//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the PTX instructions in TableGen format. // //===----------------------------------------------------------------------===// include "NVPTXInstrFormats.td" let OperandType = "OPERAND_IMMEDIATE" in { def f16imm : Operand; def bf16imm : Operand; } // List of vector specific properties def isVecLD : VecInstTypeEnum<1>; def isVecST : VecInstTypeEnum<2>; def isVecBuild : VecInstTypeEnum<3>; def isVecShuffle : VecInstTypeEnum<4>; def isVecExtract : VecInstTypeEnum<5>; def isVecInsert : VecInstTypeEnum<6>; def isVecDest : VecInstTypeEnum<7>; def isVecOther : VecInstTypeEnum<15>; //===----------------------------------------------------------------------===// // NVPTX Operand Definitions. //===----------------------------------------------------------------------===// def brtarget : Operand; // CVT conversion modes // These must match the enum in NVPTX.h def CvtNONE : PatLeaf<(i32 0x0)>; def CvtRNI : PatLeaf<(i32 0x1)>; def CvtRZI : PatLeaf<(i32 0x2)>; def CvtRMI : PatLeaf<(i32 0x3)>; def CvtRPI : PatLeaf<(i32 0x4)>; def CvtRN : PatLeaf<(i32 0x5)>; def CvtRZ : PatLeaf<(i32 0x6)>; def CvtRM : PatLeaf<(i32 0x7)>; def CvtRP : PatLeaf<(i32 0x8)>; def CvtRNA : PatLeaf<(i32 0x9)>; def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; def CvtRN_FTZ : PatLeaf<(i32 0x15)>; def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; def CvtRM_FTZ : PatLeaf<(i32 0x17)>; def CvtRP_FTZ : PatLeaf<(i32 0x18)>; def CvtSAT : PatLeaf<(i32 0x20)>; def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; def CvtNONE_RELU : PatLeaf<(i32 0x40)>; def CvtRN_RELU : PatLeaf<(i32 0x45)>; def CvtRZ_RELU : PatLeaf<(i32 0x46)>; def CvtMode : Operand { let PrintMethod = "printCvtMode"; } // Compare modes // These must match the enum in NVPTX.h def CmpEQ : PatLeaf<(i32 0)>; def CmpNE : PatLeaf<(i32 1)>; def CmpLT : PatLeaf<(i32 2)>; def CmpLE : PatLeaf<(i32 3)>; def CmpGT : PatLeaf<(i32 4)>; def CmpGE : PatLeaf<(i32 5)>; def CmpLO : PatLeaf<(i32 6)>; def CmpLS : PatLeaf<(i32 7)>; def CmpHI : PatLeaf<(i32 8)>; def CmpHS : PatLeaf<(i32 9)>; def CmpEQU : PatLeaf<(i32 10)>; def CmpNEU : PatLeaf<(i32 11)>; def CmpLTU : PatLeaf<(i32 12)>; def CmpLEU : PatLeaf<(i32 13)>; def CmpGTU : PatLeaf<(i32 14)>; def CmpGEU : PatLeaf<(i32 15)>; def CmpNUM : PatLeaf<(i32 16)>; def CmpNAN : PatLeaf<(i32 17)>; def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; def CmpNE_FTZ : PatLeaf<(i32 0x101)>; def CmpLT_FTZ : PatLeaf<(i32 0x102)>; def CmpLE_FTZ : PatLeaf<(i32 0x103)>; def CmpGT_FTZ : PatLeaf<(i32 0x104)>; def CmpGE_FTZ : PatLeaf<(i32 0x105)>; def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; def CmpMode : Operand { let PrintMethod = "printCmpMode"; } def VecElement : Operand { let PrintMethod = "printVecElement"; } // PRMT modes // These must match the enum in NVPTX.h def PrmtNONE : PatLeaf<(i32 0x0)>; def PrmtF4E : PatLeaf<(i32 0x1)>; def PrmtB4E : PatLeaf<(i32 0x2)>; def PrmtRC8 : PatLeaf<(i32 0x3)>; def PrmtECL : PatLeaf<(i32 0x4)>; def PrmtECR : PatLeaf<(i32 0x5)>; def PrmtRC16 : PatLeaf<(i32 0x6)>; def PrmtMode : Operand { let PrintMethod = "printPrmtMode"; } //===----------------------------------------------------------------------===// // NVPTX Instruction Predicate Definitions //===----------------------------------------------------------------------===// def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; def hasVote : Predicate<"Subtarget->hasVote()">; def hasDouble : Predicate<"Subtarget->hasDouble()">; def hasLDG : Predicate<"Subtarget->hasLDG()">; def hasLDU : Predicate<"Subtarget->hasLDU()">; def doF32FTZ : Predicate<"useF32FTZ()">; def doNoF32FTZ : Predicate<"!useF32FTZ()">; def doRsqrtOpt : Predicate<"doRsqrtOpt()">; def doMulWide : Predicate<"doMulWide">; def allowFMA : Predicate<"allowFMA()">; def noFMA : Predicate<"!allowFMA()">; def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; def noUnsafeFPMath : Predicate<"!allowUnsafeFPMath()">; def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; def True : Predicate<"true">; def False : Predicate<"false">; class hasPTX: Predicate<"Subtarget->getPTXVersion() >= " # version>; class hasSM: Predicate<"Subtarget->getSmVersion() >= " # version>; // Explicit records for arch-accelerated SM versions def hasSM90a : Predicate<"Subtarget->getFullSmVersion() == 901">; // non-sync shfl instructions are not available on sm_70+ in PTX6.4+ def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70" "&& Subtarget->getPTXVersion() >= 64)">; def useShortPtrLocal : Predicate<"TM.is64Bit() && TM.getPointerSizeInBits(ADDRESS_SPACE_LOCAL) == 32">; def useShortPtrShared : Predicate<"TM.is64Bit() && TM.getPointerSizeInBits(ADDRESS_SPACE_SHARED) == 32">; def useShortPtrConst : Predicate<"TM.is64Bit() && TM.getPointerSizeInBits(ADDRESS_SPACE_CONST) == 32">; def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; def hasBF16Math: Predicate<"Subtarget->hasBF16Math()">; // Helper class to aid conversion between ValueType and a matching RegisterClass. class ValueToRegClass { string name = !cast(T); NVPTXRegClass ret = !cond( !eq(name, "i1"): Int1Regs, !eq(name, "i16"): Int16Regs, !eq(name, "v2i16"): Int32Regs, !eq(name, "i32"): Int32Regs, !eq(name, "i64"): Int64Regs, !eq(name, "f16"): Int16Regs, !eq(name, "v2f16"): Int32Regs, !eq(name, "bf16"): Int16Regs, !eq(name, "v2bf16"): Int32Regs, !eq(name, "f32"): Float32Regs, !eq(name, "f64"): Float64Regs, !eq(name, "ai32"): Int32ArgRegs, !eq(name, "ai64"): Int64ArgRegs, !eq(name, "af32"): Float32ArgRegs, !eq(name, "if64"): Float64ArgRegs, ); } //===----------------------------------------------------------------------===// // Some Common Instruction Class Templates //===----------------------------------------------------------------------===// // Template for instructions which take three int64, int32, or int16 args. // The instructions are named "" (e.g. "add.s64"). multiclass I3 { def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), !strconcat(OpcStr, "64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), !strconcat(OpcStr, "64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, "32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), (i32 Int32Regs:$b)))]>; def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), !strconcat(OpcStr, "32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), imm:$b))]>; def i16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, "16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; def i16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), !strconcat(OpcStr, "16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; } class I16x2 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, "16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2i16 Int32Regs:$a), (v2i16 Int32Regs:$b)))]>, Requires<[hasPTX<80>, hasSM<90>]>; // Template for instructions which take 3 int args. The instructions are // named ".s32" (e.g. "addc.cc.s32"). multiclass ADD_SUB_INT_CARRY { let hasSideEffects = 1 in { def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), (i32 Int32Regs:$b)))]>; def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), imm:$b))]>; def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), !strconcat(OpcStr, ".s64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>, Requires<[hasPTX<43>]>; def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), !strconcat(OpcStr, ".s64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>, Requires<[hasPTX<43>]>; } } // Template for instructions which take three fp64 or fp32 args. The // instructions are named ".f" (e.g. "min.f64"). // // Also defines ftz (flush subnormal inputs and results to sign-preserving // zero) variants for fp32 functions. // // This multiclass should be used for nodes that cannot be folded into FMAs. // For nodes that can be folded into FMAs (i.e. adds and muls), use // F3_fma_component. multiclass F3 { def f64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, Float64Regs:$b), !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; def f64ri : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, f64imm:$b), !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; def f32rr_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, Requires<[doF32FTZ]>; def f32ri_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[doF32FTZ]>; def f32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; def f32ri : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; def f16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math, doF32FTZ]>; def f16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math]>; def f16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math, doF32FTZ]>; def f16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math]>; def bf16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".ftz.bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math, doF32FTZ]>; def bf16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math]>; def bf16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".ftz.bf16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math, doF32FTZ]>; def bf16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".bf16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math]>; } // Template for instructions which take three FP args. The // instructions are named ".f" (e.g. "add.f64"). // // Also defines ftz (flush subnormal inputs and results to sign-preserving // zero) variants for fp32/fp16 functions. // // This multiclass should be used for nodes that can be folded to make fma ops. // In this case, we use the ".rn" variant when FMA is disabled, as this behaves // just like the non ".rn" op, but prevents ptxas from creating FMAs. multiclass F3_fma_component { def f64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, Float64Regs:$b), !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, Requires<[allowFMA]>; def f64ri : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, f64imm:$b), !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, Requires<[allowFMA]>; def f32rr_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, Requires<[allowFMA, doF32FTZ]>; def f32ri_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[allowFMA, doF32FTZ]>; def f32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, Requires<[allowFMA]>; def f32ri : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[allowFMA]>; def f16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math, allowFMA, doF32FTZ]>; def f16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math, allowFMA]>; def f16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), [(set (v2f16 Int32Regs:$dst), (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math, allowFMA, doF32FTZ]>; def f16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math, allowFMA]>; def bf16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".ftz.bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math, allowFMA, doF32FTZ]>; def bf16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math, allowFMA]>; def bf16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".ftz.bf16x2 \t$dst, $a, $b;"), [(set (v2bf16 Int32Regs:$dst), (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math, allowFMA, doF32FTZ]>; def bf16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".bf16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math, allowFMA]>; // These have strange names so we don't perturb existing mir tests. def _rnf64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, Float64Regs:$b), !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, Requires<[noFMA]>; def _rnf64ri : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, f64imm:$b), !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, Requires<[noFMA]>; def _rnf32rr_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, Requires<[noFMA, doF32FTZ]>; def _rnf32ri_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[noFMA, doF32FTZ]>; def _rnf32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, Requires<[noFMA]>; def _rnf32ri : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, Requires<[noFMA]>; def _rnf16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math, noFMA, doF32FTZ]>; def _rnf16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b)))]>, Requires<[useFP16Math, noFMA]>; def _rnf16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math, noFMA, doF32FTZ]>; def _rnf16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a), (v2f16 Int32Regs:$b)))]>, Requires<[useFP16Math, noFMA]>; def _rnbf16rr_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".rn.ftz.bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math, noFMA, doF32FTZ]>; def _rnbf16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".rn.bf16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)))]>, Requires<[hasBF16Math, noFMA]>; def _rnbf16x2rr_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".rn.ftz.bf16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math, noFMA, doF32FTZ]>; def _rnbf16x2rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".rn.bf16x2 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a), (v2bf16 Int32Regs:$b)))]>, Requires<[hasBF16Math, noFMA]>; } // Template for operations which take two f32 or f64 operands. Provides three // instructions: .f64, .f32, and .ftz.f32 (flush // subnormal inputs and results to zero). multiclass F2 { def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), !strconcat(OpcStr, ".f64 \t$dst, $a;"), [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, Requires<[doF32FTZ]>; def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), !strconcat(OpcStr, ".f32 \t$dst, $a;"), [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; } multiclass F2_Support_Half { def bf16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a), !strconcat(OpcStr, ".bf16 \t$dst, $a;"), [(set Int16Regs:$dst, (OpNode (bf16 Int16Regs:$a)))]>, Requires<[hasSM<80>, hasPTX<70>]>; def bf16x2 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), !strconcat(OpcStr, ".bf16x2 \t$dst, $a;"), [(set Int32Regs:$dst, (OpNode (v2bf16 Int32Regs:$a)))]>, Requires<[hasSM<80>, hasPTX<70>]>; def f16_ftz : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a), !strconcat(OpcStr, ".ftz.f16 \t$dst, $a;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a)))]>, Requires<[hasSM<53>, hasPTX<65>, doF32FTZ]>; def f16x2_ftz : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a)))]>, Requires<[hasSM<53>, hasPTX<65>, doF32FTZ]>; def f16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a), !strconcat(OpcStr, ".f16 \t$dst, $a;"), [(set Int16Regs:$dst, (OpNode (f16 Int16Regs:$a)))]>, Requires<[hasSM<53>, hasPTX<65>]>; def f16x2 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), !strconcat(OpcStr, ".f16x2 \t$dst, $a;"), [(set Int32Regs:$dst, (OpNode (v2f16 Int32Regs:$a)))]>, Requires<[hasSM<53>, hasPTX<65>]>; } //===----------------------------------------------------------------------===// // NVPTX Instructions. //===----------------------------------------------------------------------===// //----------------------------------- // Type Conversion //----------------------------------- let hasSideEffects = false in { // Generate a cvt to the given type from all possible types. Each instance // takes a CvtMode immediate that defines the conversion mode to use. It can // be CvtNONE to omit a conversion mode. multiclass CVT_FROM_ALL Preds = []> { def _s8 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".s8 \t$dst, $src;"), []>, Requires; def _u8 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".u8 \t$dst, $src;"), []>, Requires; def _s16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".s16 \t$dst, $src;"), []>, Requires; def _u16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".u16 \t$dst, $src;"), []>, Requires; def _s32 : NVPTXInst<(outs RC:$dst), (ins Int32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".s32 \t$dst, $src;"), []>, Requires; def _u32 : NVPTXInst<(outs RC:$dst), (ins Int32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".u32 \t$dst, $src;"), []>, Requires; def _s64 : NVPTXInst<(outs RC:$dst), (ins Int64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".s64 \t$dst, $src;"), []>, Requires; def _u64 : NVPTXInst<(outs RC:$dst), (ins Int64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".u64 \t$dst, $src;"), []>, Requires; def _f16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".f16 \t$dst, $src;"), []>, Requires; def _bf16 : NVPTXInst<(outs RC:$dst), (ins Int16Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:relu}${mode:sat}.", ToType, ".bf16 \t$dst, $src;"), []>, Requiresf32 was introduced early. [hasPTX<71>, hasSM<80>], // bf16->everything else needs sm90/ptx78 [hasPTX<78>, hasSM<90>])>; def _f32 : NVPTXInst<(outs RC:$dst), (ins Float32Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:relu}${mode:sat}.", ToType, ".f32 \t$dst, $src;"), []>, Requiresbf16 was introduced early. [hasPTX<70>, hasSM<80>], Preds)>; def _f64 : NVPTXInst<(outs RC:$dst), (ins Float64Regs:$src, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", ToType, ".f64 \t$dst, $src;"), []>, Requires; } // Generate cvts from all types to all types. defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; defm CVT_f16 : CVT_FROM_ALL<"f16", Int16Regs>; defm CVT_bf16 : CVT_FROM_ALL<"bf16", Int16Regs, [hasPTX<78>, hasSM<90>]>; defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; // These cvts are different from those above: The source and dest registers // are of the same type. def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), "cvt.s16.s8 \t$dst, $src;", []>; def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), "cvt.s32.s8 \t$dst, $src;", []>; def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), "cvt.s32.s16 \t$dst, $src;", []>; def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), "cvt.s64.s8 \t$dst, $src;", []>; def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), "cvt.s64.s16 \t$dst, $src;", []>; def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), "cvt.s64.s32 \t$dst, $src;", []>; multiclass CVT_FROM_FLOAT_V2_SM80 { def _f32 : NVPTXInst<(outs RC:$dst), (ins Float32Regs:$src1, Float32Regs:$src2, CvtMode:$mode), !strconcat("cvt${mode:base}${mode:relu}.", FromName, ".f32 \t$dst, $src1, $src2;"), []>, Requires<[hasPTX<70>, hasSM<80>]>; } defm CVT_f16x2 : CVT_FROM_FLOAT_V2_SM80<"f16x2", Int32Regs>; defm CVT_bf16x2 : CVT_FROM_FLOAT_V2_SM80<"bf16x2", Int32Regs>; } //----------------------------------- // Selection instructions (selp) //----------------------------------- // TODO: Missing slct // selp instructions that don't have any pattern matches; we explicitly use // them within this file. let hasSideEffects = false in { multiclass SELP { def rr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ri : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ir : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, RC:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; def ii : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; } multiclass SELP_PATTERN { def rr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set (T RC:$dst), (select Int1Regs:$p, (T RC:$a), (T RC:$b)))]>; def ri : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set (T RC:$dst), (select Int1Regs:$p, (T RC:$a), (T ImmNode:$b)))]>; def ir : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, RC:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set (T RC:$dst), (select Int1Regs:$p, ImmNode:$a, (T RC:$b)))]>; def ii : NVPTXInst<(outs RC:$dst), (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), [(set (T RC:$dst), (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; } } // Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as // good. defm SELP_b16 : SELP_PATTERN<"b16", i16, Int16Regs, i16imm, imm>; defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; defm SELP_b32 : SELP_PATTERN<"b32", i32, Int32Regs, i32imm, imm>; defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; defm SELP_b64 : SELP_PATTERN<"b64", i64, Int64Regs, i64imm, imm>; defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; defm SELP_f16 : SELP_PATTERN<"b16", f16, Int16Regs, f16imm, fpimm>; defm SELP_bf16 : SELP_PATTERN<"b16", bf16, Int16Regs, bf16imm, fpimm>; defm SELP_f32 : SELP_PATTERN<"f32", f32, Float32Regs, f32imm, fpimm>; defm SELP_f64 : SELP_PATTERN<"f64", f64, Float64Regs, f64imm, fpimm>; // This does not work as tablegen fails to infer the type of 'imm'. // def v2f16imm : Operand; // defm SELP_f16x2 : SELP_PATTERN<"b32", v2f16, Int32Regs, v2f16imm, imm>; foreach vt = [v2f16, v2bf16, v2i16, v4i8] in { def : Pat<(vt (select Int1Regs:$p, (vt Int32Regs:$a), (vt Int32Regs:$b))), (SELP_b32rr Int32Regs:$a, Int32Regs:$b, Int1Regs:$p)>; } //----------------------------------- // Test Instructions //----------------------------------- def TESTINF_f32r : NVPTXInst<(outs Int1Regs:$p), (ins Float32Regs:$a), "testp.infinite.f32 \t$p, $a;", []>; def TESTINF_f32i : NVPTXInst<(outs Int1Regs:$p), (ins f32imm:$a), "testp.infinite.f32 \t$p, $a;", []>; def TESTINF_f64r : NVPTXInst<(outs Int1Regs:$p), (ins Float64Regs:$a), "testp.infinite.f64 \t$p, $a;", []>; def TESTINF_f64i : NVPTXInst<(outs Int1Regs:$p), (ins f64imm:$a), "testp.infinite.f64 \t$p, $a;", []>; //----------------------------------- // Integer Arithmetic //----------------------------------- // Template for xor masquerading as int1 arithmetic. multiclass ADD_SUB_i1 { def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), "xor.pred \t$dst, $a, $b;", [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), "xor.pred \t$dst, $a, $b;", [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; } // int1 addition and subtraction are both just xor. defm ADD_i1 : ADD_SUB_i1; defm SUB_i1 : ADD_SUB_i1; // int16, int32, and int64 signed addition. Since nvptx is 2's complement, we // also use these for unsigned arithmetic. defm ADD : I3<"add.s", add>; defm SUB : I3<"sub.s", sub>; def ADD16x2 : I16x2<"add.s", add>; // in32 and int64 addition and subtraction with carry-out. defm ADDCC : ADD_SUB_INT_CARRY<"add.cc", addc>; defm SUBCC : ADD_SUB_INT_CARRY<"sub.cc", subc>; // int32 and int64 addition and subtraction with carry-in and carry-out. defm ADDCCC : ADD_SUB_INT_CARRY<"addc.cc", adde>; defm SUBCCC : ADD_SUB_INT_CARRY<"subc.cc", sube>; defm MULT : I3<"mul.lo.s", mul>; defm MULTHS : I3<"mul.hi.s", mulhs>; defm MULTHU : I3<"mul.hi.u", mulhu>; defm SDIV : I3<"div.s", sdiv>; defm UDIV : I3<"div.u", udiv>; // The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM // will lower it. defm SREM : I3<"rem.s", srem>; defm UREM : I3<"rem.u", urem>; // Integer absolute value. NumBits should be one minus the bit width of RC. // This idiom implements the algorithm at // http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. multiclass ABS { def : NVPTXInst<(outs RC:$dst), (ins RC:$a), !strconcat("abs", SizeName, " \t$dst, $a;"), [(set (T RC:$dst), (abs (T RC:$a)))]>; } defm ABS_16 : ABS; defm ABS_32 : ABS; defm ABS_64 : ABS; // Integer min/max. defm SMAX : I3<"max.s", smax>; defm UMAX : I3<"max.u", umax>; defm SMIN : I3<"min.s", smin>; defm UMIN : I3<"min.u", umin>; def SMAX16x2 : I16x2<"max.s", smax>; def UMAX16x2 : I16x2<"max.u", umax>; def SMIN16x2 : I16x2<"min.s", smin>; def UMIN16x2 : I16x2<"min.u", umin>; // // Wide multiplication // def MULWIDES64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), "mul.wide.s32 \t$dst, $a, $b;", []>; def MULWIDES64Imm : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), "mul.wide.s32 \t$dst, $a, $b;", []>; def MULWIDES64Imm64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), "mul.wide.s32 \t$dst, $a, $b;", []>; def MULWIDEU64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), "mul.wide.u32 \t$dst, $a, $b;", []>; def MULWIDEU64Imm : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), "mul.wide.u32 \t$dst, $a, $b;", []>; def MULWIDEU64Imm64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), "mul.wide.u32 \t$dst, $a, $b;", []>; def MULWIDES32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), "mul.wide.s16 \t$dst, $a, $b;", []>; def MULWIDES32Imm : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), "mul.wide.s16 \t$dst, $a, $b;", []>; def MULWIDES32Imm32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), "mul.wide.s16 \t$dst, $a, $b;", []>; def MULWIDEU32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), "mul.wide.u16 \t$dst, $a, $b;", []>; def MULWIDEU32Imm : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), "mul.wide.u16 \t$dst, $a, $b;", []>; def MULWIDEU32Imm32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), "mul.wide.u16 \t$dst, $a, $b;", []>; def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; // Matchers for signed, unsigned mul.wide ISD nodes. def : Pat<(i32 (mul_wide_signed i16:$a, i16:$b)), (MULWIDES32 i16:$a, i16:$b)>, Requires<[doMulWide]>; def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), (MULWIDES32Imm Int16Regs:$a, imm:$b)>, Requires<[doMulWide]>; def : Pat<(i32 (mul_wide_unsigned i16:$a, i16:$b)), (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, Requires<[doMulWide]>; def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, Requires<[doMulWide]>; def : Pat<(i64 (mul_wide_signed i32:$a, i32:$b)), (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, Requires<[doMulWide]>; def : Pat<(i64 (mul_wide_signed (i32 Int32Regs:$a), imm:$b)), (MULWIDES64Imm Int32Regs:$a, imm:$b)>, Requires<[doMulWide]>; def : Pat<(i64 (mul_wide_unsigned i32:$a, i32:$b)), (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, Requires<[doMulWide]>; def : Pat<(i64 (mul_wide_unsigned (i32 Int32Regs:$a), imm:$b)), (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, Requires<[doMulWide]>; // Predicates used for converting some patterns to mul.wide. def SInt32Const : PatLeaf<(imm), [{ const APInt &v = N->getAPIntValue(); return v.isSignedIntN(32); }]>; def UInt32Const : PatLeaf<(imm), [{ const APInt &v = N->getAPIntValue(); return v.isIntN(32); }]>; def SInt16Const : PatLeaf<(imm), [{ const APInt &v = N->getAPIntValue(); return v.isSignedIntN(16); }]>; def UInt16Const : PatLeaf<(imm), [{ const APInt &v = N->getAPIntValue(); return v.isIntN(16); }]>; def IntConst_0_30 : PatLeaf<(imm), [{ // Check if 0 <= v < 31; only then will the result of (x << v) be an int32. const APInt &v = N->getAPIntValue(); return v.sge(0) && v.slt(31); }]>; def IntConst_0_14 : PatLeaf<(imm), [{ // Check if 0 <= v < 15; only then will the result of (x << v) be an int16. const APInt &v = N->getAPIntValue(); return v.sge(0) && v.slt(15); }]>; def SHL2MUL32 : SDNodeXFormgetAPIntValue(); APInt temp(32, 1); return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); }]>; def SHL2MUL16 : SDNodeXFormgetAPIntValue(); APInt temp(16, 1); return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); }]>; // Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. def : Pat<(shl (sext Int32Regs:$a), (i32 IntConst_0_30:$b)), (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, Requires<[doMulWide]>; def : Pat<(shl (zext Int32Regs:$a), (i32 IntConst_0_30:$b)), (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, Requires<[doMulWide]>; def : Pat<(shl (sext Int16Regs:$a), (i16 IntConst_0_14:$b)), (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, Requires<[doMulWide]>; def : Pat<(shl (zext Int16Regs:$a), (i16 IntConst_0_14:$b)), (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, Requires<[doMulWide]>; // Convert "sign/zero-extend then multiply" to mul.wide. def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, Requires<[doMulWide]>; def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, Requires<[doMulWide]>; def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, Requires<[doMulWide]>; def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, Requires<[doMulWide]>; def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, Requires<[doMulWide]>; def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, Requires<[doMulWide]>; def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, Requires<[doMulWide]>; def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, Requires<[doMulWide]>; // // Integer multiply-add // def SDTIMAD : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; def MAD16rrr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), "mad.lo.s16 \t$dst, $a, $b, $c;", [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; def MAD16rri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), "mad.lo.s16 \t$dst, $a, $b, $c;", [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; def MAD16rir : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), "mad.lo.s16 \t$dst, $a, $b, $c;", [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; def MAD16rii : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b, i16imm:$c), "mad.lo.s16 \t$dst, $a, $b, $c;", [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; def MAD32rrr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), "mad.lo.s32 \t$dst, $a, $b, $c;", [(set (i32 Int32Regs:$dst), (imad (i32 Int32Regs:$a), (i32 Int32Regs:$b), (i32 Int32Regs:$c)))]>; def MAD32rri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), "mad.lo.s32 \t$dst, $a, $b, $c;", [(set (i32 Int32Regs:$dst), (imad (i32 Int32Regs:$a), (i32 Int32Regs:$b), imm:$c))]>; def MAD32rir : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), "mad.lo.s32 \t$dst, $a, $b, $c;", [(set (i32 Int32Regs:$dst), (imad (i32 Int32Regs:$a), imm:$b, (i32 Int32Regs:$c)))]>; def MAD32rii : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b, i32imm:$c), "mad.lo.s32 \t$dst, $a, $b, $c;", [(set (i32 Int32Regs:$dst), (imad (i32 Int32Regs:$a), imm:$b, imm:$c))]>; def MAD64rrr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), "mad.lo.s64 \t$dst, $a, $b, $c;", [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; def MAD64rri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), "mad.lo.s64 \t$dst, $a, $b, $c;", [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; def MAD64rir : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), "mad.lo.s64 \t$dst, $a, $b, $c;", [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; def MAD64rii : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b, i64imm:$c), "mad.lo.s64 \t$dst, $a, $b, $c;", [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; def INEG16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), "neg.s16 \t$dst, $src;", [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; def INEG32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), "neg.s32 \t$dst, $src;", [(set (i32 Int32Regs:$dst), (ineg (i32 Int32Regs:$src)))]>; def INEG64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), "neg.s64 \t$dst, $src;", [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; //----------------------------------- // Floating Point Arithmetic //----------------------------------- // Constant 1.0f def FloatConst1 : PatLeaf<(fpimm), [{ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && N->getValueAPF().convertToFloat() == 1.0f; }]>; // Constant 1.0 (double) def DoubleConst1 : PatLeaf<(fpimm), [{ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && N->getValueAPF().convertToDouble() == 1.0; }]>; // Constant -1.0 (double) def DoubleConstNeg1 : PatLeaf<(fpimm), [{ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && N->getValueAPF().convertToDouble() == -1.0; }]>; // Constant -X -> X (double) def NegDoubleConst : SDNodeXFormgetTargetConstantFP(-(N->getValueAPF()), SDLoc(N), MVT::f64); }]>; // Loads FP16 constant into a register. // // ptxas does not have hex representation for fp16, so we can't use // fp16 immediate values in .f16 instructions. Instead we have to load // the constant into a register using mov.b16. def LOAD_CONST_F16 : NVPTXInst<(outs Int16Regs:$dst), (ins f16imm:$a), "mov.b16 \t$dst, $a;", []>; def LOAD_CONST_BF16 : NVPTXInst<(outs Int16Regs:$dst), (ins bf16imm:$a), "mov.b16 \t$dst, $a;", []>; defm FADD : F3_fma_component<"add", fadd>; defm FSUB : F3_fma_component<"sub", fsub>; defm FMUL : F3_fma_component<"mul", fmul>; defm FMIN : F3<"min", fminnum>; defm FMAX : F3<"max", fmaxnum>; // Note: min.NaN.f64 and max.NaN.f64 do not actually exist. defm FMINNAN : F3<"min.NaN", fminimum>; defm FMAXNAN : F3<"max.NaN", fmaximum>; defm FABS : F2<"abs", fabs>; defm FNEG : F2<"neg", fneg>; defm FABS_H: F2_Support_Half<"abs", fabs>; defm FNEG_H: F2_Support_Half<"neg", fneg>; defm FSQRT : F2<"sqrt.rn", fsqrt>; // // F16 NEG // class FNEG_F16_F16X2 : NVPTXInst<(outs RC:$dst), (ins RC:$src), !strconcat(OpcStr, " \t$dst, $src;"), [(set RC:$dst, (fneg (T RC:$src)))]>, Requires<[useFP16Math, hasPTX<60>, hasSM<53>, Pred]>; def FNEG16_ftz : FNEG_F16_F16X2<"neg.ftz.f16", f16, Int16Regs, doF32FTZ>; def FNEG16 : FNEG_F16_F16X2<"neg.f16", f16, Int16Regs, True>; def FNEG16x2_ftz : FNEG_F16_F16X2<"neg.ftz.f16x2", v2f16, Int32Regs, doF32FTZ>; def FNEG16x2 : FNEG_F16_F16X2<"neg.f16x2", v2f16, Int32Regs, True>; // // BF16 NEG // class FNEG_BF16_F16X2 : NVPTXInst<(outs RC:$dst), (ins RC:$src), !strconcat(OpcStr, " \t$dst, $src;"), [(set RC:$dst, (fneg (T RC:$src)))]>, Requires<[hasBF16Math, hasPTX<70>, hasSM<80>, Pred]>; def BFNEG16_ftz : FNEG_BF16_F16X2<"neg.ftz.bf16", bf16, Int16Regs, doF32FTZ>; def BFNEG16 : FNEG_BF16_F16X2<"neg.bf16", bf16, Int16Regs, True>; def BFNEG16x2_ftz : FNEG_BF16_F16X2<"neg.ftz.bf16x2", v2bf16, Int32Regs, doF32FTZ>; def BFNEG16x2 : FNEG_BF16_F16X2<"neg.bf16x2", v2bf16, Int32Regs, True>; // // F64 division // def FDIV641r : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$a, Float64Regs:$b), "rcp.rn.f64 \t$dst, $b;", [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; def FDIV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, Float64Regs:$b), "div.rn.f64 \t$dst, $a, $b;", [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; def FDIV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a, f64imm:$b), "div.rn.f64 \t$dst, $a, $b;", [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; // fdiv will be converted to rcp // fneg (fdiv 1.0, X) => fneg (rcp.rn X) def : Pat<(fdiv DoubleConstNeg1:$a, Float64Regs:$b), (FNEGf64 (FDIV641r (NegDoubleConst node:$a), Float64Regs:$b))>; // // F32 Approximate reciprocal // def FDIV321r_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.approx.ftz.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_APPROX, doF32FTZ]>; def FDIV321r : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.approx.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_APPROX]>; // // F32 Approximate division // def FDIV32approxrr_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.approx.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_APPROX, doF32FTZ]>; def FDIV32approxri_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.approx.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, Requires<[do_DIVF32_APPROX, doF32FTZ]>; def FDIV32approxrr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.approx.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_APPROX]>; def FDIV32approxri : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.approx.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, Requires<[do_DIVF32_APPROX]>; // // F32 Semi-accurate reciprocal // // rcp.approx gives the same result as div.full(1.0f, a) and is faster. // def FDIV321r_approx_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.approx.ftz.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_FULL, doF32FTZ]>; def FDIV321r_approx : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.approx.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_FULL]>; // // F32 Semi-accurate division // def FDIV32rr_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.full.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_FULL, doF32FTZ]>; def FDIV32ri_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.full.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, Requires<[do_DIVF32_FULL, doF32FTZ]>; def FDIV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.full.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, Requires<[do_DIVF32_FULL]>; def FDIV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.full.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, Requires<[do_DIVF32_FULL]>; // // F32 Accurate reciprocal // def FDIV321r_prec_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.rn.ftz.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, Requires<[doF32FTZ]>; def FDIV321r_prec : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$a, Float32Regs:$b), "rcp.rn.f32 \t$dst, $b;", [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; // // F32 Accurate division // def FDIV32rr_prec_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.rn.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, Requires<[doF32FTZ]>; def FDIV32ri_prec_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.rn.ftz.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, Requires<[doF32FTZ]>; def FDIV32rr_prec : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, Float32Regs:$b), "div.rn.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; def FDIV32ri_prec : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a, f32imm:$b), "div.rn.f32 \t$dst, $a, $b;", [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; // // FMA // multiclass FMA { def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, Requires<[Pred]>; def rri : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, ImmCls:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, Requires<[Pred]>; def rir : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, RC:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, Requires<[Pred]>; def rii : NVPTXInst<(outs RC:$dst), (ins RC:$a, ImmCls:$b, ImmCls:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, Requires<[Pred]>; } multiclass FMA_F16 { def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma (T RC:$a), (T RC:$b), (T RC:$c)))]>, Requires<[useFP16Math, Pred]>; } multiclass FMA_BF16 { def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), [(set RC:$dst, (fma (T RC:$a), (T RC:$b), (T RC:$c)))]>, Requires<[hasBF16Math, Pred]>; } defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", f16, Int16Regs, doF32FTZ>; defm FMA16 : FMA_F16<"fma.rn.f16", f16, Int16Regs, True>; defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", v2f16, Int32Regs, doF32FTZ>; defm FMA16x2 : FMA_F16<"fma.rn.f16x2", v2f16, Int32Regs, True>; defm BFMA16_ftz : FMA_BF16<"fma.rn.ftz.bf16", bf16, Int16Regs, doF32FTZ>; defm BFMA16 : FMA_BF16<"fma.rn.bf16", bf16, Int16Regs, True>; defm BFMA16x2_ftz : FMA_BF16<"fma.rn.ftz.bf16x2", v2bf16, Int32Regs, doF32FTZ>; defm BFMA16x2 : FMA_BF16<"fma.rn.bf16x2", v2bf16, Int32Regs, True>; defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, True>; defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, True>; // sin/cos def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "sin.approx.f32 \t$dst, $src;", [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, Requires<[allowUnsafeFPMath]>; def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "cos.approx.f32 \t$dst, $src;", [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, Requires<[allowUnsafeFPMath]>; // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)), // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches the // semantics of LLVM's frem. // frem - f32 FTZ def : Pat<(frem Float32Regs:$x, Float32Regs:$y), (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRZI_FTZ), Float32Regs:$y))>, Requires<[doF32FTZ, allowUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, fpimm:$y), (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRZI_FTZ), fpimm:$y))>, Requires<[doF32FTZ, allowUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, Float32Regs:$y), (SELP_f32rr Float32Regs:$x, (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRZI_FTZ), Float32Regs:$y)), (TESTINF_f32r Float32Regs:$y))>, Requires<[doF32FTZ, noUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, fpimm:$y), (SELP_f32rr Float32Regs:$x, (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRZI_FTZ), fpimm:$y)), (TESTINF_f32i fpimm:$y))>, Requires<[doF32FTZ, noUnsafeFPMath]>; // frem - f32 def : Pat<(frem Float32Regs:$x, Float32Regs:$y), (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRZI), Float32Regs:$y))>, Requires<[allowUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, fpimm:$y), (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRZI), fpimm:$y))>, Requires<[allowUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, Float32Regs:$y), (SELP_f32rr Float32Regs:$x, (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRZI), Float32Regs:$y)), (TESTINF_f32r Float32Regs:$y))>, Requires<[noUnsafeFPMath]>; def : Pat<(frem Float32Regs:$x, fpimm:$y), (SELP_f32rr Float32Regs:$x, (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRZI), fpimm:$y)), (TESTINF_f32i fpimm:$y))>, Requires<[noUnsafeFPMath]>; // frem - f64 def : Pat<(frem Float64Regs:$x, Float64Regs:$y), (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRZI), Float64Regs:$y))>, Requires<[allowUnsafeFPMath]>; def : Pat<(frem Float64Regs:$x, fpimm:$y), (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRZI), fpimm:$y))>, Requires<[allowUnsafeFPMath]>; def : Pat<(frem Float64Regs:$x, Float64Regs:$y), (SELP_f64rr Float64Regs:$x, (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRZI), Float64Regs:$y)), (TESTINF_f64r Float64Regs:$y))>, Requires<[noUnsafeFPMath]>; def : Pat<(frem Float64Regs:$x, fpimm:$y), (SELP_f64rr Float64Regs:$x, (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRZI), fpimm:$y)), (TESTINF_f64r Float64Regs:$y))>, Requires<[noUnsafeFPMath]>; //----------------------------------- // Bitwise operations //----------------------------------- // Template for three-arg bitwise operations. Takes three args, Creates .b16, // .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. multiclass BITWISE { def b1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; def b1ri : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; def b16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; def b16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; def b32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), (i32 Int32Regs:$b)))]>; def b32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), imm:$b))]>; def b64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; def b64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; } defm OR : BITWISE<"or", or>; defm AND : BITWISE<"and", and>; defm XOR : BITWISE<"xor", xor>; // PTX does not support mul on predicates, convert to and instructions def : Pat<(mul Int1Regs:$a, Int1Regs:$b), (ANDb1rr Int1Regs:$a, Int1Regs:$b)>; def : Pat<(mul Int1Regs:$a, (i1 imm:$b)), (ANDb1ri Int1Regs:$a, imm:$b)>; // These transformations were once reliably performed by instcombine, but thanks // to poison semantics they are no longer safe for LLVM IR, perform them here // instead. def : Pat<(select Int1Regs:$a, Int1Regs:$b, 0), (ANDb1rr Int1Regs:$a, Int1Regs:$b)>; def : Pat<(select Int1Regs:$a, 1, Int1Regs:$b), (ORb1rr Int1Regs:$a, Int1Regs:$b)>; // Lower logical v2i16/v4i8 ops as bitwise ops on b32. foreach vt = [v2i16, v4i8] in { def: Pat<(or (vt Int32Regs:$a), (vt Int32Regs:$b)), (ORb32rr Int32Regs:$a, Int32Regs:$b)>; def: Pat<(xor (vt Int32Regs:$a), (vt Int32Regs:$b)), (XORb32rr Int32Regs:$a, Int32Regs:$b)>; def: Pat<(and (vt Int32Regs:$a), (vt Int32Regs:$b)), (ANDb32rr Int32Regs:$a, Int32Regs:$b)>; // The constants get legalized into a bitcast from i32, so that's what we need // to match here. def: Pat<(or Int32Regs:$a, (vt (bitconvert (i32 imm:$b)))), (ORb32ri Int32Regs:$a, imm:$b)>; def: Pat<(xor Int32Regs:$a, (vt (bitconvert (i32 imm:$b)))), (XORb32ri Int32Regs:$a, imm:$b)>; def: Pat<(and Int32Regs:$a, (vt (bitconvert (i32 imm:$b)))), (ANDb32ri Int32Regs:$a, imm:$b)>; } def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), "not.pred \t$dst, $src;", [(set Int1Regs:$dst, (not Int1Regs:$src))]>; def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), "not.b16 \t$dst, $src;", [(set Int16Regs:$dst, (not Int16Regs:$src))]>; def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), "not.b32 \t$dst, $src;", [(set (i32 Int32Regs:$dst), (not (i32 Int32Regs:$src)))]>; def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), "not.b64 \t$dst, $src;", [(set Int64Regs:$dst, (not Int64Regs:$src))]>; // Template for left/right shifts. Takes three operands, // [dest (reg), src (reg), shift (reg or imm)]. // dest and src may be int64, int32, or int16, but shift is always int32. // // This template also defines a 32-bit shift (imm, imm) instruction. multiclass SHIFT { def i64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), !strconcat(OpcStr, "64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 Int32Regs:$b)))]>; def i64ri : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), !strconcat(OpcStr, "64 \t$dst, $a, $b;"), [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; def i32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), !strconcat(OpcStr, "32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), (i32 Int32Regs:$b)))]>; def i32ri : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), !strconcat(OpcStr, "32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 Int32Regs:$a), (i32 imm:$b)))]>; def i32ii : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), !strconcat(OpcStr, "32 \t$dst, $a, $b;"), [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; def i16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), !strconcat(OpcStr, "16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 Int32Regs:$b)))]>; def i16ri : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), !strconcat(OpcStr, "16 \t$dst, $a, $b;"), [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; } defm SHL : SHIFT<"shl.b", shl>; defm SRA : SHIFT<"shr.s", sra>; defm SRL : SHIFT<"shr.u", srl>; // Bit-reverse def BREV32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), "brev.b32 \t$dst, $a;", [(set Int32Regs:$dst, (bitreverse (i32 Int32Regs:$a)))]>; def BREV64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), "brev.b64 \t$dst, $a;", [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; // // Rotate: Use ptx shf instruction if available. // // 32 bit r2 = rotl r1, n // => // r2 = shf.l r1, r1, n def ROTL32imm_hw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", [(set Int32Regs:$dst, (rotl (i32 Int32Regs:$src), (i32 imm:$amt)))]>, Requires<[hasHWROT32]>; def ROTL32reg_hw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", [(set Int32Regs:$dst, (rotl (i32 Int32Regs:$src), (i32 Int32Regs:$amt)))]>, Requires<[hasHWROT32]>; // 32 bit r2 = rotr r1, n // => // r2 = shf.r r1, r1, n def ROTR32imm_hw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", [(set Int32Regs:$dst, (rotr (i32 Int32Regs:$src), (i32 imm:$amt)))]>, Requires<[hasHWROT32]>; def ROTR32reg_hw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", [(set Int32Regs:$dst, (rotr (i32 Int32Regs:$src), (i32 Int32Regs:$amt)))]>, Requires<[hasHWROT32]>; // 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. def ROT32imm_sw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), "{{\n\t" ".reg .b32 %lhs;\n\t" ".reg .b32 %rhs;\n\t" "shl.b32 \t%lhs, $src, $amt1;\n\t" "shr.b32 \t%rhs, $src, $amt2;\n\t" "add.u32 \t$dst, %lhs, %rhs;\n\t" "}}", []>; def SUB_FRM_32 : SDNodeXFormgetTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); }]>; def : Pat<(rotl (i32 Int32Regs:$src), (i32 imm:$amt)), (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, Requires<[noHWROT32]>; def : Pat<(rotr (i32 Int32Regs:$src), (i32 imm:$amt)), (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, Requires<[noHWROT32]>; // 32-bit software rotate left by register. def ROTL32reg_sw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), "{{\n\t" ".reg .b32 %lhs;\n\t" ".reg .b32 %rhs;\n\t" ".reg .b32 %amt2;\n\t" "shl.b32 \t%lhs, $src, $amt;\n\t" "sub.s32 \t%amt2, 32, $amt;\n\t" "shr.b32 \t%rhs, $src, %amt2;\n\t" "add.u32 \t$dst, %lhs, %rhs;\n\t" "}}", [(set Int32Regs:$dst, (rotl (i32 Int32Regs:$src), (i32 Int32Regs:$amt)))]>, Requires<[noHWROT32]>; // 32-bit software rotate right by register. def ROTR32reg_sw : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), "{{\n\t" ".reg .b32 %lhs;\n\t" ".reg .b32 %rhs;\n\t" ".reg .b32 %amt2;\n\t" "shr.b32 \t%lhs, $src, $amt;\n\t" "sub.s32 \t%amt2, 32, $amt;\n\t" "shl.b32 \t%rhs, $src, %amt2;\n\t" "add.u32 \t$dst, %lhs, %rhs;\n\t" "}}", [(set Int32Regs:$dst, (rotr (i32 Int32Regs:$src), (i32 Int32Regs:$amt)))]>, Requires<[noHWROT32]>; // 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. def ROT64imm_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), "{{\n\t" ".reg .b64 %lhs;\n\t" ".reg .b64 %rhs;\n\t" "shl.b64 \t%lhs, $src, $amt1;\n\t" "shr.b64 \t%rhs, $src, $amt2;\n\t" "add.u64 \t$dst, %lhs, %rhs;\n\t" "}}", []>; def SUB_FRM_64 : SDNodeXFormgetTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); }]>; def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; // 64-bit software rotate left by register. def ROTL64reg_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), "{{\n\t" ".reg .b64 %lhs;\n\t" ".reg .b64 %rhs;\n\t" ".reg .u32 %amt2;\n\t" "and.b32 \t%amt2, $amt, 63;\n\t" "shl.b64 \t%lhs, $src, %amt2;\n\t" "sub.u32 \t%amt2, 64, %amt2;\n\t" "shr.b64 \t%rhs, $src, %amt2;\n\t" "add.u64 \t$dst, %lhs, %rhs;\n\t" "}}", [(set Int64Regs:$dst, (rotl Int64Regs:$src, (i32 Int32Regs:$amt)))]>; def ROTR64reg_sw : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), "{{\n\t" ".reg .b64 %lhs;\n\t" ".reg .b64 %rhs;\n\t" ".reg .u32 %amt2;\n\t" "and.b32 \t%amt2, $amt, 63;\n\t" "shr.b64 \t%lhs, $src, %amt2;\n\t" "sub.u32 \t%amt2, 64, %amt2;\n\t" "shl.b64 \t%rhs, $src, %amt2;\n\t" "add.u64 \t$dst, %lhs, %rhs;\n\t" "}}", [(set Int64Regs:$dst, (rotr Int64Regs:$src, (i32 Int32Regs:$amt)))]>; // // Funnnel shift in clamp mode // // Create SDNodes so they can be used in the DAG code, e.g. // NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; def FUNSHFLCLAMP : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", [(set Int32Regs:$dst, (FUN_SHFL_CLAMP (i32 Int32Regs:$lo), (i32 Int32Regs:$hi), (i32 Int32Regs:$amt)))]>; def FUNSHFRCLAMP : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", [(set Int32Regs:$dst, (FUN_SHFR_CLAMP (i32 Int32Regs:$lo), (i32 Int32Regs:$hi), (i32 Int32Regs:$amt)))]>; // // BFE - bit-field extract // // Template for BFE/BFI instructions. // Args: [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. // Start may be an imm only if end is also an imm. FIXME: Is this a // restriction in PTX? // // dest and src may be int32 or int64, but start and end are always int32. def SDTBFE : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def bfe : SDNode<"NVPTXISD::BFE", SDTBFE>; def SDTBFI : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; def bfi : SDNode<"NVPTXISD::BFI", SDTBFI>; def SDTPRMT : SDTypeProfile<1, 4, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>,]>; def prmt : SDNode<"NVPTXISD::PRMT", SDTPRMT>; multiclass BFE { def rrr : NVPTXInst<(outs RC:$d), (ins RC:$a, Int32Regs:$b, Int32Regs:$c), !strconcat(Instr, " \t$d, $a, $b, $c;"), [(set (T RC:$d), (bfe (T RC:$a), (i32 Int32Regs:$b), (i32 Int32Regs:$c)))]>; def rri : NVPTXInst<(outs RC:$d), (ins RC:$a, Int32Regs:$b, i32imm:$c), !strconcat(Instr, " \t$d, $a, $b, $c;"), [(set (T RC:$d), (bfe (T RC:$a), (i32 Int32Regs:$b), (i32 imm:$c)))]>; def rii : NVPTXInst<(outs RC:$d), (ins RC:$a, i32imm:$b, i32imm:$c), !strconcat(Instr, " \t$d, $a, $b, $c;"), [(set (T RC:$d), (bfe (T RC:$a), (i32 imm:$b), (i32 imm:$c)))]>; } multiclass BFI { def rrrr : NVPTXInst<(outs RC:$f), (ins RC:$a, RC:$b, Int32Regs:$c, Int32Regs:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T RC:$a), (T RC:$b), (i32 Int32Regs:$c), (i32 Int32Regs:$d)))]>; def rrri : NVPTXInst<(outs RC:$f), (ins RC:$a, RC:$b, Int32Regs:$c, i32imm:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T RC:$a), (T RC:$b), (i32 Int32Regs:$c), (i32 imm:$d)))]>; def rrii : NVPTXInst<(outs RC:$f), (ins RC:$a, RC:$b, i32imm:$c, i32imm:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T RC:$a), (T RC:$b), (i32 imm:$c), (i32 imm:$d)))]>; def irrr : NVPTXInst<(outs RC:$f), (ins ImmCls:$a, RC:$b, Int32Regs:$c, Int32Regs:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T imm:$a), (T RC:$b), (i32 Int32Regs:$c), (i32 Int32Regs:$d)))]>; def irri : NVPTXInst<(outs RC:$f), (ins ImmCls:$a, RC:$b, Int32Regs:$c, i32imm:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T imm:$a), (T RC:$b), (i32 Int32Regs:$c), (i32 imm:$d)))]>; def irii : NVPTXInst<(outs RC:$f), (ins ImmCls:$a, RC:$b, i32imm:$c, i32imm:$d), !strconcat(Instr, " \t$f, $a, $b, $c, $d;"), [(set (T RC:$f), (bfi (T imm:$a), (T RC:$b), (i32 imm:$c), (i32 imm:$d)))]>; } multiclass PRMT { def rrr : NVPTXInst<(outs RC:$d), (ins RC:$a, Int32Regs:$b, Int32Regs:$c, PrmtMode:$mode), !strconcat("prmt.b32${mode}", " \t$d, $a, $b, $c;"), [(set (T RC:$d), (prmt (T RC:$a), (T RC:$b), (i32 Int32Regs:$c), imm:$mode))]>; def rri : NVPTXInst<(outs RC:$d), (ins RC:$a, Int32Regs:$b, i32imm:$c, PrmtMode:$mode), !strconcat("prmt.b32${mode}", " \t$d, $a, $b, $c;"), [(set (T RC:$d), (prmt (T RC:$a), (T RC:$b), (i32 imm:$c), imm:$mode))]>; def rii : NVPTXInst<(outs RC:$d), (ins RC:$a, i32imm:$b, i32imm:$c, PrmtMode:$mode), !strconcat("prmt.b32${mode}", " \t$d, $a, $b, $c;"), [(set (T RC:$d), (prmt (T RC:$a), (T imm:$b), (i32 imm:$c), imm:$mode))]>; } let hasSideEffects = false in { // order is somewhat important here. signed/unsigned variants match // the same patterns, so the first one wins. Having unsigned byte extraction // has the benefit of always having zero in unused bits, which makes some // optimizations easier (e.g. no need to mask them). defm BFE_U32 : BFE<"bfe.u32", i32, Int32Regs>; defm BFE_S32 : BFE<"bfe.s32", i32, Int32Regs>; defm BFE_U64 : BFE<"bfe.u64", i64, Int64Regs>; defm BFE_S64 : BFE<"bfe.s64", i64, Int64Regs>; defm BFI_B32 : BFI<"bfi.b32", i32, Int32Regs, i32imm>; defm BFI_B64 : BFI<"bfi.b64", i64, Int64Regs, i64imm>; defm PRMT_B32 : PRMT; } // byte extraction + signed/unsigned extension to i32. def : Pat<(i32 (sext_inreg (bfe (i32 Int32Regs:$s), (i32 Int32Regs:$o), 8), i8)), (BFE_S32rri Int32Regs:$s, Int32Regs:$o, 8)>; def : Pat<(i32 (sext_inreg (bfe (i32 Int32Regs:$s), (i32 imm:$o), 8), i8)), (BFE_S32rii Int32Regs:$s, imm:$o, 8)>; def : Pat<(i32 (and (bfe (i32 Int32Regs:$s), (i32 Int32Regs:$o), 8), 255)), (BFE_U32rri Int32Regs:$s, Int32Regs:$o, 8)>; def : Pat<(i32 (and (bfe (i32 Int32Regs:$s), (i32 imm:$o), 8), 255)), (BFE_U32rii Int32Regs:$s, imm:$o, 8)>; // byte extraction + signed extension to i16 def : Pat<(i16 (sext_inreg (trunc (bfe (i32 Int32Regs:$s), (i32 imm:$o), 8)), i8)), (CVT_s8_s32 (BFE_S32rii Int32Regs:$s, imm:$o, 8), CvtNONE)>; // Byte extraction via shift/trunc/sext def : Pat<(i16 (sext_inreg (trunc Int32Regs:$s), i8)), (CVT_s8_s32 Int32Regs:$s, CvtNONE)>; def : Pat<(i16 (sext_inreg (trunc (srl (i32 Int32Regs:$s), (i32 imm:$o))), i8)), (CVT_s8_s32 (BFE_S32rii Int32Regs:$s, imm:$o, 8), CvtNONE)>; def : Pat<(sext_inreg (srl (i32 Int32Regs:$s), (i32 imm:$o)), i8), (BFE_S32rii Int32Regs:$s, imm:$o, 8)>; def : Pat<(i16 (sra (i16 (trunc Int32Regs:$s)), (i32 8))), (CVT_s8_s32 (BFE_S32rii Int32Regs:$s, 8, 8), CvtNONE)>; def : Pat<(sext_inreg (srl (i64 Int64Regs:$s), (i32 imm:$o)), i8), (BFE_S64rii Int64Regs:$s, imm:$o, 8)>; def : Pat<(i16 (sext_inreg (trunc Int64Regs:$s), i8)), (CVT_s8_s64 Int64Regs:$s, CvtNONE)>; def : Pat<(i16 (sext_inreg (trunc (srl (i64 Int64Regs:$s), (i32 imm:$o))), i8)), (CVT_s8_s64 (BFE_S64rii Int64Regs:$s, imm:$o, 8), CvtNONE)>; //----------------------------------- // Comparison instructions (setp, set) //----------------------------------- // FIXME: This doesn't cover versions of set and setp that combine with a // boolean predicate, e.g. setp.eq.and.b16. let hasSideEffects = false in { multiclass SETP { def rr : NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, " \t$dst, $a, $b;"), []>; def ri : NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, " \t$dst, $a, $b;"), []>; def ir : NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, " \t$dst, $a, $b;"), []>; } } defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; def SETP_f16rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b, CmpMode:$cmp), "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", []>, Requires<[useFP16Math]>; def SETP_f16x2rr : NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), (ins Int32Regs:$a, Int32Regs:$b, CmpMode:$cmp), "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", []>, Requires<[useFP16Math]>; def SETP_bf16rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b, CmpMode:$cmp), "setp${cmp:base}${cmp:ftz}.bf16 \t$dst, $a, $b;", []>, Requires<[hasBF16Math, hasPTX<78>, hasSM<90>]>; def SETP_bf16x2rr : NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), (ins Int32Regs:$a, Int32Regs:$b, CmpMode:$cmp), "setp${cmp:base}${cmp:ftz}.bf16x2 \t$p|$q, $a, $b;", []>, Requires<[hasBF16Math, hasPTX<78>, hasSM<90>]>; // FIXME: This doesn't appear to be correct. The "set" mnemonic has the form // "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination // reg, either u32, s32, or f32. Anyway these aren't used at the moment. let hasSideEffects = false in { multiclass SET { def rr : NVPTXInst<(outs Int32Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; def ri : NVPTXInst<(outs Int32Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; def ir : NVPTXInst<(outs Int32Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; } } defm SET_b16 : SET<"b16", Int16Regs, i16imm>; defm SET_s16 : SET<"s16", Int16Regs, i16imm>; defm SET_u16 : SET<"u16", Int16Regs, i16imm>; defm SET_b32 : SET<"b32", Int32Regs, i32imm>; defm SET_s32 : SET<"s32", Int32Regs, i32imm>; defm SET_u32 : SET<"u32", Int32Regs, i32imm>; defm SET_b64 : SET<"b64", Int64Regs, i64imm>; defm SET_s64 : SET<"s64", Int64Regs, i64imm>; defm SET_u64 : SET<"u64", Int64Regs, i64imm>; defm SET_f16 : SET<"f16", Int16Regs, f16imm>; defm SET_bf16 : SET<"bf16", Int16Regs, bf16imm>, Requires<[hasPTX<78>, hasSM<90>]>; defm SET_f32 : SET<"f32", Float32Regs, f32imm>; defm SET_f64 : SET<"f64", Float64Regs, f64imm>; //----------------------------------- // Data Movement (Load / Store, Move) //----------------------------------- def ADDRri : ComplexPattern; def ADDRri64 : ComplexPattern; def ADDRvar : ComplexPattern; def MEMri : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops Int32Regs, i32imm); } def MEMri64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops Int64Regs, i64imm); } def imem : Operand { let PrintMethod = "printOperand"; } def imemAny : Operand { let PrintMethod = "printOperand"; } def LdStCode : Operand { let PrintMethod = "printLdStCode"; } def MmaCode : Operand { let PrintMethod = "printMmaCode"; } def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; // Load a memory address into a u32 or u64 register. def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), "mov.u32 \t$dst, $a;", [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), "mov.u64 \t$dst, $a;", [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; // Get pointer to local stack. let hasSideEffects = false in { def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), "mov.u32 \t$d, __local_depot$num;", []>; def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), "mov.u64 \t$d, __local_depot$num;", []>; } // copyPhysreg is hard-coded in NVPTXInstrInfo.cpp let IsSimpleMove=1, hasSideEffects=0 in { def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), "mov.pred \t$dst, $sss;", []>; def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), "mov.u16 \t$dst, $sss;", []>; def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), "mov.u32 \t$dst, $sss;", []>; def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), "mov.u64 \t$dst, $sss;", []>; def IMOV128rr : NVPTXInst<(outs Int128Regs:$dst), (ins Int128Regs:$sss), "mov.b128 \t$dst, $sss;", []>; def IMOVB16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), "mov.b16 \t$dst, $sss;", []>; def IMOVB32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), "mov.b32 \t$dst, $sss;", []>; def IMOVB64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), "mov.b64 \t$dst, $sss;", []>; def FMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), // We have to use .b16 here as there's no mov.f16. "mov.b16 \t$dst, $src;", []>; def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), "mov.f32 \t$dst, $src;", []>; def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), "mov.f64 \t$dst, $src;", []>; } def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), "mov.pred \t$dst, $src;", [(set Int1Regs:$dst, imm:$src)]>; def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), "mov.u16 \t$dst, $src;", [(set Int16Regs:$dst, imm:$src)]>; def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), "mov.u32 \t$dst, $src;", [(set (i32 Int32Regs:$dst), imm:$src)]>; def IMOV64ri : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), "mov.u64 \t$dst, $src;", [(set Int64Regs:$dst, imm:$src)]>; def IMOVB16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), "mov.b16 \t$dst, $src;", []>; def IMOVB32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), "mov.b32 \t$dst, $src;", []>; def IMOVB64ri : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), "mov.b64 \t$dst, $src;", []>; def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), "mov.f32 \t$dst, $src;", [(set Float32Regs:$dst, fpimm:$src)]>; def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), "mov.f64 \t$dst, $src;", [(set Float64Regs:$dst, fpimm:$src)]>; def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; def : Pat<(i64 (Wrapper texternalsym:$dst)), (IMOV64ri texternalsym:$dst)>; //---- Copy Frame Index ---- def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), "add.u32 \t$dst, ${addr:add};", [(set Int32Regs:$dst, ADDRri:$addr)]>; def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), "add.u64 \t$dst, ${addr:add};", [(set Int64Regs:$dst, ADDRri64:$addr)]>; //----------------------------------- // Comparison and Selection //----------------------------------- multiclass ISET_FORMAT { // i16 -> pred def : Pat<(i1 (OpNode i16:$a, i16:$b)), (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), (setp_16ri Int16Regs:$a, imm:$b, Mode)>; def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), (setp_16ir imm:$a, Int16Regs:$b, Mode)>; // i32 -> pred def : Pat<(i1 (OpNode i32:$a, i32:$b)), (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; def : Pat<(i1 (OpNode (i32 Int32Regs:$a), imm:$b)), (setp_32ri Int32Regs:$a, imm:$b, Mode)>; def : Pat<(i1 (OpNode imm:$a, (i32 Int32Regs:$b))), (setp_32ir imm:$a, Int32Regs:$b, Mode)>; // i64 -> pred def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), (setp_64ri Int64Regs:$a, imm:$b, Mode)>; def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), (setp_64ir imm:$a, Int64Regs:$b, Mode)>; // i16 -> i32 def : Pat<(i32 (OpNode i16:$a, i16:$b)), (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), (set_16ri Int16Regs:$a, imm:$b, Mode)>; def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), (set_16ir imm:$a, Int16Regs:$b, Mode)>; // i32 -> i32 def : Pat<(i32 (OpNode i32:$a, i32:$b)), (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; def : Pat<(i32 (OpNode (i32 Int32Regs:$a), imm:$b)), (set_32ri Int32Regs:$a, imm:$b, Mode)>; def : Pat<(i32 (OpNode imm:$a, (i32 Int32Regs:$b))), (set_32ir imm:$a, Int32Regs:$b, Mode)>; // i64 -> i32 def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), (set_64ri Int64Regs:$a, imm:$b, Mode)>; def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), (set_64ir imm:$a, Int64Regs:$b, Mode)>; } multiclass ISET_FORMAT_SIGNED : ISET_FORMAT { // TableGen doesn't like empty multiclasses. def : PatLeaf<(i32 0)>; } multiclass ISET_FORMAT_UNSIGNED : ISET_FORMAT { // TableGen doesn't like empty multiclasses. def : PatLeaf<(i32 0)>; } defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_SIGNED; defm : ISET_FORMAT_UNSIGNED; defm : ISET_FORMAT_UNSIGNED; defm : ISET_FORMAT_UNSIGNED; defm : ISET_FORMAT_UNSIGNED; defm : ISET_FORMAT_UNSIGNED; defm : ISET_FORMAT_UNSIGNED; // i1 compares def : Pat<(setne Int1Regs:$a, Int1Regs:$b), (XORb1rr Int1Regs:$a, Int1Regs:$b)>; def : Pat<(setune Int1Regs:$a, Int1Regs:$b), (XORb1rr Int1Regs:$a, Int1Regs:$b)>; def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; // comparisons of i8 extracted with BFE as i32 // It's faster to do comparison directly on i32 extracted by BFE, // instead of the long conversion and sign extending. def: Pat<(setgt (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8))), i8)), (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8))), i8))), (SETP_s32rr (BFE_S32rri $a, $oa, 8), (BFE_S32rri $b, $ob, 8), CmpGT)>; def: Pat<(setgt (i16 (sext_inreg (trunc (bfe Int32Regs:$a, imm:$oa, 8)), i8)), (i16 (sext_inreg (trunc (bfe Int32Regs:$b, imm:$ob, 8)), i8))), (SETP_s32rr (BFE_S32rii $a, imm:$oa, 8), (BFE_S32rii $b, imm:$ob, 8), CmpGT)>; def: Pat<(setge (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8))), i8)), (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8))), i8))), (SETP_s32rr (BFE_S32rri $a, $oa, 8), (BFE_S32rri $b, $ob, 8), CmpGE)>; def: Pat<(setge (i16 (sext_inreg (trunc (bfe Int32Regs:$a, imm:$oa, 8)), i8)), (i16 (sext_inreg (trunc (bfe Int32Regs:$b, imm:$ob, 8)), i8))), (SETP_s32rr (BFE_S32rii $a, imm:$oa, 8), (BFE_S32rii $b, imm:$ob, 8), CmpGE)>; def: Pat<(setlt (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8))), i8)), (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8))), i8))), (SETP_s32rr (BFE_S32rri $a, $oa, 8), (BFE_S32rri $b, $ob, 8), CmpLT)>; def: Pat<(setlt (i16 (sext_inreg (trunc (bfe Int32Regs:$a, imm:$oa, 8)), i8)), (i16 (sext_inreg (trunc (bfe Int32Regs:$b, imm:$ob, 8)), i8))), (SETP_s32rr (BFE_S32rii $a, imm:$oa, 8), (BFE_S32rii $b, imm:$ob, 8), CmpLT)>; def: Pat<(setle (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8))), i8)), (i16 (sext_inreg (i16 (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8))), i8))), (SETP_s32rr (BFE_S32rri $a, $oa, 8), (BFE_S32rri $b, $ob, 8), CmpLE)>; def: Pat<(setle (i16 (sext_inreg (trunc (bfe Int32Regs:$a, imm:$oa, 8)), i8)), (i16 (sext_inreg (trunc (bfe Int32Regs:$b, imm:$ob, 8)), i8))), (SETP_s32rr (BFE_S32rii $a, imm:$oa, 8), (BFE_S32rii $b, imm:$ob, 8), CmpLE)>; def: Pat<(setugt (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpHI)>; def: Pat<(setugt (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpHI)>; def: Pat<(setuge (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpHS)>; def: Pat<(setuge (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpHS)>; def: Pat<(setult (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpLO)>; def: Pat<(setult (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpLO)>; def: Pat<(setule (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpLS)>; def: Pat<(setule (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpLS)>; def: Pat<(seteq (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpEQ)>; def: Pat<(seteq (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpEQ)>; def: Pat<(setne (i16 (and (trunc (bfe Int32Regs:$a, Int32Regs:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, Int32Regs:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rri $a, $oa, 8), (BFE_U32rri $b, $ob, 8), CmpNE)>; def: Pat<(setne (i16 (and (trunc (bfe Int32Regs:$a, imm:$oa, 8)), 255)), (i16 (and (trunc (bfe Int32Regs:$b, imm:$ob, 8)), 255))), (SETP_u32rr (BFE_U32rii $a, imm:$oa, 8), (BFE_U32rii $b, imm:$ob, 8), CmpNE)>; // i1 compare -> i32 def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; multiclass FSET_FORMAT { // f16 -> pred def : Pat<(i1 (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b))), (SETP_f16rr Int16Regs:$a, Int16Regs:$b, ModeFTZ)>, Requires<[useFP16Math,doF32FTZ]>; def : Pat<(i1 (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b))), (SETP_f16rr Int16Regs:$a, Int16Regs:$b, Mode)>, Requires<[useFP16Math]>; def : Pat<(i1 (OpNode (f16 Int16Regs:$a), fpimm:$b)), (SETP_f16rr Int16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, Requires<[useFP16Math,doF32FTZ]>; def : Pat<(i1 (OpNode (f16 Int16Regs:$a), fpimm:$b)), (SETP_f16rr Int16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, Requires<[useFP16Math]>; def : Pat<(i1 (OpNode fpimm:$a, (f16 Int16Regs:$b))), (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Int16Regs:$b, ModeFTZ)>, Requires<[useFP16Math,doF32FTZ]>; def : Pat<(i1 (OpNode fpimm:$a, (f16 Int16Regs:$b))), (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Int16Regs:$b, Mode)>, Requires<[useFP16Math]>; // bf16 -> pred def : Pat<(i1 (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b))), (SETP_bf16rr Int16Regs:$a, Int16Regs:$b, ModeFTZ)>, Requires<[hasBF16Math,doF32FTZ]>; def : Pat<(i1 (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b))), (SETP_bf16rr Int16Regs:$a, Int16Regs:$b, Mode)>, Requires<[hasBF16Math]>; def : Pat<(i1 (OpNode (bf16 Int16Regs:$a), fpimm:$b)), (SETP_bf16rr Int16Regs:$a, (LOAD_CONST_BF16 fpimm:$b), ModeFTZ)>, Requires<[hasBF16Math,doF32FTZ]>; def : Pat<(i1 (OpNode (bf16 Int16Regs:$a), fpimm:$b)), (SETP_bf16rr Int16Regs:$a, (LOAD_CONST_BF16 fpimm:$b), Mode)>, Requires<[hasBF16Math]>; def : Pat<(i1 (OpNode fpimm:$a, (bf16 Int16Regs:$b))), (SETP_bf16rr (LOAD_CONST_BF16 fpimm:$a), Int16Regs:$b, ModeFTZ)>, Requires<[hasBF16Math,doF32FTZ]>; def : Pat<(i1 (OpNode fpimm:$a, (bf16 Int16Regs:$b))), (SETP_bf16rr (LOAD_CONST_BF16 fpimm:$a), Int16Regs:$b, Mode)>, Requires<[hasBF16Math]>; // f32 -> pred def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; // f64 -> pred def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; // f16 -> i32 def : Pat<(i32 (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b))), (SET_f16rr Int16Regs:$a, Int16Regs:$b, ModeFTZ)>, Requires<[useFP16Math, doF32FTZ]>; def : Pat<(i32 (OpNode (f16 Int16Regs:$a), (f16 Int16Regs:$b))), (SET_f16rr Int16Regs:$a, Int16Regs:$b, Mode)>, Requires<[useFP16Math]>; def : Pat<(i32 (OpNode (f16 Int16Regs:$a), fpimm:$b)), (SET_f16rr Int16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, Requires<[useFP16Math, doF32FTZ]>; def : Pat<(i32 (OpNode (f16 Int16Regs:$a), fpimm:$b)), (SET_f16rr Int16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, Requires<[useFP16Math]>; def : Pat<(i32 (OpNode fpimm:$a, (f16 Int16Regs:$b))), (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Int16Regs:$b, ModeFTZ)>, Requires<[useFP16Math, doF32FTZ]>; def : Pat<(i32 (OpNode fpimm:$a, (f16 Int16Regs:$b))), (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Int16Regs:$b, Mode)>, Requires<[useFP16Math]>; // bf16 -> i32 def : Pat<(i32 (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b))), (SET_bf16rr Int16Regs:$a, Int16Regs:$b, ModeFTZ)>, Requires<[hasBF16Math, doF32FTZ]>; def : Pat<(i32 (OpNode (bf16 Int16Regs:$a), (bf16 Int16Regs:$b))), (SET_bf16rr Int16Regs:$a, Int16Regs:$b, Mode)>, Requires<[hasBF16Math]>; def : Pat<(i32 (OpNode (bf16 Int16Regs:$a), fpimm:$b)), (SET_bf16rr Int16Regs:$a, (LOAD_CONST_BF16 fpimm:$b), ModeFTZ)>, Requires<[hasBF16Math, doF32FTZ]>; def : Pat<(i32 (OpNode (bf16 Int16Regs:$a), fpimm:$b)), (SET_bf16rr Int16Regs:$a, (LOAD_CONST_BF16 fpimm:$b), Mode)>, Requires<[hasBF16Math]>; def : Pat<(i32 (OpNode fpimm:$a, (bf16 Int16Regs:$b))), (SET_bf16ir (LOAD_CONST_BF16 fpimm:$a), Int16Regs:$b, ModeFTZ)>, Requires<[hasBF16Math, doF32FTZ]>; def : Pat<(i32 (OpNode fpimm:$a, (bf16 Int16Regs:$b))), (SET_bf16ir (LOAD_CONST_BF16 fpimm:$a), Int16Regs:$b, Mode)>, Requires<[hasBF16Math]>; // f32 -> i32 def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; // f64 -> i32 def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; } defm FSetOGT : FSET_FORMAT; defm FSetOLT : FSET_FORMAT; defm FSetOGE : FSET_FORMAT; defm FSetOLE : FSET_FORMAT; defm FSetOEQ : FSET_FORMAT; defm FSetONE : FSET_FORMAT; defm FSetUGT : FSET_FORMAT; defm FSetULT : FSET_FORMAT; defm FSetUGE : FSET_FORMAT; defm FSetULE : FSET_FORMAT; defm FSetUEQ : FSET_FORMAT; defm FSetUNE : FSET_FORMAT; defm FSetGT : FSET_FORMAT; defm FSetLT : FSET_FORMAT; defm FSetGE : FSET_FORMAT; defm FSetLE : FSET_FORMAT; defm FSetEQ : FSET_FORMAT; defm FSetNE : FSET_FORMAT; defm FSetNUM : FSET_FORMAT; defm FSetNAN : FSET_FORMAT; def SDTDeclareParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; def SDTDeclareScalarParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; def SDTCallValProfile : SDTypeProfile<1, 0, []>; def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; def SDTProxyRegProfile : SDTypeProfile<1, 1, []>; def DeclareParam : SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def DeclareScalarParam : SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def DeclareRetParam : SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def DeclareRet : SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def LoadParam : SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; def LoadParamV2 : SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; def LoadParamV4 : SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; def PrintCall : SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def PrintConvergentCall : SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def PrintCallUni : SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def PrintConvergentCallUni : SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def StoreParam : SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def StoreParamV2 : SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def StoreParamV4 : SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def StoreParamU32 : SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def StoreParamS32 : SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def CallArgBegin : SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def CallArg : SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def LastCallArg : SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def CallArgEnd : SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def CallVoid : SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def Prototype : SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def CallVal : SDNode<"NVPTXISD::CallVal", SDTCallValProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def MoveParam : SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; def StoreRetval : SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, [SDNPHasChain, SDNPSideEffect]>; def StoreRetvalV2 : SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, [SDNPHasChain, SDNPSideEffect]>; def StoreRetvalV4 : SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, [SDNPHasChain, SDNPSideEffect]>; def PseudoUseParam : SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def RETURNNode : SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, [SDNPHasChain, SDNPSideEffect]>; def ProxyReg : SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; let mayLoad = true in { class LoadParamMemInst : NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), []>; class LoadParamV2MemInst : NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), !strconcat("ld.param.v2", opstr, " \t{{$dst, $dst2}}, [retval0+$b];"), []>; class LoadParamV4MemInst : NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins i32imm:$b), !strconcat("ld.param.v4", opstr, " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), []>; } class LoadParamRegInst : NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), !strconcat("mov", opstr, " \t$dst, retval$b;"), [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; let mayStore = true in { multiclass StoreParamInst { foreach op = [IMMType, regclass] in if !or(support_imm, !isa(op)) then def _ # !if(!isa(op), "r", "i") : NVPTXInst<(outs), (ins op:$val, i32imm:$a, i32imm:$b), "st.param" # opstr # " \t[param$a+$b], $val;", []>; } multiclass StoreParamV2Inst { foreach op1 = [IMMType, regclass] in foreach op2 = [IMMType, regclass] in def _ # !if(!isa(op1), "r", "i") # !if(!isa(op2), "r", "i") : NVPTXInst<(outs), (ins op1:$val1, op2:$val2, i32imm:$a, i32imm:$b), "st.param.v2" # opstr # " \t[param$a+$b], {{$val1, $val2}};", []>; } multiclass StoreParamV4Inst { foreach op1 = [IMMType, regclass] in foreach op2 = [IMMType, regclass] in foreach op3 = [IMMType, regclass] in foreach op4 = [IMMType, regclass] in def _ # !if(!isa(op1), "r", "i") # !if(!isa(op2), "r", "i") # !if(!isa(op3), "r", "i") # !if(!isa(op4), "r", "i") : NVPTXInst<(outs), (ins op1:$val1, op2:$val2, op3:$val3, op4:$val4, i32imm:$a, i32imm:$b), "st.param.v4" # opstr # " \t[param$a+$b], {{$val1, $val2, $val3, $val4}};", []>; } class StoreRetvalInst : NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), []>; class StoreRetvalV2Inst : NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), !strconcat("st.param.v2", opstr, " \t[func_retval0+$a], {{$val, $val2}};"), []>; class StoreRetvalV4Inst : NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, regclass:$val4, i32imm:$a), !strconcat("st.param.v4", opstr, " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), []>; } let isCall=1 in { multiclass CALL { def PrintCallNoRetInst : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; def PrintCallRetInst1 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; def PrintCallRetInst2 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; def PrintCallRetInst3 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; def PrintCallRetInst4 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), [(OpNode (i32 4))]>; def PrintCallRetInst5 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), [(OpNode (i32 5))]>; def PrintCallRetInst6 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " "retval5), "), [(OpNode (i32 6))]>; def PrintCallRetInst7 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " "retval5, retval6), "), [(OpNode (i32 7))]>; def PrintCallRetInst8 : NVPTXInst<(outs), (ins), !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " "retval5, retval6, retval7), "), [(OpNode (i32 8))]>; } } defm Call : CALL<"call", PrintCall>; defm CallUni : CALL<"call.uni", PrintCallUni>; // Convergent call instructions. These are identical to regular calls, except // they have the isConvergent bit set. let isConvergent=1 in { defm ConvergentCall : CALL<"call", PrintConvergentCall>; defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; } def LoadParamMemI64 : LoadParamMemInst; def LoadParamMemI32 : LoadParamMemInst; def LoadParamMemI16 : LoadParamMemInst; def LoadParamMemI8 : LoadParamMemInst; def LoadParamMemV2I64 : LoadParamV2MemInst; def LoadParamMemV2I32 : LoadParamV2MemInst; def LoadParamMemV2I16 : LoadParamV2MemInst; def LoadParamMemV2I8 : LoadParamV2MemInst; def LoadParamMemV4I32 : LoadParamV4MemInst; def LoadParamMemV4I16 : LoadParamV4MemInst; def LoadParamMemV4I8 : LoadParamV4MemInst; def LoadParamMemF32 : LoadParamMemInst; def LoadParamMemF64 : LoadParamMemInst; def LoadParamMemV2F32 : LoadParamV2MemInst; def LoadParamMemV2F64 : LoadParamV2MemInst; def LoadParamMemV4F32 : LoadParamV4MemInst; defm StoreParamI64 : StoreParamInst; defm StoreParamI32 : StoreParamInst; defm StoreParamI16 : StoreParamInst; defm StoreParamI8 : StoreParamInst; defm StoreParamI8TruncI32 : StoreParamInst; defm StoreParamI8TruncI64 : StoreParamInst; defm StoreParamV2I64 : StoreParamV2Inst; defm StoreParamV2I32 : StoreParamV2Inst; defm StoreParamV2I16 : StoreParamV2Inst; defm StoreParamV2I8 : StoreParamV2Inst; defm StoreParamV4I32 : StoreParamV4Inst; defm StoreParamV4I16 : StoreParamV4Inst; defm StoreParamV4I8 : StoreParamV4Inst; defm StoreParamF32 : StoreParamInst; defm StoreParamF64 : StoreParamInst; defm StoreParamV2F32 : StoreParamV2Inst; defm StoreParamV2F64 : StoreParamV2Inst; defm StoreParamV4F32 : StoreParamV4Inst; def StoreRetvalI64 : StoreRetvalInst; def StoreRetvalI32 : StoreRetvalInst; def StoreRetvalI16 : StoreRetvalInst; def StoreRetvalI8 : StoreRetvalInst; def StoreRetvalI8TruncI32 : StoreRetvalInst; def StoreRetvalI8TruncI64 : StoreRetvalInst; def StoreRetvalV2I64 : StoreRetvalV2Inst; def StoreRetvalV2I32 : StoreRetvalV2Inst; def StoreRetvalV2I16 : StoreRetvalV2Inst; def StoreRetvalV2I8 : StoreRetvalV2Inst; def StoreRetvalV4I32 : StoreRetvalV4Inst; def StoreRetvalV4I16 : StoreRetvalV4Inst; def StoreRetvalV4I8 : StoreRetvalV4Inst; def StoreRetvalF64 : StoreRetvalInst; def StoreRetvalF32 : StoreRetvalInst; def StoreRetvalV2F64 : StoreRetvalV2Inst; def StoreRetvalV2F32 : StoreRetvalV2Inst; def StoreRetvalV4F32 : StoreRetvalV4Inst; def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; class CallArgInst : NVPTXInst<(outs), (ins regclass:$a), "$a, ", [(CallArg (i32 0), regclass:$a)]>; class CallArgInstVT : NVPTXInst<(outs), (ins regclass:$a), "$a, ", [(CallArg (i32 0), vt:$a)]>; class LastCallArgInst : NVPTXInst<(outs), (ins regclass:$a), "$a", [(LastCallArg (i32 0), regclass:$a)]>; class LastCallArgInstVT : NVPTXInst<(outs), (ins regclass:$a), "$a", [(LastCallArg (i32 0), vt:$a)]>; def CallArgI64 : CallArgInst; def CallArgI32 : CallArgInstVT; def CallArgI16 : CallArgInstVT; def CallArgF64 : CallArgInst; def CallArgF32 : CallArgInst; def LastCallArgI64 : LastCallArgInst; def LastCallArgI32 : LastCallArgInstVT; def LastCallArgI16 : LastCallArgInstVT; def LastCallArgF64 : LastCallArgInst; def LastCallArgF32 : LastCallArgInst; def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", [(CallArg (i32 0), (i32 imm:$a))]>; def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", [(LastCallArg (i32 0), (i32 imm:$a))]>; def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", [(CallArg (i32 1), (i32 imm:$a))]>; def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", [(LastCallArg (i32 1), (i32 imm:$a))]>; def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", [(CallVoid (Wrapper tglobaladdr:$addr))]>; def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", [(CallVoid i32:$addr)]>; def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", [(CallVoid Int64Regs:$addr)]>; def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", [(Prototype (i32 imm:$val))]>; def DeclareRetMemInst : NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), ".param .align $align .b8 retval$num[$size];", [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; def DeclareRetScalarInst : NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), ".param .b$size retval$num;", [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; def DeclareRetRegInst : NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), ".reg .b$size retval$num;", [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; def DeclareParamInst : NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), ".param .align $align .b8 param$a[$size];", [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; def DeclareScalarParamInst : NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), ".param .b$size param$a;", [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; def DeclareScalarRegInst : NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), ".reg .b$size param$a;", [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; class MoveParamInst : NVPTXInst<(outs regclass:$dst), (ins regclass:$src), !strconcat("mov", asmstr, " \t$dst, $src;"), [(set (T regclass:$dst), (MoveParam (T regclass:$src)))]>; class MoveParamSymbolInst : NVPTXInst<(outs regclass:$dst), (ins srcty:$src), !strconcat("mov", asmstr, " \t$dst, $src;"), [(set vt:$dst, (MoveParam texternalsym:$src))]>; def MoveParamI64 : MoveParamInst; def MoveParamI32 : MoveParamInst; def MoveParamSymbolI64 : MoveParamSymbolInst; def MoveParamSymbolI32 : MoveParamSymbolInst; def MoveParamI16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), "cvt.u16.u32 \t$dst, $src;", // ??? Why cvt.u16.u32 ? [(set i16:$dst, (MoveParam i16:$src))]>; def MoveParamF64 : MoveParamInst; def MoveParamF32 : MoveParamInst; class PseudoUseParamInst : NVPTXInst<(outs), (ins regclass:$src), "// Pseudo use of $src", [(PseudoUseParam vt:$src)]>; def PseudoUseParamI64 : PseudoUseParamInst; def PseudoUseParamI32 : PseudoUseParamInst; def PseudoUseParamI16 : PseudoUseParamInst; def PseudoUseParamF64 : PseudoUseParamInst; def PseudoUseParamF32 : PseudoUseParamInst; class ProxyRegInst : NVPTXInst<(outs regclass:$dst), (ins regclass:$src), !strconcat("mov.", SzStr, " \t$dst, $src;"), [(set (T regclass:$dst), (ProxyReg (T regclass:$src)))]>; def ProxyRegI1 : ProxyRegInst<"pred", i1, Int1Regs>; def ProxyRegI16 : ProxyRegInst<"b16", i16, Int16Regs>; def ProxyRegI32 : ProxyRegInst<"b32", i32, Int32Regs>; def ProxyRegI64 : ProxyRegInst<"b64", i64, Int64Regs>; def ProxyRegF32 : ProxyRegInst<"f32", f32, Float32Regs>; def ProxyRegF64 : ProxyRegInst<"f64", f64, Float64Regs>; foreach vt = [f16, bf16] in { def: Pat<(vt (ProxyReg vt:$src)), (ProxyRegI16 Int16Regs:$src)>; } foreach vt = [v2f16, v2bf16, v2i16, v4i8] in { def: Pat<(vt (ProxyReg vt:$src)), (ProxyRegI32 Int32Regs:$src)>; } // // Load / Store Handling // multiclass LD { def _avar : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr];", []>; def _areg : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr];", []>; def _areg_64 : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr];", []>; def _ari : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr+$offset];", []>; def _ari_64 : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr+$offset];", []>; def _asi : NVPTXInst< (outs regclass:$dst), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t$dst, [$addr+$offset];", []>; } let mayLoad=1, hasSideEffects=0 in { defm LD_i8 : LD; defm LD_i16 : LD; defm LD_i32 : LD; defm LD_i64 : LD; defm LD_f32 : LD; defm LD_f64 : LD; } multiclass ST { def _avar : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, imem:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr], $src;", []>; def _areg : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr], $src;", []>; def _areg_64 : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr], $src;", []>; def _ari : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr+$offset], $src;", []>; def _ari_64 : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr+$offset], $src;", []>; def _asi : NVPTXInst< (outs), (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" " \t[$addr+$offset], $src;", []>; } let mayStore=1, hasSideEffects=0 in { defm ST_i8 : ST; defm ST_i16 : ST; defm ST_i32 : ST; defm ST_i64 : ST; defm ST_f32 : ST; defm ST_f64 : ST; } // The following is used only in and after vector elementizations. Vector // elementization happens at the machine instruction level, so the following // instructions never appear in the DAG. multiclass LD_VEC { def _v2_avar : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr];", []>; def _v2_areg : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr];", []>; def _v2_areg_64 : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr];", []>; def _v2_ari : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; def _v2_ari_64 : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; def _v2_asi : NVPTXInst< (outs regclass:$dst1, regclass:$dst2), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; def _v4_avar : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; def _v4_areg : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; def _v4_areg_64 : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; def _v4_ari : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; def _v4_ari_64 : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; def _v4_asi : NVPTXInst< (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; } let mayLoad=1, hasSideEffects=0 in { defm LDV_i8 : LD_VEC; defm LDV_i16 : LD_VEC; defm LDV_i32 : LD_VEC; defm LDV_i64 : LD_VEC; defm LDV_f32 : LD_VEC; defm LDV_f64 : LD_VEC; } multiclass ST_VEC { def _v2_avar : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2}};", []>; def _v2_areg : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2}};", []>; def _v2_areg_64 : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2}};", []>; def _v2_ari : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr+$offset], {{$src1, $src2}};", []>; def _v2_ari_64 : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr+$offset], {{$src1, $src2}};", []>; def _v2_asi : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr+$offset], {{$src1, $src2}};", []>; def _v4_avar : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; def _v4_areg : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; def _v4_areg_64 : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; def _v4_ari : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; def _v4_ari_64 : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; def _v4_asi : NVPTXInst< (outs), (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; } let mayStore=1, hasSideEffects=0 in { defm STV_i8 : ST_VEC; defm STV_i16 : ST_VEC; defm STV_i32 : ST_VEC; defm STV_i64 : ST_VEC; defm STV_f32 : ST_VEC; defm STV_f64 : ST_VEC; } //---- Conversion ---- class F_BITCONVERT.ret, NVPTXRegClass regclassOut = ValueToRegClass.ret> : NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), !strconcat("mov.b", SzStr, " \t$d, $a;"), [(set (TOut regclassOut:$d), (bitconvert (TIn regclassIn:$a)))]>; def BITCONVERT_32_I2F : F_BITCONVERT<"32", i32, f32>; def BITCONVERT_32_F2I : F_BITCONVERT<"32", f32, i32>; def BITCONVERT_64_I2F : F_BITCONVERT<"64", i64, f64>; def BITCONVERT_64_F2I : F_BITCONVERT<"64", f64, i64>; foreach vt = [v2f16, v2bf16, v2i16, v4i8] in { def: Pat<(vt (bitconvert (f32 Float32Regs:$a))), (BITCONVERT_32_F2I Float32Regs:$a)>; def: Pat<(f32 (bitconvert (vt Int32Regs:$a))), (BITCONVERT_32_I2F Int32Regs:$a)>; } foreach vt = [f16, bf16] in { def: Pat<(vt (bitconvert (i16 UInt16Const:$a))), (IMOVB16ri UInt16Const:$a)>; def: Pat<(vt (bitconvert (i16 Int16Regs:$a))), (ProxyRegI16 Int16Regs:$a)>; def: Pat<(i16 (bitconvert (vt Int16Regs:$a))), (ProxyRegI16 Int16Regs:$a)>; } foreach ta = [v2f16, v2bf16, v2i16, v4i8, i32] in { def: Pat<(ta (bitconvert (i32 UInt32Const:$a))), (IMOVB32ri UInt32Const:$a)>; foreach tb = [v2f16, v2bf16, v2i16, v4i8, i32] in { if !ne(ta, tb) then { def: Pat<(ta (bitconvert (tb Int32Regs:$a))), (ProxyRegI32 Int32Regs:$a)>; } } } // NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where // we cannot specify floating-point literals in isel patterns. Therefore, we // use an integer selp to select either 1 or 0 and then cvt to floating-point. // sint -> f16 def : Pat<(f16 (sint_to_fp Int1Regs:$a)), (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f16 (sint_to_fp Int16Regs:$a)), (CVT_f16_s16 Int16Regs:$a, CvtRN)>; def : Pat<(f16 (sint_to_fp Int32Regs:$a)), (CVT_f16_s32 Int32Regs:$a, CvtRN)>; def : Pat<(f16 (sint_to_fp Int64Regs:$a)), (CVT_f16_s64 Int64Regs:$a, CvtRN)>; // uint -> f16 def : Pat<(f16 (uint_to_fp Int1Regs:$a)), (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f16 (uint_to_fp Int16Regs:$a)), (CVT_f16_u16 Int16Regs:$a, CvtRN)>; def : Pat<(f16 (uint_to_fp Int32Regs:$a)), (CVT_f16_u32 Int32Regs:$a, CvtRN)>; def : Pat<(f16 (uint_to_fp Int64Regs:$a)), (CVT_f16_u64 Int64Regs:$a, CvtRN)>; // sint -> bf16 def : Pat<(bf16 (sint_to_fp Int1Regs:$a)), (CVT_bf16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (sint_to_fp Int16Regs:$a)), (CVT_bf16_s16 Int16Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (sint_to_fp Int32Regs:$a)), (CVT_bf16_s32 Int32Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (sint_to_fp Int64Regs:$a)), (CVT_bf16_s64 Int64Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; // uint -> bf16 def : Pat<(bf16 (uint_to_fp Int1Regs:$a)), (CVT_bf16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (uint_to_fp Int16Regs:$a)), (CVT_bf16_u16 Int16Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (uint_to_fp Int32Regs:$a)), (CVT_bf16_u32 Int32Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; def : Pat<(bf16 (uint_to_fp Int64Regs:$a)), (CVT_bf16_u64 Int64Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; // sint -> f32 def : Pat<(f32 (sint_to_fp Int1Regs:$a)), (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f32 (sint_to_fp Int16Regs:$a)), (CVT_f32_s16 Int16Regs:$a, CvtRN)>; def : Pat<(f32 (sint_to_fp Int32Regs:$a)), (CVT_f32_s32 Int32Regs:$a, CvtRN)>; def : Pat<(f32 (sint_to_fp Int64Regs:$a)), (CVT_f32_s64 Int64Regs:$a, CvtRN)>; // uint -> f32 def : Pat<(f32 (uint_to_fp Int1Regs:$a)), (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f32 (uint_to_fp Int16Regs:$a)), (CVT_f32_u16 Int16Regs:$a, CvtRN)>; def : Pat<(f32 (uint_to_fp Int32Regs:$a)), (CVT_f32_u32 Int32Regs:$a, CvtRN)>; def : Pat<(f32 (uint_to_fp Int64Regs:$a)), (CVT_f32_u64 Int64Regs:$a, CvtRN)>; // sint -> f64 def : Pat<(f64 (sint_to_fp Int1Regs:$a)), (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f64 (sint_to_fp Int16Regs:$a)), (CVT_f64_s16 Int16Regs:$a, CvtRN)>; def : Pat<(f64 (sint_to_fp Int32Regs:$a)), (CVT_f64_s32 Int32Regs:$a, CvtRN)>; def : Pat<(f64 (sint_to_fp Int64Regs:$a)), (CVT_f64_s64 Int64Regs:$a, CvtRN)>; // uint -> f64 def : Pat<(f64 (uint_to_fp Int1Regs:$a)), (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; def : Pat<(f64 (uint_to_fp Int16Regs:$a)), (CVT_f64_u16 Int16Regs:$a, CvtRN)>; def : Pat<(f64 (uint_to_fp Int32Regs:$a)), (CVT_f64_u32 Int32Regs:$a, CvtRN)>; def : Pat<(f64 (uint_to_fp Int64Regs:$a)), (CVT_f64_u64 Int64Regs:$a, CvtRN)>; // f16 -> sint def : Pat<(i1 (fp_to_sint (f16 Int16Regs:$a))), (SETP_b16ri Int16Regs:$a, 0, CmpEQ)>; def : Pat<(i16 (fp_to_sint (f16 Int16Regs:$a))), (CVT_s16_f16 (f16 Int16Regs:$a), CvtRZI)>; def : Pat<(i32 (fp_to_sint (f16 Int16Regs:$a))), (CVT_s32_f16 (f16 Int16Regs:$a), CvtRZI)>; def : Pat<(i64 (fp_to_sint (f16 Int16Regs:$a))), (CVT_s64_f16 Int16Regs:$a, CvtRZI)>; // f16 -> uint def : Pat<(i1 (fp_to_uint (f16 Int16Regs:$a))), (SETP_b16ri Int16Regs:$a, 0, CmpEQ)>; def : Pat<(i16 (fp_to_uint (f16 Int16Regs:$a))), (CVT_u16_f16 Int16Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_uint (f16 Int16Regs:$a))), (CVT_u32_f16 Int16Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_uint (f16 Int16Regs:$a))), (CVT_u64_f16 Int16Regs:$a, CvtRZI)>; // bf16 -> sint def : Pat<(i1 (fp_to_sint (bf16 Int16Regs:$a))), (SETP_b16ri Int16Regs:$a, 0, CmpEQ)>; def : Pat<(i16 (fp_to_sint (bf16 Int16Regs:$a))), (CVT_s16_bf16 (bf16 Int16Regs:$a), CvtRZI)>; def : Pat<(i32 (fp_to_sint (bf16 Int16Regs:$a))), (CVT_s32_bf16 (bf16 Int16Regs:$a), CvtRZI)>; def : Pat<(i64 (fp_to_sint (bf16 Int16Regs:$a))), (CVT_s64_bf16 Int16Regs:$a, CvtRZI)>; // bf16 -> uint def : Pat<(i1 (fp_to_uint (bf16 Int16Regs:$a))), (SETP_b16ri Int16Regs:$a, 0, CmpEQ)>; def : Pat<(i16 (fp_to_uint (bf16 Int16Regs:$a))), (CVT_u16_bf16 Int16Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_uint (bf16 Int16Regs:$a))), (CVT_u32_bf16 Int16Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_uint (bf16 Int16Regs:$a))), (CVT_u64_bf16 Int16Regs:$a, CvtRZI)>; // f32 -> sint def : Pat<(i1 (fp_to_sint Float32Regs:$a)), (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; def : Pat<(i16 (fp_to_sint Float32Regs:$a)), (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i16 (fp_to_sint Float32Regs:$a)), (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_sint Float32Regs:$a)), (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i32 (fp_to_sint Float32Regs:$a)), (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_sint Float32Regs:$a)), (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i64 (fp_to_sint Float32Regs:$a)), (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; // f32 -> uint def : Pat<(i1 (fp_to_uint Float32Regs:$a)), (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; def : Pat<(i16 (fp_to_uint Float32Regs:$a)), (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i16 (fp_to_uint Float32Regs:$a)), (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_uint Float32Regs:$a)), (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i32 (fp_to_uint Float32Regs:$a)), (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_uint Float32Regs:$a)), (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(i64 (fp_to_uint Float32Regs:$a)), (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; // f64 -> sint def : Pat<(i1 (fp_to_sint Float64Regs:$a)), (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; def : Pat<(i16 (fp_to_sint Float64Regs:$a)), (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_sint Float64Regs:$a)), (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_sint Float64Regs:$a)), (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; // f64 -> uint def : Pat<(i1 (fp_to_uint Float64Regs:$a)), (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; def : Pat<(i16 (fp_to_uint Float64Regs:$a)), (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; def : Pat<(i32 (fp_to_uint Float64Regs:$a)), (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; def : Pat<(i64 (fp_to_uint Float64Regs:$a)), (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; // sext i1 def : Pat<(i16 (sext Int1Regs:$a)), (SELP_s16ii -1, 0, Int1Regs:$a)>; def : Pat<(i32 (sext Int1Regs:$a)), (SELP_s32ii -1, 0, Int1Regs:$a)>; def : Pat<(i64 (sext Int1Regs:$a)), (SELP_s64ii -1, 0, Int1Regs:$a)>; // zext i1 def : Pat<(i16 (zext Int1Regs:$a)), (SELP_u16ii 1, 0, Int1Regs:$a)>; def : Pat<(i32 (zext Int1Regs:$a)), (SELP_u32ii 1, 0, Int1Regs:$a)>; def : Pat<(i64 (zext Int1Regs:$a)), (SELP_u64ii 1, 0, Int1Regs:$a)>; // anyext i1 def : Pat<(i16 (anyext Int1Regs:$a)), (SELP_u16ii -1, 0, Int1Regs:$a)>; def : Pat<(i32 (anyext Int1Regs:$a)), (SELP_u32ii -1, 0, Int1Regs:$a)>; def : Pat<(i64 (anyext Int1Regs:$a)), (SELP_u64ii -1, 0, Int1Regs:$a)>; // sext i16 def : Pat<(i32 (sext Int16Regs:$a)), (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; def : Pat<(i64 (sext Int16Regs:$a)), (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; // zext i16 def : Pat<(i32 (zext Int16Regs:$a)), (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; def : Pat<(i64 (zext Int16Regs:$a)), (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; // anyext i16 def : Pat<(i32 (anyext Int16Regs:$a)), (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; def : Pat<(i64 (anyext Int16Regs:$a)), (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; // sext i32 def : Pat<(i64 (sext Int32Regs:$a)), (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; // zext i32 def : Pat<(i64 (zext Int32Regs:$a)), (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; // anyext i32 def : Pat<(i64 (anyext Int32Regs:$a)), (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; // truncate i64 def : Pat<(i32 (trunc Int64Regs:$a)), (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; def : Pat<(i16 (trunc Int64Regs:$a)), (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; def : Pat<(i1 (trunc Int64Regs:$a)), (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; // truncate i32 def : Pat<(i16 (trunc Int32Regs:$a)), (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; def : Pat<(i1 (trunc Int32Regs:$a)), (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; // truncate i16 def : Pat<(i1 (trunc Int16Regs:$a)), (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; // sext_inreg def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; // Select instructions with 32-bit predicates def : Pat<(select (i32 Int32Regs:$pred), i16:$a, i16:$b), (SELP_b16rr Int16Regs:$a, Int16Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), i32:$a, i32:$b), (SELP_b32rr Int32Regs:$a, Int32Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), Int64Regs:$a, Int64Regs:$b), (SELP_b64rr Int64Regs:$a, Int64Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), (f16 Int16Regs:$a), (f16 Int16Regs:$b)), (SELP_f16rr Int16Regs:$a, Int16Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), (bf16 Int16Regs:$a), (bf16 Int16Regs:$b)), (SELP_bf16rr Int16Regs:$a, Int16Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), Float32Regs:$a, Float32Regs:$b), (SELP_f32rr Float32Regs:$a, Float32Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; def : Pat<(select (i32 Int32Regs:$pred), Float64Regs:$a, Float64Regs:$b), (SELP_f64rr Float64Regs:$a, Float64Regs:$b, (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; let hasSideEffects = false in { // pack a set of smaller int registers to a larger int register def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), (ins Int16Regs:$s1, Int16Regs:$s2, Int16Regs:$s3, Int16Regs:$s4), "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), (ins Int16Regs:$s1, Int16Regs:$s2), "mov.b32 \t$d, {{$s1, $s2}};", []>; def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), (ins Int32Regs:$s1, Int32Regs:$s2), "mov.b64 \t$d, {{$s1, $s2}};", []>; def V2I64toI128 : NVPTXInst<(outs Int128Regs:$d), (ins Int64Regs:$s1, Int64Regs:$s2), "mov.b128 \t$d, {{$s1, $s2}};", []>; def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), (ins Float32Regs:$s1, Float32Regs:$s2), "mov.b64 \t$d, {{$s1, $s2}};", []>; // unpack a larger int register to a set of smaller int registers def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, Int16Regs:$d3, Int16Regs:$d4), (ins Int64Regs:$s), "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), (ins Int32Regs:$s), "mov.b32 \t{{$d1, $d2}}, $s;", []>; def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), (ins Int64Regs:$s), "mov.b64 \t{{$d1, $d2}}, $s;", []>; def I128toV2I64: NVPTXInst<(outs Int64Regs:$d1, Int64Regs:$d2), (ins Int128Regs:$s), "mov.b128 \t{{$d1, $d2}}, $s;", []>; def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), (ins Float64Regs:$s), "mov.b64 \t{{$d1, $d2}}, $s;", []>; def I32toI16H : NVPTXInst<(outs Int16Regs:$high), (ins Int32Regs:$s), "{{ .reg .b16 tmp; mov.b32 {tmp, $high}, $s; }}", []>; def I32toI16L : NVPTXInst<(outs Int16Regs:$low), (ins Int32Regs:$s), "{{ .reg .b16 tmp; mov.b32 {$low, tmp}, $s; }}", []>; def I64toI32H : NVPTXInst<(outs Int32Regs:$high), (ins Int64Regs:$s), "{{ .reg .b32 tmp; mov.b64 {tmp, $high}, $s; }}", []>; def I64toI32L : NVPTXInst<(outs Int32Regs:$low), (ins Int64Regs:$s), "{{ .reg .b32 tmp; mov.b64 {$low, tmp}, $s; }}", []>; } // Using partial vectorized move produces better SASS code for extraction of // upper/lower parts of an integer. def : Pat<(i16 (trunc (srl Int32Regs:$s, (i32 16)))), (I32toI16H Int32Regs:$s)>; def : Pat<(i16 (trunc (sra Int32Regs:$s, (i32 16)))), (I32toI16H Int32Regs:$s)>; def : Pat<(i32 (trunc (srl Int64Regs:$s, (i32 32)))), (I64toI32H Int64Regs:$s)>; def : Pat<(i32 (trunc (sra Int64Regs:$s, (i32 32)))), (I64toI32H Int64Regs:$s)>; def: Pat<(i32 (sext (extractelt (v2i16 Int32Regs:$src), 0))), (CVT_INREG_s32_s16 Int32Regs:$src)>; foreach vt = [v2f16, v2bf16, v2i16] in { def : Pat<(extractelt (vt Int32Regs:$src), 0), (I32toI16L Int32Regs:$src)>; def : Pat<(extractelt (vt Int32Regs:$src), 1), (I32toI16H Int32Regs:$src)>; } def : Pat<(v2f16 (build_vector (f16 Int16Regs:$a), (f16 Int16Regs:$b))), (V2I16toI32 Int16Regs:$a, Int16Regs:$b)>; def : Pat<(v2bf16 (build_vector (bf16 Int16Regs:$a), (bf16 Int16Regs:$b))), (V2I16toI32 Int16Regs:$a, Int16Regs:$b)>; def : Pat<(v2i16 (build_vector (i16 Int16Regs:$a), (i16 Int16Regs:$b))), (V2I16toI32 Int16Regs:$a, Int16Regs:$b)>; def: Pat<(v2i16 (scalar_to_vector (i16 Int16Regs:$a))), (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; // Count leading zeros let hasSideEffects = false in { def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), "clz.b32 \t$d, $a;", []>; def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), "clz.b64 \t$d, $a;", []>; } // 32-bit has a direct PTX instruction def : Pat<(i32 (ctlz (i32 Int32Regs:$a))), (CLZr32 Int32Regs:$a)>; // The return type of the ctlz ISD node is the same as its input, but the PTX // ctz instruction always returns a 32-bit value. For ctlz.i64, convert the // ptx value to 64 bits to match the ISD node's semantics, unless we know we're // truncating back down to 32 bits. def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; def : Pat<(i32 (trunc (i64 (ctlz Int64Regs:$a)))), (CLZr64 Int64Regs:$a)>; // For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the // result back to 16-bits if necessary. We also need to subtract 16 because // the high-order 16 zeros were counted. // // TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could // use to save one SASS instruction (on sm_35 anyway): // // mov.b32 $tmp, {0xffff, $a} // ctlz.b32 $result, $tmp // // That is, instead of zero-extending the input to 32 bits, we'd "one-extend" // and then ctlz that value. This way we don't have to subtract 16 from the // result. Unfortunately today we don't have a way to generate // "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. def : Pat<(i16 (ctlz Int16Regs:$a)), (SUBi16ri (CVT_u16_u32 (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))), (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; // Population count let hasSideEffects = false in { def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), "popc.b32 \t$d, $a;", []>; def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), "popc.b64 \t$d, $a;", []>; } // 32-bit has a direct PTX instruction def : Pat<(i32 (ctpop (i32 Int32Regs:$a))), (POPCr32 Int32Regs:$a)>; // For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit // to match the LLVM semantics. Just as with ctlz.i64, we provide a second // pattern that avoids the type conversion if we're truncating the result to // i32 anyway. def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; def : Pat<(i32 (trunc (i64 (ctpop Int64Regs:$a)))), (POPCr64 Int64Regs:$a)>; // For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. // If we know that we're storing into an i32, we can avoid the final trunc. def : Pat<(ctpop Int16Regs:$a), (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))), (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; // fpround f32 -> f16 def : Pat<(f16 (fpround Float32Regs:$a)), (CVT_f16_f32 Float32Regs:$a, CvtRN)>; // fpround f32 -> bf16 def : Pat<(bf16 (fpround Float32Regs:$a)), (CVT_bf16_f32 Float32Regs:$a, CvtRN)>, Requires<[hasPTX<70>, hasSM<80>]>; // fpround f64 -> f16 def : Pat<(f16 (fpround Float64Regs:$a)), (CVT_f16_f64 Float64Regs:$a, CvtRN)>; // fpround f64 -> bf16 def : Pat<(bf16 (fpround Float64Regs:$a)), (CVT_bf16_f64 Float64Regs:$a, CvtRN)>, Requires<[hasPTX<78>, hasSM<90>]>; // fpround f64 -> f32 def : Pat<(f32 (fpround Float64Regs:$a)), (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(f32 (fpround Float64Regs:$a)), (CVT_f32_f64 Float64Regs:$a, CvtRN)>; // fpextend f16 -> f32 def : Pat<(f32 (fpextend (f16 Int16Regs:$a))), (CVT_f32_f16 Int16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(f32 (fpextend (f16 Int16Regs:$a))), (CVT_f32_f16 Int16Regs:$a, CvtNONE)>; // fpextend bf16 -> f32 def : Pat<(f32 (fpextend (bf16 Int16Regs:$a))), (CVT_f32_bf16 Int16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(f32 (fpextend (bf16 Int16Regs:$a))), (CVT_f32_bf16 Int16Regs:$a, CvtNONE)>, Requires<[hasPTX<71>, hasSM<80>]>; // fpextend f16 -> f64 def : Pat<(f64 (fpextend (f16 Int16Regs:$a))), (CVT_f64_f16 Int16Regs:$a, CvtNONE)>; // fpextend bf16 -> f64 def : Pat<(f64 (fpextend (bf16 Int16Regs:$a))), (CVT_f64_bf16 Int16Regs:$a, CvtNONE)>, Requires<[hasPTX<78>, hasSM<90>]>; // fpextend f32 -> f64 def : Pat<(f64 (fpextend Float32Regs:$a)), (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; def : Pat<(f64 (fpextend Float32Regs:$a)), (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; def retglue : SDNode<"NVPTXISD::RET_GLUE", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; // fceil, ffloor, froundeven, ftrunc. multiclass CVT_ROUND { def : Pat<(OpNode (f16 Int16Regs:$a)), (CVT_f16_f16 Int16Regs:$a, Mode)>; def : Pat<(OpNode (bf16 Int16Regs:$a)), (CVT_bf16_bf16 Int16Regs:$a, Mode)>; def : Pat<(OpNode Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, ModeFTZ)>, Requires<[doF32FTZ]>; def : Pat<(OpNode Float32Regs:$a), (CVT_f32_f32 Float32Regs:$a, Mode)>, Requires<[doNoF32FTZ]>; def : Pat<(OpNode Float64Regs:$a), (CVT_f64_f64 Float64Regs:$a, Mode)>; } defm : CVT_ROUND; defm : CVT_ROUND; defm : CVT_ROUND; defm : CVT_ROUND; // nearbyint and rint are implemented as rounding to nearest even. This isn't // strictly correct, because it causes us to ignore the rounding mode. But it // matches what CUDA's "libm" does. defm : CVT_ROUND; defm : CVT_ROUND; //----------------------------------- // Control-flow //----------------------------------- let isTerminator=1 in { let isReturn=1, isBarrier=1 in def Return : NVPTXInst<(outs), (ins), "ret;", [(retglue)]>; let isBranch=1 in def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), "@$a bra \t$target;", [(brcond Int1Regs:$a, bb:$target)]>; let isBranch=1 in def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), "@!$a bra \t$target;", []>; let isBranch=1, isBarrier=1 in def GOTO : NVPTXInst<(outs), (ins brtarget:$target), "bra.uni \t$target;", [(br bb:$target)]>; } def : Pat<(brcond (i32 Int32Regs:$a), bb:$target), (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; // SelectionDAGBuilder::visitSWitchCase() will invert the condition of a // conditional branch if the target block is the next block so that the code // can fall through to the target block. The invertion is done by 'xor // condition, 1', which will be translated to (setne condition, -1). Since ptx // supports '@!pred bra target', we should use it. def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), (CBranchOther Int1Regs:$a, bb:$target)>; // Call def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPSideEffect]>; def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def calltarget : Operand; let isCall=1 in { def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; } def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; // Pseudo instructions. class Pseudo pattern> : NVPTXInst; def Callseq_Start : NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), "\\{ // callseq $amt1, $amt2", [(callseq_start timm:$amt1, timm:$amt2)]>; def Callseq_End : NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), "\\} // callseq $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; // trap instruction // Emit an `exit` as well to convey to ptxas that `trap` exits the CFG. // This won't be necessary in a future version of ptxas. def trapinst : NVPTXInst<(outs), (ins), "trap; exit;", [(trap)]>; // Call prototype wrapper def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def CallPrototype : SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; def ProtoIdent : Operand { let PrintMethod = "printProtoIdent"; } def CALL_PROTOTYPE : NVPTXInst<(outs), (ins ProtoIdent:$ident), "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; def SDTDynAllocaOp : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisInt<1>, SDTCisInt<2>]>; def dyn_alloca : SDNode<"NVPTXISD::DYNAMIC_STACKALLOC", SDTDynAllocaOp, [SDNPHasChain, SDNPSideEffect]>; def DYNAMIC_STACKALLOC32 : NVPTXInst<(outs Int32Regs:$ptr), (ins Int32Regs:$size, i32imm:$align), "alloca.u32 \t$ptr, $size, $align;\n\t" "cvta.local.u32 \t$ptr, $ptr;", [(set (i32 Int32Regs:$ptr), (dyn_alloca Int32Regs:$size, (i32 timm:$align)))]>, Requires<[hasPTX<73>, hasSM<52>]>; def DYNAMIC_STACKALLOC64 : NVPTXInst<(outs Int64Regs:$ptr), (ins Int64Regs:$size, i32imm:$align), "alloca.u64 \t$ptr, $size, $align;\n\t" "cvta.local.u64 \t$ptr, $ptr;", [(set Int64Regs:$ptr, (dyn_alloca Int64Regs:$size, (i32 timm:$align)))]>, Requires<[hasPTX<73>, hasSM<52>]>; include "NVPTXIntrinsics.td" //----------------------------------- // Notes //----------------------------------- // BSWAP is currently expanded. The following is a more efficient // - for < sm_20, use vector scalar mov, as tesla support native 16-bit register // - for sm_20, use pmpt (use vector scalar mov to get the pack and // unpack). sm_20 supports native 32-bit register, but not native 16-bit // register. def : Pat < (i32 (bswap i32:$a)), (INT_NVVM_PRMT Int32Regs:$a, (i32 0), (i32 0x0123))>; def : Pat < (v2i16 (bswap v2i16:$a)), (INT_NVVM_PRMT Int32Regs:$a, (i32 0), (i32 0x2301))>; def : Pat < (i64 (bswap i64:$a)), (V2I32toI64 (INT_NVVM_PRMT (I64toI32H Int64Regs:$a), (i32 0), (i32 0x0123)), (INT_NVVM_PRMT (I64toI32L Int64Regs:$a), (i32 0), (i32 0x0123)))>;