//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // /// The pass tries to use the 32-bit encoding for instructions when possible. //===----------------------------------------------------------------------===// // #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #define DEBUG_TYPE "si-shrink-instructions" STATISTIC(NumInstructionsShrunk, "Number of 64-bit instruction reduced to 32-bit."); STATISTIC(NumLiteralConstantsFolded, "Number of literal constants folded into 32-bit instructions."); using namespace llvm; namespace { class SIShrinkInstructions : public MachineFunctionPass { MachineFunction *MF; MachineRegisterInfo *MRI; const GCNSubtarget *ST; const SIInstrInfo *TII; const SIRegisterInfo *TRI; public: static char ID; public: SIShrinkInstructions() : MachineFunctionPass(ID) { } bool foldImmediates(MachineInstr &MI, bool TryToCommute = true) const; bool shouldShrinkTrue16(MachineInstr &MI) const; bool isKImmOperand(const MachineOperand &Src) const; bool isKUImmOperand(const MachineOperand &Src) const; bool isKImmOrKUImmOperand(const MachineOperand &Src, bool &IsUnsigned) const; void copyExtraImplicitOps(MachineInstr &NewMI, MachineInstr &MI) const; void shrinkScalarCompare(MachineInstr &MI) const; void shrinkMIMG(MachineInstr &MI) const; void shrinkMadFma(MachineInstr &MI) const; bool shrinkScalarLogicOp(MachineInstr &MI) const; bool tryReplaceDeadSDST(MachineInstr &MI) const; bool instAccessReg(iterator_range &&R, Register Reg, unsigned SubReg) const; bool instReadsReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg) const; bool instModifiesReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg) const; TargetInstrInfo::RegSubRegPair getSubRegForIndex(Register Reg, unsigned Sub, unsigned I) const; void dropInstructionKeepingImpDefs(MachineInstr &MI) const; MachineInstr *matchSwap(MachineInstr &MovT) const; bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Shrink Instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE, "SI Shrink Instructions", false, false) char SIShrinkInstructions::ID = 0; FunctionPass *llvm::createSIShrinkInstructionsPass() { return new SIShrinkInstructions(); } /// This function checks \p MI for operands defined by a move immediate /// instruction and then folds the literal constant into the instruction if it /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions. bool SIShrinkInstructions::foldImmediates(MachineInstr &MI, bool TryToCommute) const { assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI)); int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); // Try to fold Src0 MachineOperand &Src0 = MI.getOperand(Src0Idx); if (Src0.isReg()) { Register Reg = Src0.getReg(); if (Reg.isVirtual()) { MachineInstr *Def = MRI->getUniqueVRegDef(Reg); if (Def && Def->isMoveImmediate()) { MachineOperand &MovSrc = Def->getOperand(1); bool ConstantFolded = false; if (TII->isOperandLegal(MI, Src0Idx, &MovSrc)) { if (MovSrc.isImm()) { Src0.ChangeToImmediate(MovSrc.getImm()); ConstantFolded = true; } else if (MovSrc.isFI()) { Src0.ChangeToFrameIndex(MovSrc.getIndex()); ConstantFolded = true; } else if (MovSrc.isGlobal()) { Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(), MovSrc.getTargetFlags()); ConstantFolded = true; } } if (ConstantFolded) { if (MRI->use_nodbg_empty(Reg)) Def->eraseFromParent(); ++NumLiteralConstantsFolded; return true; } } } } // We have failed to fold src0, so commute the instruction and try again. if (TryToCommute && MI.isCommutable()) { if (TII->commuteInstruction(MI)) { if (foldImmediates(MI, false)) return true; // Commute back. TII->commuteInstruction(MI); } } return false; } /// Do not shrink the instruction if its registers are not expressible in the /// shrunk encoding. bool SIShrinkInstructions::shouldShrinkTrue16(MachineInstr &MI) const { for (unsigned I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { const MachineOperand &MO = MI.getOperand(I); if (MO.isReg()) { Register Reg = MO.getReg(); assert(!Reg.isVirtual() && "Prior checks should ensure we only shrink " "True16 Instructions post-RA"); if (AMDGPU::VGPR_32RegClass.contains(Reg) && !AMDGPU::VGPR_32_Lo128RegClass.contains(Reg)) return false; } } return true; } bool SIShrinkInstructions::isKImmOperand(const MachineOperand &Src) const { return isInt<16>(SignExtend64(Src.getImm(), 32)) && !TII->isInlineConstant(*Src.getParent(), Src.getOperandNo()); } bool SIShrinkInstructions::isKUImmOperand(const MachineOperand &Src) const { return isUInt<16>(Src.getImm()) && !TII->isInlineConstant(*Src.getParent(), Src.getOperandNo()); } bool SIShrinkInstructions::isKImmOrKUImmOperand(const MachineOperand &Src, bool &IsUnsigned) const { if (isInt<16>(SignExtend64(Src.getImm(), 32))) { IsUnsigned = false; return !TII->isInlineConstant(Src); } if (isUInt<16>(Src.getImm())) { IsUnsigned = true; return !TII->isInlineConstant(Src); } return false; } /// \returns the opcode of an instruction a move immediate of the constant \p /// Src can be replaced with if the constant is replaced with \p ModifiedImm. /// i.e. /// /// If the bitreverse of a constant is an inline immediate, reverse the /// immediate and return the bitreverse opcode. /// /// If the bitwise negation of a constant is an inline immediate, reverse the /// immediate and return the bitwise not opcode. static unsigned canModifyToInlineImmOp32(const SIInstrInfo *TII, const MachineOperand &Src, int32_t &ModifiedImm, bool Scalar) { if (TII->isInlineConstant(Src)) return 0; int32_t SrcImm = static_cast(Src.getImm()); if (!Scalar) { // We could handle the scalar case with here, but we would need to check // that SCC is not live as S_NOT_B32 clobbers it. It's probably not worth // it, as the reasonable values are already covered by s_movk_i32. ModifiedImm = ~SrcImm; if (TII->isInlineConstant(APInt(32, ModifiedImm))) return AMDGPU::V_NOT_B32_e32; } ModifiedImm = reverseBits(SrcImm); if (TII->isInlineConstant(APInt(32, ModifiedImm))) return Scalar ? AMDGPU::S_BREV_B32 : AMDGPU::V_BFREV_B32_e32; return 0; } /// Copy implicit register operands from specified instruction to this /// instruction that are not part of the instruction definition. void SIShrinkInstructions::copyExtraImplicitOps(MachineInstr &NewMI, MachineInstr &MI) const { MachineFunction &MF = *MI.getMF(); for (unsigned i = MI.getDesc().getNumOperands() + MI.getDesc().implicit_uses().size() + MI.getDesc().implicit_defs().size(), e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) NewMI.addOperand(MF, MO); } } void SIShrinkInstructions::shrinkScalarCompare(MachineInstr &MI) const { if (!ST->hasSCmpK()) return; // cmpk instructions do scc = dst imm16, so commute the instruction to // get constants on the RHS. if (!MI.getOperand(0).isReg()) TII->commuteInstruction(MI, false, 0, 1); // cmpk requires src0 to be a register const MachineOperand &Src0 = MI.getOperand(0); if (!Src0.isReg()) return; MachineOperand &Src1 = MI.getOperand(1); if (!Src1.isImm()) return; int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode()); if (SOPKOpc == -1) return; // eq/ne is special because the imm16 can be treated as signed or unsigned, // and initially selected to the unsigned versions. if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) { bool HasUImm; if (isKImmOrKUImmOperand(Src1, HasUImm)) { if (!HasUImm) { SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ? AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32; Src1.setImm(SignExtend32(Src1.getImm(), 32)); } MI.setDesc(TII->get(SOPKOpc)); } return; } const MCInstrDesc &NewDesc = TII->get(SOPKOpc); if ((SIInstrInfo::sopkIsZext(SOPKOpc) && isKUImmOperand(Src1)) || (!SIInstrInfo::sopkIsZext(SOPKOpc) && isKImmOperand(Src1))) { if (!SIInstrInfo::sopkIsZext(SOPKOpc)) Src1.setImm(SignExtend64(Src1.getImm(), 32)); MI.setDesc(NewDesc); } } // Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding. void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) const { const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); if (!Info) return; uint8_t NewEncoding; switch (Info->MIMGEncoding) { case AMDGPU::MIMGEncGfx10NSA: NewEncoding = AMDGPU::MIMGEncGfx10Default; break; case AMDGPU::MIMGEncGfx11NSA: NewEncoding = AMDGPU::MIMGEncGfx11Default; break; default: return; } int VAddr0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); unsigned NewAddrDwords = Info->VAddrDwords; const TargetRegisterClass *RC; if (Info->VAddrDwords == 2) { RC = &AMDGPU::VReg_64RegClass; } else if (Info->VAddrDwords == 3) { RC = &AMDGPU::VReg_96RegClass; } else if (Info->VAddrDwords == 4) { RC = &AMDGPU::VReg_128RegClass; } else if (Info->VAddrDwords == 5) { RC = &AMDGPU::VReg_160RegClass; } else if (Info->VAddrDwords == 6) { RC = &AMDGPU::VReg_192RegClass; } else if (Info->VAddrDwords == 7) { RC = &AMDGPU::VReg_224RegClass; } else if (Info->VAddrDwords == 8) { RC = &AMDGPU::VReg_256RegClass; } else if (Info->VAddrDwords == 9) { RC = &AMDGPU::VReg_288RegClass; } else if (Info->VAddrDwords == 10) { RC = &AMDGPU::VReg_320RegClass; } else if (Info->VAddrDwords == 11) { RC = &AMDGPU::VReg_352RegClass; } else if (Info->VAddrDwords == 12) { RC = &AMDGPU::VReg_384RegClass; } else { RC = &AMDGPU::VReg_512RegClass; NewAddrDwords = 16; } unsigned VgprBase = 0; unsigned NextVgpr = 0; bool IsUndef = true; bool IsKill = NewAddrDwords == Info->VAddrDwords; const unsigned NSAMaxSize = ST->getNSAMaxSize(); const bool IsPartialNSA = NewAddrDwords > NSAMaxSize; const unsigned EndVAddr = IsPartialNSA ? NSAMaxSize : Info->VAddrOperands; for (unsigned Idx = 0; Idx < EndVAddr; ++Idx) { const MachineOperand &Op = MI.getOperand(VAddr0Idx + Idx); unsigned Vgpr = TRI->getHWRegIndex(Op.getReg()); unsigned Dwords = TRI->getRegSizeInBits(Op.getReg(), *MRI) / 32; assert(Dwords > 0 && "Un-implemented for less than 32 bit regs"); if (Idx == 0) { VgprBase = Vgpr; NextVgpr = Vgpr + Dwords; } else if (Vgpr == NextVgpr) { NextVgpr = Vgpr + Dwords; } else { return; } if (!Op.isUndef()) IsUndef = false; if (!Op.isKill()) IsKill = false; } if (VgprBase + NewAddrDwords > 256) return; // Further check for implicit tied operands - this may be present if TFE is // enabled int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe); unsigned TFEVal = (TFEIdx == -1) ? 0 : MI.getOperand(TFEIdx).getImm(); unsigned LWEVal = (LWEIdx == -1) ? 0 : MI.getOperand(LWEIdx).getImm(); int ToUntie = -1; if (TFEVal || LWEVal) { // TFE/LWE is enabled so we need to deal with an implicit tied operand for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) { if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() && MI.getOperand(i).isImplicit()) { // This is the tied operand assert( ToUntie == -1 && "found more than one tied implicit operand when expecting only 1"); ToUntie = i; MI.untieRegOperand(ToUntie); } } } unsigned NewOpcode = AMDGPU::getMIMGOpcode(Info->BaseOpcode, NewEncoding, Info->VDataDwords, NewAddrDwords); MI.setDesc(TII->get(NewOpcode)); MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase)); MI.getOperand(VAddr0Idx).setIsUndef(IsUndef); MI.getOperand(VAddr0Idx).setIsKill(IsKill); for (unsigned i = 1; i < EndVAddr; ++i) MI.removeOperand(VAddr0Idx + 1); if (ToUntie >= 0) { MI.tieOperands( AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata), ToUntie - (EndVAddr - 1)); } } // Shrink MAD to MADAK/MADMK and FMA to FMAAK/FMAMK. void SIShrinkInstructions::shrinkMadFma(MachineInstr &MI) const { // Pre-GFX10 VOP3 instructions like MAD/FMA cannot take a literal operand so // there is no reason to try to shrink them. if (!ST->hasVOP3Literal()) return; // There is no advantage to doing this pre-RA. if (!MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)) return; if (TII->hasAnyModifiersSet(MI)) return; const unsigned Opcode = MI.getOpcode(); MachineOperand &Src0 = *TII->getNamedOperand(MI, AMDGPU::OpName::src0); MachineOperand &Src1 = *TII->getNamedOperand(MI, AMDGPU::OpName::src1); MachineOperand &Src2 = *TII->getNamedOperand(MI, AMDGPU::OpName::src2); unsigned NewOpcode = AMDGPU::INSTRUCTION_LIST_END; bool Swap; // Detect "Dst = VSrc * VGPR + Imm" and convert to AK form. if (Src2.isImm() && !TII->isInlineConstant(Src2)) { if (Src1.isReg() && TRI->isVGPR(*MRI, Src1.getReg())) Swap = false; else if (Src0.isReg() && TRI->isVGPR(*MRI, Src0.getReg())) Swap = true; else return; switch (Opcode) { default: llvm_unreachable("Unexpected mad/fma opcode!"); case AMDGPU::V_MAD_F32_e64: NewOpcode = AMDGPU::V_MADAK_F32; break; case AMDGPU::V_FMA_F32_e64: NewOpcode = AMDGPU::V_FMAAK_F32; break; case AMDGPU::V_MAD_F16_e64: NewOpcode = AMDGPU::V_MADAK_F16; break; case AMDGPU::V_FMA_F16_e64: case AMDGPU::V_FMA_F16_gfx9_e64: NewOpcode = ST->hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16 : AMDGPU::V_FMAAK_F16; break; } } // Detect "Dst = VSrc * Imm + VGPR" and convert to MK form. if (Src2.isReg() && TRI->isVGPR(*MRI, Src2.getReg())) { if (Src1.isImm() && !TII->isInlineConstant(Src1)) Swap = false; else if (Src0.isImm() && !TII->isInlineConstant(Src0)) Swap = true; else return; switch (Opcode) { default: llvm_unreachable("Unexpected mad/fma opcode!"); case AMDGPU::V_MAD_F32_e64: NewOpcode = AMDGPU::V_MADMK_F32; break; case AMDGPU::V_FMA_F32_e64: NewOpcode = AMDGPU::V_FMAMK_F32; break; case AMDGPU::V_MAD_F16_e64: NewOpcode = AMDGPU::V_MADMK_F16; break; case AMDGPU::V_FMA_F16_e64: case AMDGPU::V_FMA_F16_gfx9_e64: NewOpcode = ST->hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16 : AMDGPU::V_FMAMK_F16; break; } } if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) return; if (AMDGPU::isTrue16Inst(NewOpcode) && !shouldShrinkTrue16(MI)) return; if (Swap) { // Swap Src0 and Src1 by building a new instruction. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(NewOpcode), MI.getOperand(0).getReg()) .add(Src1) .add(Src0) .add(Src2) .setMIFlags(MI.getFlags()); MI.eraseFromParent(); } else { TII->removeModOperands(MI); MI.setDesc(TII->get(NewOpcode)); } } /// Attempt to shrink AND/OR/XOR operations requiring non-inlineable literals. /// For AND or OR, try using S_BITSET{0,1} to clear or set bits. /// If the inverse of the immediate is legal, use ANDN2, ORN2 or /// XNOR (as a ^ b == ~(a ^ ~b)). /// \returns true if the caller should continue the machine function iterator bool SIShrinkInstructions::shrinkScalarLogicOp(MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); const MachineOperand *Dest = &MI.getOperand(0); MachineOperand *Src0 = &MI.getOperand(1); MachineOperand *Src1 = &MI.getOperand(2); MachineOperand *SrcReg = Src0; MachineOperand *SrcImm = Src1; if (!SrcImm->isImm() || AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST->hasInv2PiInlineImm())) return false; uint32_t Imm = static_cast(SrcImm->getImm()); uint32_t NewImm = 0; if (Opc == AMDGPU::S_AND_B32) { if (isPowerOf2_32(~Imm)) { NewImm = llvm::countr_one(Imm); Opc = AMDGPU::S_BITSET0_B32; } else if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_ANDN2_B32; } } else if (Opc == AMDGPU::S_OR_B32) { if (isPowerOf2_32(Imm)) { NewImm = llvm::countr_zero(Imm); Opc = AMDGPU::S_BITSET1_B32; } else if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_ORN2_B32; } } else if (Opc == AMDGPU::S_XOR_B32) { if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_XNOR_B32; } } else { llvm_unreachable("unexpected opcode"); } if (NewImm != 0) { if (Dest->getReg().isVirtual() && SrcReg->isReg()) { MRI->setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg()); MRI->setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg()); return true; } if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) { const bool IsUndef = SrcReg->isUndef(); const bool IsKill = SrcReg->isKill(); MI.setDesc(TII->get(Opc)); if (Opc == AMDGPU::S_BITSET0_B32 || Opc == AMDGPU::S_BITSET1_B32) { Src0->ChangeToImmediate(NewImm); // Remove the immediate and add the tied input. MI.getOperand(2).ChangeToRegister(Dest->getReg(), /*IsDef*/ false, /*isImp*/ false, IsKill, /*isDead*/ false, IsUndef); MI.tieOperands(0, 2); } else { SrcImm->setImm(NewImm); } } } return false; } // This is the same as MachineInstr::readsRegister/modifiesRegister except // it takes subregs into account. bool SIShrinkInstructions::instAccessReg( iterator_range &&R, Register Reg, unsigned SubReg) const { for (const MachineOperand &MO : R) { if (!MO.isReg()) continue; if (Reg.isPhysical() && MO.getReg().isPhysical()) { if (TRI->regsOverlap(Reg, MO.getReg())) return true; } else if (MO.getReg() == Reg && Reg.isVirtual()) { LaneBitmask Overlap = TRI->getSubRegIndexLaneMask(SubReg) & TRI->getSubRegIndexLaneMask(MO.getSubReg()); if (Overlap.any()) return true; } } return false; } bool SIShrinkInstructions::instReadsReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg) const { return instAccessReg(MI->uses(), Reg, SubReg); } bool SIShrinkInstructions::instModifiesReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg) const { return instAccessReg(MI->defs(), Reg, SubReg); } TargetInstrInfo::RegSubRegPair SIShrinkInstructions::getSubRegForIndex(Register Reg, unsigned Sub, unsigned I) const { if (TRI->getRegSizeInBits(Reg, *MRI) != 32) { if (Reg.isPhysical()) { Reg = TRI->getSubReg(Reg, TRI->getSubRegFromChannel(I)); } else { Sub = TRI->getSubRegFromChannel(I + TRI->getChannelFromSubReg(Sub)); } } return TargetInstrInfo::RegSubRegPair(Reg, Sub); } void SIShrinkInstructions::dropInstructionKeepingImpDefs( MachineInstr &MI) const { for (unsigned i = MI.getDesc().getNumOperands() + MI.getDesc().implicit_uses().size() + MI.getDesc().implicit_defs().size(), e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &Op = MI.getOperand(i); if (!Op.isDef()) continue; BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::IMPLICIT_DEF), Op.getReg()); } MI.eraseFromParent(); } // Match: // mov t, x // mov x, y // mov y, t // // => // // mov t, x (t is potentially dead and move eliminated) // v_swap_b32 x, y // // Returns next valid instruction pointer if was able to create v_swap_b32. // // This shall not be done too early not to prevent possible folding which may // remove matched moves, and this should preferably be done before RA to // release saved registers and also possibly after RA which can insert copies // too. // // This is really just a generic peephole that is not a canonical shrinking, // although requirements match the pass placement and it reduces code size too. MachineInstr *SIShrinkInstructions::matchSwap(MachineInstr &MovT) const { assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 || MovT.getOpcode() == AMDGPU::COPY); Register T = MovT.getOperand(0).getReg(); unsigned Tsub = MovT.getOperand(0).getSubReg(); MachineOperand &Xop = MovT.getOperand(1); if (!Xop.isReg()) return nullptr; Register X = Xop.getReg(); unsigned Xsub = Xop.getSubReg(); unsigned Size = TII->getOpSize(MovT, 0) / 4; if (!TRI->isVGPR(*MRI, X)) return nullptr; const unsigned SearchLimit = 16; unsigned Count = 0; bool KilledT = false; for (auto Iter = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end(); Iter != E && Count < SearchLimit && !KilledT; ++Iter, ++Count) { MachineInstr *MovY = &*Iter; KilledT = MovY->killsRegister(T, TRI); if ((MovY->getOpcode() != AMDGPU::V_MOV_B32_e32 && MovY->getOpcode() != AMDGPU::COPY) || !MovY->getOperand(1).isReg() || MovY->getOperand(1).getReg() != T || MovY->getOperand(1).getSubReg() != Tsub) continue; Register Y = MovY->getOperand(0).getReg(); unsigned Ysub = MovY->getOperand(0).getSubReg(); if (!TRI->isVGPR(*MRI, Y)) continue; MachineInstr *MovX = nullptr; for (auto IY = MovY->getIterator(), I = std::next(MovT.getIterator()); I != IY; ++I) { if (instReadsReg(&*I, X, Xsub) || instModifiesReg(&*I, Y, Ysub) || instModifiesReg(&*I, T, Tsub) || (MovX && instModifiesReg(&*I, X, Xsub))) { MovX = nullptr; break; } if (!instReadsReg(&*I, Y, Ysub)) { if (!MovX && instModifiesReg(&*I, X, Xsub)) { MovX = nullptr; break; } continue; } if (MovX || (I->getOpcode() != AMDGPU::V_MOV_B32_e32 && I->getOpcode() != AMDGPU::COPY) || I->getOperand(0).getReg() != X || I->getOperand(0).getSubReg() != Xsub) { MovX = nullptr; break; } if (Size > 1 && (I->getNumImplicitOperands() > (I->isCopy() ? 0U : 1U))) continue; MovX = &*I; } if (!MovX) continue; LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << *MovY); for (unsigned I = 0; I < Size; ++I) { TargetInstrInfo::RegSubRegPair X1, Y1; X1 = getSubRegForIndex(X, Xsub, I); Y1 = getSubRegForIndex(Y, Ysub, I); MachineBasicBlock &MBB = *MovT.getParent(); auto MIB = BuildMI(MBB, MovX->getIterator(), MovT.getDebugLoc(), TII->get(AMDGPU::V_SWAP_B32)) .addDef(X1.Reg, 0, X1.SubReg) .addDef(Y1.Reg, 0, Y1.SubReg) .addReg(Y1.Reg, 0, Y1.SubReg) .addReg(X1.Reg, 0, X1.SubReg).getInstr(); if (MovX->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { // Drop implicit EXEC. MIB->removeOperand(MIB->getNumExplicitOperands()); MIB->copyImplicitOps(*MBB.getParent(), *MovX); } } MovX->eraseFromParent(); dropInstructionKeepingImpDefs(*MovY); MachineInstr *Next = &*std::next(MovT.getIterator()); if (T.isVirtual() && MRI->use_nodbg_empty(T)) { dropInstructionKeepingImpDefs(MovT); } else { Xop.setIsKill(false); for (int I = MovT.getNumImplicitOperands() - 1; I >= 0; --I ) { unsigned OpNo = MovT.getNumExplicitOperands() + I; const MachineOperand &Op = MovT.getOperand(OpNo); if (Op.isKill() && TRI->regsOverlap(X, Op.getReg())) MovT.removeOperand(OpNo); } } return Next; } return nullptr; } // If an instruction has dead sdst replace it with NULL register on gfx1030+ bool SIShrinkInstructions::tryReplaceDeadSDST(MachineInstr &MI) const { if (!ST->hasGFX10_3Insts()) return false; MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::sdst); if (!Op) return false; Register SDstReg = Op->getReg(); if (SDstReg.isPhysical() || !MRI->use_nodbg_empty(SDstReg)) return false; Op->setReg(ST->isWave32() ? AMDGPU::SGPR_NULL : AMDGPU::SGPR_NULL64); return true; } bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; this->MF = &MF; MRI = &MF.getRegInfo(); ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); unsigned VCCReg = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; std::vector I1Defs; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) { // If this has a literal constant source that is the same as the // reversed bits of an inline immediate, replace with a bitreverse of // that constant. This saves 4 bytes in the common case of materializing // sign bits. // Test if we are after regalloc. We only want to do this after any // optimizations happen because this will confuse them. // XXX - not exactly a check for post-regalloc run. MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && MI.getOperand(0).getReg().isPhysical()) { int32_t ModImm; unsigned ModOpcode = canModifyToInlineImmOp32(TII, Src, ModImm, /*Scalar=*/false); if (ModOpcode != 0) { MI.setDesc(TII->get(ModOpcode)); Src.setImm(static_cast(ModImm)); continue; } } } if (ST->hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 || MI.getOpcode() == AMDGPU::COPY)) { if (auto *NextMI = matchSwap(MI)) { Next = NextMI->getIterator(); continue; } } // Try to use S_ADDK_I32 and S_MULK_I32. if (MI.getOpcode() == AMDGPU::S_ADD_I32 || MI.getOpcode() == AMDGPU::S_MUL_I32) { const MachineOperand *Dest = &MI.getOperand(0); MachineOperand *Src0 = &MI.getOperand(1); MachineOperand *Src1 = &MI.getOperand(2); if (!Src0->isReg() && Src1->isReg()) { if (TII->commuteInstruction(MI, false, 1, 2)) std::swap(Src0, Src1); } // FIXME: This could work better if hints worked with subregisters. If // we have a vector add of a constant, we usually don't get the correct // allocation due to the subregister usage. if (Dest->getReg().isVirtual() && Src0->isReg()) { MRI->setRegAllocationHint(Dest->getReg(), 0, Src0->getReg()); MRI->setRegAllocationHint(Src0->getReg(), 0, Dest->getReg()); continue; } if (Src0->isReg() && Src0->getReg() == Dest->getReg()) { if (Src1->isImm() && isKImmOperand(*Src1)) { unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ? AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32; Src1->setImm(SignExtend64(Src1->getImm(), 32)); MI.setDesc(TII->get(Opc)); MI.tieOperands(0, 1); } } } // Try to use s_cmpk_* if (MI.isCompare() && TII->isSOPC(MI)) { shrinkScalarCompare(MI); continue; } // Try to use S_MOVK_I32, which will save 4 bytes for small immediates. if (MI.getOpcode() == AMDGPU::S_MOV_B32) { const MachineOperand &Dst = MI.getOperand(0); MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && Dst.getReg().isPhysical()) { unsigned ModOpc; int32_t ModImm; if (isKImmOperand(Src)) { MI.setDesc(TII->get(AMDGPU::S_MOVK_I32)); Src.setImm(SignExtend64(Src.getImm(), 32)); } else if ((ModOpc = canModifyToInlineImmOp32(TII, Src, ModImm, /*Scalar=*/true))) { MI.setDesc(TII->get(ModOpc)); Src.setImm(static_cast(ModImm)); } } continue; } // Shrink scalar logic operations. if (MI.getOpcode() == AMDGPU::S_AND_B32 || MI.getOpcode() == AMDGPU::S_OR_B32 || MI.getOpcode() == AMDGPU::S_XOR_B32) { if (shrinkScalarLogicOp(MI)) continue; } if (TII->isMIMG(MI.getOpcode()) && ST->getGeneration() >= AMDGPUSubtarget::GFX10 && MF.getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)) { shrinkMIMG(MI); continue; } if (!TII->isVOP3(MI)) continue; if (MI.getOpcode() == AMDGPU::V_MAD_F32_e64 || MI.getOpcode() == AMDGPU::V_FMA_F32_e64 || MI.getOpcode() == AMDGPU::V_MAD_F16_e64 || MI.getOpcode() == AMDGPU::V_FMA_F16_e64 || MI.getOpcode() == AMDGPU::V_FMA_F16_gfx9_e64) { shrinkMadFma(MI); continue; } if (!TII->hasVALU32BitEncoding(MI.getOpcode())) { // If there is no chance we will shrink it and use VCC as sdst to get // a 32 bit form try to replace dead sdst with NULL. tryReplaceDeadSDST(MI); continue; } if (!TII->canShrink(MI, *MRI)) { // Try commuting the instruction and see if that enables us to shrink // it. if (!MI.isCommutable() || !TII->commuteInstruction(MI) || !TII->canShrink(MI, *MRI)) { tryReplaceDeadSDST(MI); continue; } } int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); if (TII->isVOPC(Op32)) { MachineOperand &Op0 = MI.getOperand(0); if (Op0.isReg()) { // Exclude VOPCX instructions as these don't explicitly write a // dst. Register DstReg = Op0.getReg(); if (DstReg.isVirtual()) { // VOPC instructions can only write to the VCC register. We can't // force them to use VCC here, because this is only one register and // cannot deal with sequences which would require multiple copies of // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...) // // So, instead of forcing the instruction to write to VCC, we // provide a hint to the register allocator to use VCC and then we // will run this pass again after RA and shrink it if it outputs to // VCC. MRI->setRegAllocationHint(DstReg, 0, VCCReg); continue; } if (DstReg != VCCReg) continue; } } if (Op32 == AMDGPU::V_CNDMASK_B32_e32) { // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC // instructions. const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (!Src2->isReg()) continue; Register SReg = Src2->getReg(); if (SReg.isVirtual()) { MRI->setRegAllocationHint(SReg, 0, VCCReg); continue; } if (SReg != VCCReg) continue; } // Check for the bool flag output for instructions like V_ADD_I32_e64. const MachineOperand *SDst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst); if (SDst) { bool Next = false; if (SDst->getReg() != VCCReg) { if (SDst->getReg().isVirtual()) MRI->setRegAllocationHint(SDst->getReg(), 0, VCCReg); Next = true; } // All of the instructions with carry outs also have an SGPR input in // src2. const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (Src2 && Src2->getReg() != VCCReg) { if (Src2->getReg().isVirtual()) MRI->setRegAllocationHint(Src2->getReg(), 0, VCCReg); Next = true; } if (Next) continue; } // Pre-GFX10, shrinking VOP3 instructions pre-RA gave us the chance to // fold an immediate into the shrunk instruction as a literal operand. In // GFX10 VOP3 instructions can take a literal operand anyway, so there is // no advantage to doing this. if (ST->hasVOP3Literal() && !MF.getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)) continue; if (ST->hasTrue16BitInsts() && AMDGPU::isTrue16Inst(MI.getOpcode()) && !shouldShrinkTrue16(MI)) continue; // We can shrink this instruction LLVM_DEBUG(dbgs() << "Shrinking " << MI); MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32); ++NumInstructionsShrunk; // Copy extra operands not present in the instruction definition. copyExtraImplicitOps(*Inst32, MI); // Copy deadness from the old explicit vcc def to the new implicit def. if (SDst && SDst->isDead()) Inst32->findRegisterDefOperand(VCCReg, /*TRI=*/nullptr)->setIsDead(); MI.eraseFromParent(); foldImmediates(*Inst32); LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); } } return false; }