//===- AVRDisassembler.cpp - Disassembler for AVR ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is part of the AVR Disassembler. // //===----------------------------------------------------------------------===// #include "AVR.h" #include "AVRRegisterInfo.h" #include "AVRSubtarget.h" #include "MCTargetDesc/AVRMCTargetDesc.h" #include "TargetInfo/AVRTargetInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/TargetRegistry.h" using namespace llvm; #define DEBUG_TYPE "avr-disassembler" typedef MCDisassembler::DecodeStatus DecodeStatus; namespace { /// A disassembler class for AVR. class AVRDisassembler : public MCDisassembler { public: AVRDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) : MCDisassembler(STI, Ctx) {} virtual ~AVRDisassembler() = default; DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const override; }; } // namespace static MCDisassembler *createAVRDisassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { return new AVRDisassembler(STI, Ctx); } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAVRDisassembler() { // Register the disassembler. TargetRegistry::RegisterMCDisassembler(getTheAVRTarget(), createAVRDisassembler); } static const uint16_t GPRDecoderTable[] = { AVR::R0, AVR::R1, AVR::R2, AVR::R3, AVR::R4, AVR::R5, AVR::R6, AVR::R7, AVR::R8, AVR::R9, AVR::R10, AVR::R11, AVR::R12, AVR::R13, AVR::R14, AVR::R15, AVR::R16, AVR::R17, AVR::R18, AVR::R19, AVR::R20, AVR::R21, AVR::R22, AVR::R23, AVR::R24, AVR::R25, AVR::R26, AVR::R27, AVR::R28, AVR::R29, AVR::R30, AVR::R31, }; static DecodeStatus DecodeGPR8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 31) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeLD8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const MCDisassembler *Decoder) { if (RegNo > 15) return MCDisassembler::Fail; unsigned Register = GPRDecoderTable[RegNo + 16]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus decodeFIOARr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFIORdA(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFIOBIT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeCallTarget(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFRd(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFLPMX(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFFMULRdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFMOVWRdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFWRdK(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFMUL2RdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeMemri(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeFBRk(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeCondBranch(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); static DecodeStatus decodeLoadStore(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder); #include "AVRGenDisassemblerTables.inc" static DecodeStatus decodeFIOARr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned addr = 0; addr |= fieldFromInstruction(Insn, 0, 4); addr |= fieldFromInstruction(Insn, 9, 2) << 4; unsigned reg = fieldFromInstruction(Insn, 4, 5); Inst.addOperand(MCOperand::createImm(addr)); if (DecodeGPR8RegisterClass(Inst, reg, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; return MCDisassembler::Success; } static DecodeStatus decodeFIORdA(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned addr = 0; addr |= fieldFromInstruction(Insn, 0, 4); addr |= fieldFromInstruction(Insn, 9, 2) << 4; unsigned reg = fieldFromInstruction(Insn, 4, 5); if (DecodeGPR8RegisterClass(Inst, reg, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(addr)); return MCDisassembler::Success; } static DecodeStatus decodeFIOBIT(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned addr = fieldFromInstruction(Insn, 3, 5); unsigned b = fieldFromInstruction(Insn, 0, 3); Inst.addOperand(MCOperand::createImm(addr)); Inst.addOperand(MCOperand::createImm(b)); return MCDisassembler::Success; } static DecodeStatus decodeCallTarget(MCInst &Inst, unsigned Field, uint64_t Address, const MCDisassembler *Decoder) { // Call targets need to be shifted left by one so this needs a custom // decoder. Inst.addOperand(MCOperand::createImm(Field << 1)); return MCDisassembler::Success; } static DecodeStatus decodeFRd(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned d = fieldFromInstruction(Insn, 4, 5); if (DecodeGPR8RegisterClass(Inst, d, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; return MCDisassembler::Success; } static DecodeStatus decodeFLPMX(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { if (decodeFRd(Inst, Insn, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createReg(AVR::R31R30)); return MCDisassembler::Success; } static DecodeStatus decodeFFMULRdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned d = fieldFromInstruction(Insn, 4, 3) + 16; unsigned r = fieldFromInstruction(Insn, 0, 3) + 16; if (DecodeGPR8RegisterClass(Inst, d, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; if (DecodeGPR8RegisterClass(Inst, r, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; return MCDisassembler::Success; } static DecodeStatus decodeFMOVWRdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned r = fieldFromInstruction(Insn, 4, 4) * 2; unsigned d = fieldFromInstruction(Insn, 0, 4) * 2; if (DecodeGPR8RegisterClass(Inst, r, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; if (DecodeGPR8RegisterClass(Inst, d, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; return MCDisassembler::Success; } static DecodeStatus decodeFWRdK(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned d = fieldFromInstruction(Insn, 4, 2) * 2 + 24; // starts at r24:r25 unsigned k = 0; k |= fieldFromInstruction(Insn, 0, 4); k |= fieldFromInstruction(Insn, 6, 2) << 4; if (DecodeGPR8RegisterClass(Inst, d, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; if (DecodeGPR8RegisterClass(Inst, d, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; Inst.addOperand(MCOperand::createImm(k)); return MCDisassembler::Success; } static DecodeStatus decodeFMUL2RdRr(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { unsigned rd = fieldFromInstruction(Insn, 4, 4) + 16; unsigned rr = fieldFromInstruction(Insn, 0, 4) + 16; if (DecodeGPR8RegisterClass(Inst, rd, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; if (DecodeGPR8RegisterClass(Inst, rr, Address, Decoder) == MCDisassembler::Fail) return MCDisassembler::Fail; return MCDisassembler::Success; } static DecodeStatus decodeMemri(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { // As in the EncoderMethod `AVRMCCodeEmitter::encodeMemri`, the memory // address is encoded into 7-bit, in which bits 0-5 are the immediate offset, // and the bit-6 is the pointer register bit (Z=0, Y=1). if (Insn > 127) return MCDisassembler::Fail; // Append the base register operand. Inst.addOperand( MCOperand::createReg((Insn & 0x40) ? AVR::R29R28 : AVR::R31R30)); // Append the immediate offset operand. Inst.addOperand(MCOperand::createImm(Insn & 0x3f)); return MCDisassembler::Success; } static DecodeStatus decodeFBRk(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { // Decode the opcode. switch (Insn & 0xf000) { case 0xc000: Inst.setOpcode(AVR::RJMPk); break; case 0xd000: Inst.setOpcode(AVR::RCALLk); break; default: // Unknown relative branch instruction. return MCDisassembler::Fail; } // Decode the relative offset. int16_t Offset = ((int16_t)((Insn & 0xfff) << 4)) >> 3; Inst.addOperand(MCOperand::createImm(Offset)); return MCDisassembler::Success; } static DecodeStatus decodeCondBranch(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { // These 8 instructions are not defined as aliases of BRBS/BRBC. DenseMap brInsts = { {0x000, AVR::BRLOk}, {0x400, AVR::BRSHk}, {0x001, AVR::BREQk}, {0x401, AVR::BRNEk}, {0x002, AVR::BRMIk}, {0x402, AVR::BRPLk}, {0x004, AVR::BRLTk}, {0x404, AVR::BRGEk}}; // Get the relative offset. int16_t Offset = ((int16_t)((Insn & 0x3f8) << 6)) >> 8; // Search the instruction pattern. auto NotAlias = [&Insn](const std::pair &I) { return (Insn & 0x407) != I.first; }; llvm::partition(brInsts, NotAlias); auto It = llvm::partition_point(brInsts, NotAlias); // Decode the instruction. if (It != brInsts.end()) { // This instruction is not an alias of BRBC/BRBS. Inst.setOpcode(It->second); Inst.addOperand(MCOperand::createImm(Offset)); } else { // Fall back to an ordinary BRBS/BRBC. Inst.setOpcode(Insn & 0x400 ? AVR::BRBCsk : AVR::BRBSsk); Inst.addOperand(MCOperand::createImm(Insn & 7)); Inst.addOperand(MCOperand::createImm(Offset)); } return MCDisassembler::Success; } static DecodeStatus decodeLoadStore(MCInst &Inst, unsigned Insn, uint64_t Address, const MCDisassembler *Decoder) { // Get the register will be loaded or stored. unsigned RegVal = GPRDecoderTable[(Insn >> 4) & 0x1f]; // Decode LDD/STD with offset less than 8. if ((Insn & 0xf000) == 0x8000) { unsigned RegBase = (Insn & 0x8) ? AVR::R29R28 : AVR::R31R30; unsigned Offset = Insn & 7; // We need not consider offset > 7. if ((Insn & 0x200) == 0) { // Decode LDD. Inst.setOpcode(AVR::LDDRdPtrQ); Inst.addOperand(MCOperand::createReg(RegVal)); Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createImm(Offset)); } else { // Decode STD. Inst.setOpcode(AVR::STDPtrQRr); Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createImm(Offset)); Inst.addOperand(MCOperand::createReg(RegVal)); } return MCDisassembler::Success; } // Decode the following 14 instructions. Bit 9 indicates load(0) or store(1), // bits 8~4 indicate the value register, bits 3-2 indicate the base address // register (11-X, 10-Y, 00-Z), bits 1~0 indicate the mode (00-basic, // 01-postinc, 10-predec). // ST X, Rr : 1001 001r rrrr 1100 // ST X+, Rr : 1001 001r rrrr 1101 // ST -X, Rr : 1001 001r rrrr 1110 // ST Y+, Rr : 1001 001r rrrr 1001 // ST -Y, Rr : 1001 001r rrrr 1010 // ST Z+, Rr : 1001 001r rrrr 0001 // ST -Z, Rr : 1001 001r rrrr 0010 // LD Rd, X : 1001 000d dddd 1100 // LD Rd, X+ : 1001 000d dddd 1101 // LD Rd, -X : 1001 000d dddd 1110 // LD Rd, Y+ : 1001 000d dddd 1001 // LD Rd, -Y : 1001 000d dddd 1010 // LD Rd, Z+ : 1001 000d dddd 0001 // LD Rd, -Z : 1001 000d dddd 0010 if ((Insn & 0xfc00) != 0x9000 || (Insn & 0xf) == 0) return MCDisassembler::Fail; // Get the base address register. unsigned RegBase; switch (Insn & 0xc) { case 0xc: RegBase = AVR::R27R26; break; case 0x8: RegBase = AVR::R29R28; break; case 0x0: RegBase = AVR::R31R30; break; default: return MCDisassembler::Fail; } // Set the opcode. switch (Insn & 0x203) { case 0x200: Inst.setOpcode(AVR::STPtrRr); Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createReg(RegVal)); return MCDisassembler::Success; case 0x201: Inst.setOpcode(AVR::STPtrPiRr); break; case 0x202: Inst.setOpcode(AVR::STPtrPdRr); break; case 0: Inst.setOpcode(AVR::LDRdPtr); Inst.addOperand(MCOperand::createReg(RegVal)); Inst.addOperand(MCOperand::createReg(RegBase)); return MCDisassembler::Success; case 1: Inst.setOpcode(AVR::LDRdPtrPi); break; case 2: Inst.setOpcode(AVR::LDRdPtrPd); break; default: return MCDisassembler::Fail; } // Build postinc/predec machine instructions. if ((Insn & 0x200) == 0) { // This is a load instruction. Inst.addOperand(MCOperand::createReg(RegVal)); Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createReg(RegBase)); } else { // This is a store instruction. Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createReg(RegBase)); Inst.addOperand(MCOperand::createReg(RegVal)); // STPtrPiRr and STPtrPdRr have an extra immediate operand. Inst.addOperand(MCOperand::createImm(1)); } return MCDisassembler::Success; } static DecodeStatus readInstruction16(ArrayRef Bytes, uint64_t Address, uint64_t &Size, uint32_t &Insn) { if (Bytes.size() < 2) { Size = 0; return MCDisassembler::Fail; } Size = 2; Insn = (Bytes[0] << 0) | (Bytes[1] << 8); return MCDisassembler::Success; } static DecodeStatus readInstruction32(ArrayRef Bytes, uint64_t Address, uint64_t &Size, uint32_t &Insn) { if (Bytes.size() < 4) { Size = 0; return MCDisassembler::Fail; } Size = 4; Insn = (Bytes[0] << 16) | (Bytes[1] << 24) | (Bytes[2] << 0) | (Bytes[3] << 8); return MCDisassembler::Success; } static const uint8_t *getDecoderTable(uint64_t Size) { switch (Size) { case 2: return DecoderTable16; case 4: return DecoderTable32; default: llvm_unreachable("instructions must be 16 or 32-bits"); } } DecodeStatus AVRDisassembler::getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const { uint32_t Insn; DecodeStatus Result; // Try decode a 16-bit instruction. { Result = readInstruction16(Bytes, Address, Size, Insn); if (Result == MCDisassembler::Fail) return MCDisassembler::Fail; // Try to decode AVRTiny instructions. if (STI.hasFeature(AVR::FeatureTinyEncoding)) { Result = decodeInstruction(DecoderTableAVRTiny16, Instr, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) return Result; } // Try to auto-decode a 16-bit instruction. Result = decodeInstruction(getDecoderTable(Size), Instr, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) return Result; // Try to decode to a load/store instruction. ST/LD need a specified // DecoderMethod, as they already have a specified PostEncoderMethod. Result = decodeLoadStore(Instr, Insn, Address, this); if (Result != MCDisassembler::Fail) return Result; } // Try decode a 32-bit instruction. { Result = readInstruction32(Bytes, Address, Size, Insn); if (Result == MCDisassembler::Fail) return MCDisassembler::Fail; Result = decodeInstruction(getDecoderTable(Size), Instr, Insn, Address, this, STI); if (Result != MCDisassembler::Fail) { return Result; } return MCDisassembler::Fail; } } typedef DecodeStatus (*DecodeFunc)(MCInst &MI, unsigned insn, uint64_t Address, const MCDisassembler *Decoder);