//==- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// Hexagon target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H #define LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H #include "Hexagon.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/IR/Function.h" namespace llvm { class Loop; class ScalarEvolution; class User; class Value; class HexagonTTIImpl : public BasicTTIImplBase { using BaseT = BasicTTIImplBase; using TTI = TargetTransformInfo; friend BaseT; const HexagonSubtarget &ST; const HexagonTargetLowering &TLI; const HexagonSubtarget *getST() const { return &ST; } const HexagonTargetLowering *getTLI() const { return &TLI; } bool useHVX() const; bool isHVXVectorType(Type *Ty) const; // Returns the number of vector elements of Ty, if Ty is a vector type, // or 1 if Ty is a scalar type. It is incorrect to call this function // with any other type. unsigned getTypeNumElements(Type *Ty) const; public: explicit HexagonTTIImpl(const HexagonTargetMachine *TM, const Function &F) : BaseT(TM, F.getDataLayout()), ST(*TM->getSubtargetImpl(F)), TLI(*ST.getTargetLowering()) {} /// \name Scalar TTI Implementations /// @{ TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; // The Hexagon target can unroll loops with run-time trip counts. void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE); void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP); /// Bias LSR towards creating post-increment opportunities. TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const; // L1 cache prefetch. unsigned getPrefetchDistance() const override; unsigned getCacheLineSize() const override; /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(bool vector) const; unsigned getMaxInterleaveFactor(ElementCount VF); TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const; unsigned getMinVectorRegisterBitWidth() const; ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const; bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const { return true; } bool supportsEfficientVectorElementLoadStore() { return false; } bool hasBranchDivergence(const Function *F = nullptr) { return false; } bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; } bool prefersVectorizedAddressing() { return false; } bool enableInterleavedAccessVectorization() { return true; } InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind); InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind); InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *SE, const SCEV *S); InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I = nullptr); InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind); InstructionCost getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, ArrayRef Mask, TTI::TargetCostKind CostKind, int Index, Type *SubTp, ArrayRef Args = std::nullopt, const Instruction *CxtI = nullptr); InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I); InstructionCost getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond = false, bool UseMaskForGaps = false); InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I = nullptr); InstructionCost getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None}, ArrayRef Args = std::nullopt, const Instruction *CxtI = nullptr); InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I = nullptr); using BaseT::getVectorInstrCost; InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1); InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) { return 1; } bool isLegalMaskedStore(Type *DataType, Align Alignment); bool isLegalMaskedLoad(Type *DataType, Align Alignment); /// @} InstructionCost getInstructionCost(const User *U, ArrayRef Operands, TTI::TargetCostKind CostKind); // Hexagon specific decision to generate a lookup table. bool shouldBuildLookupTables() const; }; } // end namespace llvm #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETTRANSFORMINFO_H