//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMConstantPoolValue.h" #include "ARMFrameLowering.h" #include "ARMISelLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMSelectionDAGInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/RegisterBankInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/TargetParser/Triple.h" #include #include #include #define GET_SUBTARGETINFO_HEADER #include "ARMGenSubtargetInfo.inc" namespace llvm { class ARMBaseTargetMachine; class GlobalValue; class StringRef; class ARMSubtarget : public ARMGenSubtargetInfo { protected: enum ARMProcFamilyEnum { Others, #define ARM_PROCESSOR_FAMILY(ENUM) ENUM, #include "llvm/TargetParser/ARMTargetParserDef.inc" #undef ARM_PROCESSOR_FAMILY }; enum ARMProcClassEnum { None, AClass, MClass, RClass }; enum ARMArchEnum { #define ARM_ARCHITECTURE(ENUM) ENUM, #include "llvm/TargetParser/ARMTargetParserDef.inc" #undef ARM_ARCHITECTURE }; public: /// What kind of timing do load multiple/store multiple instructions have. enum ARMLdStMultipleTiming { /// Can load/store 2 registers/cycle. DoubleIssue, /// Can load/store 2 registers/cycle, but needs an extra cycle if the access /// is not 64-bit aligned. DoubleIssueCheckUnalignedAccess, /// Can load/store 1 register/cycle. SingleIssue, /// Can load/store 1 register/cycle, but needs an extra cycle for address /// computation and potentially also for register writeback. SingleIssuePlusExtras, }; protected: // Bool members corresponding to the SubtargetFeatures defined in tablegen #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \ bool ATTRIBUTE = DEFAULT; #include "ARMGenSubtargetInfo.inc" /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. ARMProcFamilyEnum ARMProcFamily = Others; /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass. ARMProcClassEnum ARMProcClass = None; /// ARMArch - ARM architecture ARMArchEnum ARMArch = ARMv4t; /// UseMulOps - True if non-microcoded fused integer multiply-add and /// multiply-subtract instructions should be used. bool UseMulOps = false; /// SupportsTailCall - True if the OS supports tail call. The dynamic linker /// must be able to synthesize call stubs for interworking between ARM and /// Thumb. bool SupportsTailCall = false; /// RestrictIT - If true, the subtarget disallows generation of complex IT /// blocks. bool RestrictIT = false; /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS). bool UseSjLjEH = false; /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. Align stackAlignment = Align(4); /// CPUString - String name of used CPU. std::string CPUString; unsigned MaxInterleaveFactor = 1; /// Clearance before partial register updates (in number of instructions) unsigned PartialUpdateClearance = 0; /// What kind of timing do load multiple/store multiple have (double issue, /// single issue etc). ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue; /// The adjustment that we need to apply to get the operand latency from the /// operand cycle returned by the itinerary data for pre-ISel operands. int PreISelOperandLatencyAdjustment = 2; /// What alignment is preferred for loop bodies and functions, in log2(bytes). unsigned PrefLoopLogAlignment = 0; /// The cost factor for MVE instructions, representing the multiple beats an // instruction can take. The default is 2, (set in initSubtargetFeatures so // that we can use subtarget features less than 2). unsigned MVEVectorCostFactor = 0; /// OptMinSize - True if we're optimising for minimum code size, equal to /// the function attribute. bool OptMinSize = false; /// IsLittle - The target is Little Endian bool IsLittle; /// TargetTriple - What processor and OS we're targeting. Triple TargetTriple; /// SchedModel - Processor specific instruction costs. MCSchedModel SchedModel; /// Selected instruction itineraries (one entry per itinerary class.) InstrItineraryData InstrItins; /// Options passed via command line that could influence the target const TargetOptions &Options; const ARMBaseTargetMachine &TM; public: /// This constructor initializes the data members to match that /// of the specified triple. /// ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle, bool MinSize = false); /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size /// that still makes it profitable to inline the call. unsigned getMaxInlineSizeThreshold() const { return 64; } /// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size /// that still makes it profitable to inline a llvm.memcpy as a Tail /// Predicated loop. /// This threshold should only be used for constant size inputs. unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; } /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS); /// initializeSubtargetDependencies - Initializes using a CPU and feature string /// so that we can use initializer lists for subtarget initialization. ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); const ARMSelectionDAGInfo *getSelectionDAGInfo() const override { return &TSInfo; } const ARMBaseInstrInfo *getInstrInfo() const override { return InstrInfo.get(); } const ARMTargetLowering *getTargetLowering() const override { return &TLInfo; } const ARMFrameLowering *getFrameLowering() const override { return FrameLowering.get(); } const ARMBaseRegisterInfo *getRegisterInfo() const override { return &InstrInfo->getRegisterInfo(); } /// The correct instructions have been implemented to initialize undef /// registers, therefore the ARM Architecture is supported by the Init Undef /// Pass. This will return true as the pass needs to be supported for all /// types of instructions. The pass will then perform more checks to ensure it /// should be applying the Pseudo Instructions. bool supportsInitUndef() const override { return true; } const CallLowering *getCallLowering() const override; InstructionSelector *getInstructionSelector() const override; const LegalizerInfo *getLegalizerInfo() const override; const RegisterBankInfo *getRegBankInfo() const override; private: ARMSelectionDAGInfo TSInfo; // Either Thumb1FrameLowering or ARMFrameLowering. std::unique_ptr FrameLowering; // Either Thumb1InstrInfo or Thumb2InstrInfo. std::unique_ptr InstrInfo; ARMTargetLowering TLInfo; /// GlobalISel related APIs. std::unique_ptr CallLoweringInfo; std::unique_ptr InstSelector; std::unique_ptr Legalizer; std::unique_ptr RegBankInfo; void initializeEnvironment(); void initSubtargetFeatures(StringRef CPU, StringRef FS); ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS); std::bitset<8> CoprocCDE = {}; public: // Getters for SubtargetFeatures defined in tablegen #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \ bool GETTER() const { return ATTRIBUTE; } #include "ARMGenSubtargetInfo.inc" /// @{ /// These functions are obsolete, please consider adding subtarget features /// or properties instead of calling them. bool isCortexA5() const { return ARMProcFamily == CortexA5; } bool isCortexA7() const { return ARMProcFamily == CortexA7; } bool isCortexA8() const { return ARMProcFamily == CortexA8; } bool isCortexA9() const { return ARMProcFamily == CortexA9; } bool isCortexA15() const { return ARMProcFamily == CortexA15; } bool isSwift() const { return ARMProcFamily == Swift; } bool isCortexM3() const { return ARMProcFamily == CortexM3; } bool isCortexM7() const { return ARMProcFamily == CortexM7; } bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); } bool isCortexR5() const { return ARMProcFamily == CortexR5; } bool isKrait() const { return ARMProcFamily == Krait; } /// @} bool hasARMOps() const { return !NoARM; } bool useNEONForSinglePrecisionFP() const { return hasNEON() && hasNEONForFP(); } bool hasVFP2Base() const { return hasVFPv2SP(); } bool hasVFP3Base() const { return hasVFPv3D16SP(); } bool hasVFP4Base() const { return hasVFPv4D16SP(); } bool hasFPARMv8Base() const { return hasFPARMv8D16SP(); } bool hasAnyDataBarrier() const { return HasDataBarrier || (hasV6Ops() && !isThumb()); } bool useMulOps() const { return UseMulOps; } bool useFPVMLx() const { return !SlowFPVMLx; } bool useFPVFMx() const { return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx; } bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); } bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); } bool useSjLjEH() const { return UseSjLjEH; } bool hasBaseDSP() const { if (isThumb()) return hasThumb2() && hasDSP(); else return hasV5TEOps(); } /// Return true if the CPU supports any kind of instruction fusion. bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); } const Triple &getTargetTriple() const { return TargetTriple; } bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } bool isTargetIOS() const { return TargetTriple.isiOS(); } bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); } bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); } bool isTargetDriverKit() const { return TargetTriple.isDriverKit(); } bool isTargetLinux() const { return TargetTriple.isOSLinux(); } bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); } bool isTargetWindows() const { return TargetTriple.isOSWindows(); } bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } // ARM EABI is the bare-metal EABI described in ARM ABI documents and // can be accessed via -target arm-none-eabi. This is NOT GNUEABI. // FIXME: Add a flag for bare-metal for that target and set Triple::EABI // even for GNUEABI, so we can make a distinction here and still conform to // the EABI on GNU (and Android) mode. This requires change in Clang, too. // FIXME: The Darwin exception is temporary, while we move users to // "*-*-*-macho" triples as quickly as possible. bool isTargetAEABI() const { return (TargetTriple.getEnvironment() == Triple::EABI || TargetTriple.getEnvironment() == Triple::EABIHF) && !isTargetDarwin() && !isTargetWindows(); } bool isTargetGNUAEABI() const { return (TargetTriple.getEnvironment() == Triple::GNUEABI || TargetTriple.getEnvironment() == Triple::GNUEABIT64 || TargetTriple.getEnvironment() == Triple::GNUEABIHF || TargetTriple.getEnvironment() == Triple::GNUEABIHFT64) && !isTargetDarwin() && !isTargetWindows(); } bool isTargetMuslAEABI() const { return (TargetTriple.getEnvironment() == Triple::MuslEABI || TargetTriple.getEnvironment() == Triple::MuslEABIHF || TargetTriple.getEnvironment() == Triple::OpenHOS) && !isTargetDarwin() && !isTargetWindows(); } // ARM Targets that support EHABI exception handling standard // Darwin uses SjLj. Other targets might need more checks. bool isTargetEHABICompatible() const { return TargetTriple.isTargetEHABICompatible(); } bool isTargetHardFloat() const; bool isReadTPSoft() const { return !(isReadTPTPIDRURW() || isReadTPTPIDRURO() || isReadTPTPIDRPRW()); } bool isTargetAndroid() const { return TargetTriple.isAndroid(); } bool isXRaySupported() const override; bool isAPCS_ABI() const; bool isAAPCS_ABI() const; bool isAAPCS16_ABI() const; bool isROPI() const; bool isRWPI() const; bool useMachineScheduler() const { return UseMISched; } bool useMachinePipeliner() const { return UseMIPipeliner; } bool hasMinSize() const { return OptMinSize; } bool isThumb1Only() const { return isThumb() && !hasThumb2(); } bool isThumb2() const { return isThumb() && hasThumb2(); } bool isMClass() const { return ARMProcClass == MClass; } bool isRClass() const { return ARMProcClass == RClass; } bool isAClass() const { return ARMProcClass == AClass; } bool isR9Reserved() const { return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9; } MCPhysReg getFramePointerReg() const { if (isTargetDarwin() || (!isTargetWindows() && isThumb() && !createAAPCSFrameChain())) return ARM::R7; return ARM::R11; } /// Returns true if the frame setup is split into two separate pushes (first /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent /// to lr. This is always required on Thumb1-only targets, as the push and /// pop instructions can't access the high registers. bool splitFramePushPop(const MachineFunction &MF) const { if (MF.getInfo()->shouldSignReturnAddress()) return true; return (getFramePointerReg() == ARM::R7 && MF.getTarget().Options.DisableFramePointerElim(MF)) || isThumb1Only(); } bool splitFramePointerPush(const MachineFunction &MF) const; bool useStride4VFPs() const; bool useMovt() const; bool supportsTailCall() const { return SupportsTailCall; } bool allowsUnalignedMem() const { return !StrictAlign; } bool restrictIT() const { return RestrictIT; } const std::string & getCPUString() const { return CPUString; } bool isLittle() const { return IsLittle; } unsigned getMispredictionPenalty() const; /// Returns true if machine scheduler should be enabled. bool enableMachineScheduler() const override; /// Returns true if machine pipeliner should be enabled. bool enableMachinePipeliner() const override; bool useDFAforSMS() const override; /// True for some subtargets at > -O0. bool enablePostRAScheduler() const override; /// True for some subtargets at > -O0. bool enablePostRAMachineScheduler() const override; /// Check whether this subtarget wants to use subregister liveness. bool enableSubRegLiveness() const override; /// Enable use of alias analysis during code generation (during MI /// scheduling, DAGCombine, etc.). bool useAA() const override { return true; } /// getInstrItins - Return the instruction itineraries based on subtarget /// selection. const InstrItineraryData *getInstrItineraryData() const override { return &InstrItins; } /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every /// function for this subtarget. Align getStackAlignment() const { return stackAlignment; } // Returns the required alignment for LDRD/STRD instructions Align getDualLoadStoreAlignment() const { return Align(hasV7Ops() || allowsUnalignedMem() ? 4 : 8); } unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; } unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; } ARMLdStMultipleTiming getLdStMultipleTiming() const { return LdStMultipleTiming; } int getPreISelOperandLatencyAdjustment() const { return PreISelOperandLatencyAdjustment; } /// True if the GV will be accessed via an indirect symbol. bool isGVIndirectSymbol(const GlobalValue *GV) const; /// Returns the constant pool modifier needed to access the GV. bool isGVInGOT(const GlobalValue *GV) const; /// True if fast-isel is used. bool useFastISel() const; /// Returns the correct return opcode for the current feature set. /// Use BX if available to allow mixing thumb/arm code, but fall back /// to plain mov pc,lr on ARMv4. unsigned getReturnOpcode() const { if (isThumb()) return ARM::tBX_RET; if (hasV4TOps()) return ARM::BX_RET; return ARM::MOVPCLR; } /// Allow movt+movw for PIC global address calculation. /// ELF does not have GOT relocations for movt+movw. /// ROPI does not use GOT. bool allowPositionIndependentMovt() const { return isROPI() || !isTargetELF(); } unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; } unsigned getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const { if (CostKind == TargetTransformInfo::TCK_CodeSize) return 1; return MVEVectorCostFactor; } bool ignoreCSRForAllocationOrder(const MachineFunction &MF, unsigned PhysReg) const override; unsigned getGPRAllocationOrder(const MachineFunction &MF) const; }; } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H