VPatBinarySwappedM_VV<"int_riscv_vmsgtu", "PseudoVMSLTU", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsgt", "PseudoVMSLT", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsgeu", "PseudoVMSLEU", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsge", "PseudoVMSLE", AllIntegerVectors>; // Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16 and // non-zero. Zero can be .vx with x0. This avoids the user needing to know that // there is no vmslt(u).vi instruction. Similar for vmsge(u).vx intrinsics // using vmslt(u).vi. defm : VPatCompare_VI<"int_riscv_vmslt", "PseudoVMSLE", simm5_plus1_nonzero>; defm : VPatCompare_VI<"int_riscv_vmsltu", "PseudoVMSLEU", simm5_plus1_nonzero>; // We need to handle 0 for vmsge.vi using vmslt.vi because there is no vmsge.vx. defm : VPatCompare_VI<"int_riscv_vmsge", "PseudoVMSGT", simm5_plus1>; defm : VPatCompare_VI<"int_riscv_vmsgeu", "PseudoVMSGTU", simm5_plus1_nonzero>; //===----------------------------------------------------------------------===// // 11.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>; defvar IntegerVectorsExceptI64 = !filter(vti, AllIntegerVectors, !ne(vti.SEW, 64)); defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", IntegerVectorsExceptI64>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", IntegerVectorsExceptI64>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", IntegerVectorsExceptI64>; // vmulh, vmulhu, vmulhsu are not included for EEW=64 in Zve64*. defvar I64IntegerVectors = !filter(vti, AllIntegerVectors, !eq(vti.SEW, 64)); let Predicates = [HasVInstructionsFullMultiply] in { defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", I64IntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", I64IntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", I64IntegerVectors>; } //===----------------------------------------------------------------------===// // 11.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 11.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>; defm : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>; defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>; defm : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.15. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">; //===----------------------------------------------------------------------===// // 11.16. Vector Integer Move Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { let Predicates = GetVTypePredicates.Predicates in { def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$passthru), (vti.Vector vti.RegClass:$rs1), VLOpFrag)), (!cast("PseudoVMV_V_V_"#vti.LMul.MX) $passthru, $rs1, GPR:$vl, vti.Log2SEW, TU_MU)>; // vmv.v.x/vmv.v.i are handled in RISCInstrVInstrInfoVVLPatterns.td } } //===----------------------------------------------------------------------===// // 12. Vector Fixed-Point Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL", IntegerVectorsExceptI64>; // vsmul.vv and vsmul.vx are not included in EEW=64 in Zve64*. let Predicates = [HasVInstructionsFullMultiply] in defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL", I64IntegerVectors>; //===----------------------------------------------------------------------===// // 12.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 12.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>; defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 13. Vector Floating-Point Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors, isSEWAware = 1>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors, isSEWAware = 1>; defm : VPatBinaryV_VX_RM<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors, isSEWAware = 1>; //===----------------------------------------------------------------------===// // 13.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VX_RM<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmacc", "PseudoVFMACC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmacc", "PseudoVFNMACC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsac", "PseudoVFMSAC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsac", "PseudoVFNMSAC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmadd", "PseudoVFMADD", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmadd", "PseudoVFNMADD", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsub", "PseudoVFMSUB", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsub", "PseudoVFNMSUB", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmacc", "PseudoVFWMACC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmacc", "PseudoVFWNMACC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmsac", "PseudoVFWMSAC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmsac", "PseudoVFWNMSAC", AllWidenableFloatVectors, isSEWAware=1>; let Predicates = [HasStdExtZvfbfwma] in defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmaccbf16", "PseudoVFWMACCBF16", AllWidenableBFloatToFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_RM<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_RM<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>; defm : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>; defm : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmfgt", "PseudoVMFLT", AllFloatVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmfge", "PseudoVMFLE", AllFloatVectors>; //===----------------------------------------------------------------------===// // 13.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">; //===----------------------------------------------------------------------===// // 13.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// // We can use vmerge.vvm to support vector-vector vfmerge. // NOTE: Clang previously used int_riscv_vfmerge for vector-vector, but now uses // int_riscv_vmerge. Support both for compatibility. foreach vti = AllFloatVectors in { let Predicates = GetVTypePredicates.Predicates in { defm : VPatBinaryCarryInTAIL<"int_riscv_vmerge", "PseudoVMERGE", "VVM", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; defm : VPatBinaryCarryInTAIL<"int_riscv_vfmerge", "PseudoVMERGE", "VVM", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; defm : VPatBinaryCarryInTAIL<"int_riscv_vfmerge", "PseudoVFMERGE", "V"#vti.ScalarSuffix#"M", vti.Vector, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.ScalarRegClass>; } } foreach fvti = AllFloatVectors in { defvar instr = !cast("PseudoVMERGE_VIM_"#fvti.LMul.MX); let Predicates = GetVTypePredicates.Predicates in def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$merge), (fvti.Vector fvti.RegClass:$rs2), (fvti.Scalar (fpimm0)), (fvti.Mask V0), VLOpFrag)), (instr fvti.RegClass:$merge, fvti.RegClass:$rs2, 0, (fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>; } //===----------------------------------------------------------------------===// // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_RTZ_X_F">; defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_RTZ_XU_F">; defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">; defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">; defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">; defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">; defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X", isSEWAware=1>; defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU", isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">; defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_RTZ_X_F">; defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">; defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">; defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">; defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">; defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU", isSEWAware=1>; defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X", isSEWAware=1>; defm : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F", isSEWAware=1>; defm : VPatConversionWF_VF_BF<"int_riscv_vfwcvtbf16_f_f_v", "PseudoVFWCVTBF16_F_F", isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">; defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_RTZ_X_F">; defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">; defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">; defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">; defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">; defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU", isSEWAware=1>; defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X", isSEWAware=1>; defvar WidenableFloatVectorsExceptF16 = !filter(fvtiToFWti, AllWidenableFloatVectors, !ne(fvtiToFWti.Vti.Scalar, f16)); defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F", WidenableFloatVectorsExceptF16, isSEWAware=1>; // Define vfncvt.f.f.w for f16 when Zvfhmin is enable. defvar F16WidenableFloatVectors = !filter(fvtiToFWti, AllWidenableFloatVectors, !eq(fvtiToFWti.Vti.Scalar, f16)); let Predicates = [HasVInstructionsF16Minimal] in defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F", F16WidenableFloatVectors, isSEWAware=1>; defm : VPatConversionVF_WF_BF_RM<"int_riscv_vfncvtbf16_f_f_w", "PseudoVFNCVTBF16_F_F", isSEWAware=1>; defm : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F", isSEWAware=1>; //===----------------------------------------------------------------------===// // 14. Vector Reduction Operations //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 14.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">; defm : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">; defm : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">; defm : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">; defm : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">; defm : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">; defm : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">; defm : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">; //===----------------------------------------------------------------------===// // 14.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">; defm : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">; //===----------------------------------------------------------------------===// // 14.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionV_VS_RM<"int_riscv_vfredosum", "PseudoVFREDOSUM", IsFloat=1>; defm : VPatReductionV_VS_RM<"int_riscv_vfredusum", "PseudoVFREDUSUM", IsFloat=1>; defm : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", IsFloat=1>; defm : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", IsFloat=1>; //===----------------------------------------------------------------------===// // 14.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionW_VS_RM<"int_riscv_vfwredusum", "PseudoVFWREDUSUM", IsFloat=1>; defm : VPatReductionW_VS_RM<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", IsFloat=1>; //===----------------------------------------------------------------------===// // 15. Vector Mask Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 15.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">; defm : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">; defm : VPatBinaryM_MM<"int_riscv_vmandn", "PseudoVMANDN">; defm : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">; defm : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">; defm : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">; defm : VPatBinaryM_MM<"int_riscv_vmorn", "PseudoVMORN">; defm : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">; // pseudo instructions defm : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">; defm : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">; //===----------------------------------------------------------------------===// // 15.2. Vector count population in mask vcpop.m //===----------------------------------------------------------------------===// defm : VPatUnaryS_M<"int_riscv_vcpop", "PseudoVCPOP">; //===----------------------------------------------------------------------===// // 15.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">; //===----------------------------------------------------------------------===// // 15.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">; //===----------------------------------------------------------------------===// // 15.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">; //===----------------------------------------------------------------------===// // 15.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">; //===----------------------------------------------------------------------===// // 15.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">; //===----------------------------------------------------------------------===// // 15.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// defm : VPatNullaryV<"int_riscv_vid", "PseudoVID">; //===----------------------------------------------------------------------===// // 16. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 16.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// foreach vti = NoGroupIntegerVectors in { let Predicates = GetVTypePredicates.Predicates in def : Pat<(XLenVT (riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2))), (PseudoVMV_X_S $rs2, vti.Log2SEW)>; // vmv.s.x is handled with a custom node in RISCVInstrInfoVVLPatterns.td } //===----------------------------------------------------------------------===// // 16.3. Vector Slide Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>; defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>; defm : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>; defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>; defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>; defm : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>; defm : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>; //===----------------------------------------------------------------------===// // 16.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16", eew=16, vtilist=AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllFloatVectors, uimm5>; defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16", eew=16, vtilist=AllFloatVectors>; //===----------------------------------------------------------------------===// // 16.5. Vector Compress Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>; defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectors>; // Include the non-intrinsic ISel patterns include "RISCVInstrInfoVVLPatterns.td" include "RISCVInstrInfoVSDPatterns.td"