//===-- SIInstructions.td - SI Instruction Definitions --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file was originally auto-generated from a GPU register header file and // all the instruction definitions were originally commented out. Instructions // that are not yet supported remain commented out. //===----------------------------------------------------------------------===// class GCNPat : Pat, PredicateControl; class UniformSextInreg : PatFrag< (ops node:$src), (sext_inreg $src, VT), [{ return !N->isDivergent(); }]>; class DivergentSextInreg : PatFrag< (ops node:$src), (sext_inreg $src, VT), [{ return N->isDivergent(); }]>; include "SOPInstructions.td" include "VOPInstructions.td" include "SMInstructions.td" include "FLATInstructions.td" include "BUFInstructions.td" include "EXPInstructions.td" include "DSDIRInstructions.td" include "VINTERPInstructions.td" //===----------------------------------------------------------------------===// // VINTRP Instructions //===----------------------------------------------------------------------===// // Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) def VINTRPDst : VINTRPDstOperand ; let Uses = [MODE, M0, EXEC] in { // FIXME: Specify SchedRW for VINTRP instructions. multiclass V_INTERP_P1_F32_m : VINTRP_m < 0x00000000, (outs VINTRPDst:$vdst), (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan), "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc, (i32 timm:$attrchan), (i32 timm:$attr), M0))] >; let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in { defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS, isNotGFX90APlus] let OtherPredicates = [has16BankLDS, isNotGFX90APlus], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS, isNotGFX90APlus], // Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 let OtherPredicates = [isNotGFX90APlus] in { let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { defm V_INTERP_P2_F32 : VINTRP_m < 0x00000001, (outs VINTRPDst:$vdst), (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan), "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc, (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" defm V_INTERP_MOV_F32 : VINTRP_m < 0x00000002, (outs VINTRPDst:$vdst), (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan), "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc), (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; } // End OtherPredicates = [isNotGFX90APlus] } // End Uses = [MODE, M0, EXEC] //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// // Insert a branch to an endpgm block to use as a fallback trap. def ENDPGM_TRAP : SPseudoInstSI< (outs), (ins), [(AMDGPUendpgm_trap)], "ENDPGM_TRAP"> { let hasSideEffects = 1; let usesCustomInserter = 1; } def SIMULATED_TRAP : SPseudoInstSI<(outs), (ins), [(AMDGPUsimulated_trap)], "SIMULATED_TRAP"> { let hasSideEffects = 1; let usesCustomInserter = 1; } def ATOMIC_FENCE : SPseudoInstSI< (outs), (ins i32imm:$ordering, i32imm:$scope), [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))], "ATOMIC_FENCE $ordering, $scope"> { let hasSideEffects = 1; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { // For use in patterns def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { let isPseudo = 1; let isCodeGenOnly = 1; let usesCustomInserter = 1; } // 64-bit vector move instruction. This is mainly used by the // SIFoldOperands pass to enable folding of inline immediates. def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), (ins VSrc_b64:$src0)> { let isReMaterializable = 1; let isAsCheapAsAMove = 1; let isMoveImm = 1; let SchedRW = [Write64Bit]; let Size = 4; let UseNamedOperandTable = 1; } // 64-bit vector move with dpp. Expanded post-RA. def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> { let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete. } // 64-bit scalar move immediate instruction. This is used to avoid subregs // initialization and allow rematerialization. def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst), (ins i64imm:$src0)> { let isReMaterializable = 1; let isAsCheapAsAMove = 1; let isMoveImm = 1; let SchedRW = [WriteSALU, Write64Bit]; let Size = 4; let Uses = []; let UseNamedOperandTable = 1; } // Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the // WQM pass processes it. def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; // Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is // turned into a copy by WQM pass, but does not seed WQM requirements. def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; // Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so // that the @earlyclobber is respected. The @earlyclobber is to make sure that // the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't // accidentally clobber inactive channels of $vdst. let Constraints = "@earlyclobber $vdst" in { def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; } } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] def WWM_COPY : SPseudoInstSI < (outs unknown:$dst), (ins unknown:$src)> { let hasSideEffects = 0; let isAsCheapAsAMove = 1; let isConvergent = 1; } def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { let Uses = [EXEC]; let Defs = [EXEC, SCC]; let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { let Uses = [EXEC]; let Defs = [EXEC, SCC]; let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } let usesCustomInserter = 1 in { let WaveSizePredicate = isWave32 in def S_INVERSE_BALLOT_U32 : SPseudoInstSI< (outs SReg_32:$sdst), (ins SSrc_b32:$mask), [(set i1:$sdst, (int_amdgcn_inverse_ballot i32:$mask))] >; let WaveSizePredicate = isWave64 in def S_INVERSE_BALLOT_U64 : SPseudoInstSI< (outs SReg_64:$sdst), (ins SSrc_b64:$mask), [(set i1:$sdst, (int_amdgcn_inverse_ballot i64:$mask))] >; } // End usesCustomInserter = 1 // Pseudo instructions used for @llvm.fptrunc.round upward // and @llvm.fptrunc.round downward. // These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD // and G_FPTRUNC_ROUND_DOWNWARD before being lowered to // FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO. // The final codegen is done in the ModeRegister pass. let Uses = [MODE, EXEC] in { def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst), (ins VGPR_32:$src0), [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>; def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst), (ins VGPR_32:$src0), [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>; } // End Uses = [MODE, EXEC] // Invert the exec mask and overwrite the inactive lanes of dst with inactive, // restoring it after we're done. let Defs = [SCC], isConvergent = 1 in { def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), (ins VSrc_b32: $src, VSrc_b32:$inactive), []>; def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), (ins VSrc_b64: $src, VSrc_b64:$inactive), []>; } // End Defs = [SCC] foreach vt = Reg32Types.types in { def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)), (V_SET_INACTIVE_B32 VSrc_b32:$src, VSrc_b32:$inactive)>; } foreach vt = Reg64Types.types in { def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)), (V_SET_INACTIVE_B64 VSrc_b64:$src, VSrc_b64:$inactive)>; } def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)), (V_SET_INACTIVE_B32 VGPR_32:$src, VGPR_32:$inactive)>; def : GCNPat<(i64 (int_amdgcn_set_inactive_chain_arg i64:$src, i64:$inactive)), (V_SET_INACTIVE_B64 VReg_64:$src, VReg_64:$inactive)>; let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst), (ins VSrc_b32: $src, VSrc_b32:$strategy), [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> { } def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst), (ins VSrc_b32: $src, VSrc_b32:$strategy), [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> { } } let usesCustomInserter = 1, Defs = [VCC] in { def V_ADD_U64_PSEUDO : VPseudoInstSI < (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), [(set VReg_64:$vdst, (DivergentBinFrag i64:$src0, i64:$src1))] >; def V_SUB_U64_PSEUDO : VPseudoInstSI < (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), [(set VReg_64:$vdst, (DivergentBinFrag i64:$src0, i64:$src1))] >; } // End usesCustomInserter = 1, Defs = [VCC] let usesCustomInserter = 1, Defs = [SCC] in { def S_ADD_U64_PSEUDO : SPseudoInstSI < (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), [(set SReg_64:$sdst, (UniformBinFrag i64:$src0, i64:$src1))] >; def S_SUB_U64_PSEUDO : SPseudoInstSI < (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), [(set SReg_64:$sdst, (UniformBinFrag i64:$src0, i64:$src1))] >; def S_ADD_CO_PSEUDO : SPseudoInstSI < (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) >; def S_SUB_CO_PSEUDO : SPseudoInstSI < (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) >; def S_UADDO_PSEUDO : SPseudoInstSI < (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) >; def S_USUBO_PSEUDO : SPseudoInstSI < (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) >; let OtherPredicates = [HasShaderCyclesHiLoRegisters] in def GET_SHADERCYCLESHILO : SPseudoInstSI< (outs SReg_64:$sdst), (ins), [(set SReg_64:$sdst, (i64 (readcyclecounter)))] >; } // End usesCustomInserter = 1, Defs = [SCC] let usesCustomInserter = 1 in { def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins), [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; } // End let usesCustomInserter = 1, SALU = 1 // Wrap an instruction by duplicating it, except for setting isTerminator. class WrapTerminatorInst : SPseudoInstSI< base_inst.OutOperandList, base_inst.InOperandList> { let Uses = base_inst.Uses; let Defs = base_inst.Defs; let isTerminator = 1; let isAsCheapAsAMove = base_inst.isAsCheapAsAMove; let hasSideEffects = base_inst.hasSideEffects; let UseNamedOperandTable = base_inst.UseNamedOperandTable; let CodeSize = base_inst.CodeSize; let SchedRW = base_inst.SchedRW; } let WaveSizePredicate = isWave64 in { def S_MOV_B64_term : WrapTerminatorInst; def S_XOR_B64_term : WrapTerminatorInst; def S_OR_B64_term : WrapTerminatorInst; def S_ANDN2_B64_term : WrapTerminatorInst; def S_AND_B64_term : WrapTerminatorInst; def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst; } let WaveSizePredicate = isWave32 in { def S_MOV_B32_term : WrapTerminatorInst; def S_XOR_B32_term : WrapTerminatorInst; def S_OR_B32_term : WrapTerminatorInst; def S_ANDN2_B32_term : WrapTerminatorInst; def S_AND_B32_term : WrapTerminatorInst; def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst; } def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), [(int_amdgcn_wave_barrier)]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 0; let mayStore = 0; let isConvergent = 1; let FixedSize = 1; let Size = 0; let isMeta = 1; } def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask), [(int_amdgcn_sched_barrier (i32 timm:$mask))]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 0; let mayStore = 0; let isConvergent = 1; let FixedSize = 1; let Size = 0; let isMeta = 1; } def SCHED_GROUP_BARRIER : SPseudoInstSI< (outs), (ins i32imm:$mask, i32imm:$size, i32imm:$syncid), [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 0; let mayStore = 0; let isConvergent = 1; let FixedSize = 1; let Size = 0; let isMeta = 1; } def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask), [(int_amdgcn_iglp_opt (i32 timm:$mask))]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 0; let mayStore = 0; let isConvergent = 1; let FixedSize = 1; let Size = 0; let isMeta = 1; } // SI pseudo instructions. These are used by the CFG structurizer pass // and should be lowered to ISA instructions prior to codegen. // As we have enhanced control flow intrinsics to work under unstructured CFG, // duplicating such intrinsics can be actually treated as legal. On the contrary, // by making them non-duplicable, we are observing better code generation result. // So we choose to mark them non-duplicable in hope of getting better code // generation as well as simplied CFG during Machine IR optimization stage. let isTerminator = 1, isNotDuplicable = 1 in { let OtherPredicates = [EnableLateCFGStructurize] in { def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < (outs), (ins SReg_1:$vcc, brtarget:$target), [(brcond i1:$vcc, bb:$target)]> { let Size = 12; } } def SI_IF: CFPseudoInstSI < (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target), [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { let Constraints = ""; let Size = 12; let hasSideEffects = 1; let IsNeverUniform = 1; } def SI_ELSE : CFPseudoInstSI < (outs SReg_1:$dst), (ins SReg_1:$src, brtarget:$target), [], 1, 1> { let Size = 12; let hasSideEffects = 1; let IsNeverUniform = 1; } def SI_WATERFALL_LOOP : CFPseudoInstSI < (outs), (ins brtarget:$target), [], 1> { let Size = 8; let isBranch = 1; let Defs = []; } def SI_LOOP : CFPseudoInstSI < (outs), (ins SReg_1:$saved, brtarget:$target), [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> { let Size = 8; let isBranch = 1; let hasSideEffects = 1; let IsNeverUniform = 1; } } // End isTerminator = 1 def SI_END_CF : CFPseudoInstSI < (outs), (ins SReg_1:$saved), [], 1, 1> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; let hasSideEffects = 1; let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details. let mayLoad = 1; // FIXME: Should not need memory flags let mayStore = 1; } def SI_IF_BREAK : CFPseudoInstSI < (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> { let Size = 4; let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details. let isAsCheapAsAMove = 1; let isReMaterializable = 1; } // Branch to the early termination block of the shader if SCC is 0. // This uses SCC from a previous SALU operation, i.e. the update of // a mask of live lanes after a kill/demote operation. // Only valid in pixel shaders. def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> { let Uses = [EXEC,SCC]; } let Uses = [EXEC] in { multiclass PseudoInstKill { // Even though this pseudo can usually be expanded without an SCC def, we // conservatively assume that it has an SCC def, both because it is sometimes // required in degenerate cases (when V_CMPX cannot be used due to constant // bus limitations) and because it allows us to avoid having to track SCC // liveness across basic blocks. let Defs = [EXEC,SCC] in def _PSEUDO : PseudoInstSI <(outs), ins> { let isConvergent = 1; let usesCustomInserter = 1; } let Defs = [EXEC,SCC] in def _TERMINATOR : SPseudoInstSI <(outs), ins> { let isTerminator = 1; } } defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>; let Defs = [VCC] in defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; let Defs = [EXEC,VCC] in def SI_ILLEGAL_COPY : SPseudoInstSI < (outs unknown:$dst), (ins unknown:$src), [], " ; illegal copy $src to $dst">; } // End Uses = [EXEC], Defs = [EXEC,VCC] // Branch on undef scc. Used to avoid intermediate copy from // IMPLICIT_DEF to SCC. def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> { let isTerminator = 1; let usesCustomInserter = 1; let isBranch = 1; } def SI_PS_LIVE : PseudoInstSI < (outs SReg_1:$dst), (ins), [(set i1:$dst, (int_amdgcn_ps_live))]> { let SALU = 1; } let Uses = [EXEC] in { def SI_LIVE_MASK : PseudoInstSI < (outs SReg_1:$dst), (ins), [(set i1:$dst, (int_amdgcn_live_mask))]> { let SALU = 1; } let Defs = [EXEC,SCC] in { // Demote: Turn a pixel shader thread into a helper lane. def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>; } // End Defs = [EXEC,SCC] } // End Uses = [EXEC] def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), [(int_amdgcn_unreachable)], "; divergent unreachable"> { let Size = 0; let hasNoSchedulingInfo = 1; let FixedSize = 1; let isMeta = 1; let maybeAtomic = 0; } // Used as an isel pseudo to directly emit initialization with an // s_mov_b32 rather than a copy of another initialized // register. MachineCSE skips copies, and we don't want to have to // fold operands before it runs. def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { let Defs = [M0]; let usesCustomInserter = 1; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_INIT_EXEC : SPseudoInstSI < (outs), (ins i64imm:$src), [(int_amdgcn_init_exec (i64 timm:$src))]> { let Defs = [EXEC]; let isAsCheapAsAMove = 1; } def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < (outs), (ins SSrc_b32:$input, i32imm:$shift), [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> { let Defs = [EXEC]; } // Return for returning shaders to a shader variant epilog. def SI_RETURN_TO_EPILOG : SPseudoInstSI < (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let hasNoSchedulingInfo = 1; let DisableWQM = 1; let FixedSize = 1; // TODO: Should this be true? let isMeta = 0; } // Return for returning function calls. def SI_RETURN : SPseudoInstSI < (outs), (ins), [(AMDGPUret_glue)], "; return"> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let SchedRW = [WriteBranch]; } // Return for returning function calls without output register. // // This version is only needed so we can fill in the output register // in the custom inserter. def SI_CALL_ISEL : SPseudoInstSI < (outs), (ins SSrc_b64:$src0, unknown:$callee), [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> { let Size = 4; let isCall = 1; let SchedRW = [WriteBranch]; let usesCustomInserter = 1; // TODO: Should really base this on the call target let isConvergent = 1; } def : GCNPat< (AMDGPUcall i64:$src0, (i64 0)), (SI_CALL_ISEL $src0, (i64 0)) >; // Wrapper around s_swappc_b64 with extra $callee parameter to track // the called function after regalloc. def SI_CALL : SPseudoInstSI < (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { let Size = 4; let FixedSize = 1; let isCall = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; // TODO: Should really base this on the call target let isConvergent = 1; } class SI_TCRETURN_Pseudo : SPseudoInstSI <(outs), (ins rc:$src0, unknown:$callee, i32imm:$fpdiff), [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> { let Size = 4; let FixedSize = 1; let isCall = 1; let isTerminator = 1; let isReturn = 1; let isBarrier = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; // TODO: Should really base this on the call target let isConvergent = 1; } // Tail call handling pseudo def SI_TCRETURN : SI_TCRETURN_Pseudo; def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo; // Handle selecting indirect tail calls def : GCNPat< (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)), (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff) >; // Handle selecting indirect tail calls for AMDGPU_gfx def : GCNPat< (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)), (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff) >; // Pseudo for the llvm.amdgcn.cs.chain intrinsic. // This is essentially a tail call, but it also takes a mask to put in EXEC // right before jumping to the callee. class SI_CS_CHAIN_TC< ValueType execvt, Predicate wavesizepred, RegisterOperand execrc = getSOPSrcForVT.ret> : SPseudoInstSI <(outs), (ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> { let FixedSize = 0; let isCall = 1; let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; let isConvergent = 1; let WaveSizePredicate = wavesizepred; } def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC; def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC; // Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64 multiclass si_cs_chain_tc_pattern< dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> { def : GCNPat< (AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec), (tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec) >; } multiclass si_cs_chain_tc_patterns< ValueType execvt, RegisterOperand execrc = getSOPSrcForVT.ret, Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64) > { defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>; defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>; } defm : si_cs_chain_tc_patterns; defm : si_cs_chain_tc_patterns; def ADJCALLSTACKUP : SPseudoInstSI< (outs), (ins i32imm:$amt0, i32imm:$amt1), [(callseq_start timm:$amt0, timm:$amt1)], "; adjcallstackup $amt0 $amt1"> { let Size = 8; // Worst case. (s_add_u32 + constant) let FixedSize = 1; let hasSideEffects = 1; let usesCustomInserter = 1; let SchedRW = [WriteSALU]; let Defs = [SCC]; } def ADJCALLSTACKDOWN : SPseudoInstSI< (outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)], "; adjcallstackdown $amt1"> { let Size = 8; // Worst case. (s_add_u32 + constant) let hasSideEffects = 1; let usesCustomInserter = 1; let SchedRW = [WriteSALU]; let Defs = [SCC]; } let Defs = [M0, EXEC, SCC], UseNamedOperandTable = 1 in { // SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect // addressing implementation. class SI_INDIRECT_SRC : VPseudoInstSI < (outs VGPR_32:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset)> { let usesCustomInserter = 1; } class SI_INDIRECT_DST : VPseudoInstSI < (outs rc:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { let Constraints = "$src = $vdst"; let usesCustomInserter = 1; } def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC; def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST; } // End Uses = [EXEC], Defs = [M0, EXEC] // This is a pseudo variant of the v_movreld_b32 instruction in which the // vector operand appears only twice, once as def and once as use. Using this // pseudo avoids problems with the Two Address instructions pass. class INDIRECT_REG_WRITE_MOVREL_pseudo : PseudoInstSI < (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> { let Constraints = "$vsrc = $vdst"; let Uses = [M0]; } class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo : INDIRECT_REG_WRITE_MOVREL_pseudo { let VALU = 1; let VOP1 = 1; let Uses = [M0, EXEC]; } class S_INDIRECT_REG_WRITE_MOVREL_pseudo : INDIRECT_REG_WRITE_MOVREL_pseudo { let SALU = 1; let SOP1 = 1; let Uses = [M0]; } class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo : S_INDIRECT_REG_WRITE_MOVREL_pseudo; class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo : S_INDIRECT_REG_WRITE_MOVREL_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo; def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo; // These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these // pseudos we avoid spills or copies being inserted within indirect sequences // that switch the VGPR indexing mode. Spills to accvgprs could be effected by // this mode switching. class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo : PseudoInstSI < (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> { let Constraints = "$vsrc = $vdst"; let VALU = 1; let Uses = [M0, EXEC]; let Defs = [M0]; } def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo; class V_INDIRECT_REG_READ_GPR_IDX_pseudo : PseudoInstSI < (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> { let VALU = 1; let Uses = [M0, EXEC]; let Defs = [M0]; } def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo; multiclass SI_SPILL_SGPR { let UseNamedOperandTable = 1, Spill = 1, SALU = 1, Uses = [EXEC] in { def _SAVE : PseudoInstSI < (outs), (ins sgpr_class:$data, i32imm:$addr)> { let mayStore = 1; let mayLoad = 0; } def _RESTORE : PseudoInstSI < (outs sgpr_class:$data), (ins i32imm:$addr)> { let mayStore = 0; let mayLoad = 1; } } // End UseNamedOperandTable = 1 } // You cannot use M0 as the output of v_readlane_b32 instructions or // use it in the sdata operand of SMEM instructions. We still need to // be able to spill the physical register m0, so allow it for // SI_SPILL_32_* instructions. defm SI_SPILL_S32 : SI_SPILL_SGPR ; defm SI_SPILL_S64 : SI_SPILL_SGPR ; defm SI_SPILL_S96 : SI_SPILL_SGPR ; defm SI_SPILL_S128 : SI_SPILL_SGPR ; defm SI_SPILL_S160 : SI_SPILL_SGPR ; defm SI_SPILL_S192 : SI_SPILL_SGPR ; defm SI_SPILL_S224 : SI_SPILL_SGPR ; defm SI_SPILL_S256 : SI_SPILL_SGPR ; defm SI_SPILL_S288 : SI_SPILL_SGPR ; defm SI_SPILL_S320 : SI_SPILL_SGPR ; defm SI_SPILL_S352 : SI_SPILL_SGPR ; defm SI_SPILL_S384 : SI_SPILL_SGPR ; defm SI_SPILL_S512 : SI_SPILL_SGPR ; defm SI_SPILL_S1024 : SI_SPILL_SGPR ; let Spill = 1, VALU = 1, isConvergent = 1 in { def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst), (ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> { let Size = 4; let FixedSize = 1; let IsNeverUniform = 1; let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; let Constraints = "$vdst = $vdst_in"; } def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst), (ins VGPR_32:$src0, i32imm:$src1)> { let Size = 4; let FixedSize = 1; let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; } } // End Spill = 1, VALU = 1, isConvergent = 1 // VGPR or AGPR spill instructions. In case of AGPR spilling a temp register // needs to be used and an extra instruction to move between VGPR and AGPR. // UsesTmp adds to the total size of an expanded spill in this case. multiclass SI_SPILL_VGPR { let UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM] in { def _SAVE : VPseudoInstSI < (outs), (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 1; let mayLoad = 0; // (2 * 4) + (8 * num_subregs) bytes maximum int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); // Size field is unsigned char and cannot fit more. let Size = !if(!le(MaxSize, 256), MaxSize, 252); } def _RESTORE : VPseudoInstSI < (outs vgpr_class:$vdata), (ins i32imm:$vaddr, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 0; let mayLoad = 1; // (2 * 4) + (8 * num_subregs) bytes maximum int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); // Size field is unsigned char and cannot fit more. let Size = !if(!le(MaxSize, 256), MaxSize, 252); } } // End UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM] } defm SI_SPILL_V32 : SI_SPILL_VGPR ; defm SI_SPILL_V64 : SI_SPILL_VGPR ; defm SI_SPILL_V96 : SI_SPILL_VGPR ; defm SI_SPILL_V128 : SI_SPILL_VGPR ; defm SI_SPILL_V160 : SI_SPILL_VGPR ; defm SI_SPILL_V192 : SI_SPILL_VGPR ; defm SI_SPILL_V224 : SI_SPILL_VGPR ; defm SI_SPILL_V256 : SI_SPILL_VGPR ; defm SI_SPILL_V288 : SI_SPILL_VGPR ; defm SI_SPILL_V320 : SI_SPILL_VGPR ; defm SI_SPILL_V352 : SI_SPILL_VGPR ; defm SI_SPILL_V384 : SI_SPILL_VGPR ; defm SI_SPILL_V512 : SI_SPILL_VGPR ; defm SI_SPILL_V1024 : SI_SPILL_VGPR ; defm SI_SPILL_A32 : SI_SPILL_VGPR ; defm SI_SPILL_A64 : SI_SPILL_VGPR ; defm SI_SPILL_A96 : SI_SPILL_VGPR ; defm SI_SPILL_A128 : SI_SPILL_VGPR ; defm SI_SPILL_A160 : SI_SPILL_VGPR ; defm SI_SPILL_A192 : SI_SPILL_VGPR ; defm SI_SPILL_A224 : SI_SPILL_VGPR ; defm SI_SPILL_A256 : SI_SPILL_VGPR ; defm SI_SPILL_A288 : SI_SPILL_VGPR ; defm SI_SPILL_A320 : SI_SPILL_VGPR ; defm SI_SPILL_A352 : SI_SPILL_VGPR ; defm SI_SPILL_A384 : SI_SPILL_VGPR ; defm SI_SPILL_A512 : SI_SPILL_VGPR ; defm SI_SPILL_A1024 : SI_SPILL_VGPR ; defm SI_SPILL_AV32 : SI_SPILL_VGPR ; defm SI_SPILL_AV64 : SI_SPILL_VGPR ; defm SI_SPILL_AV96 : SI_SPILL_VGPR ; defm SI_SPILL_AV128 : SI_SPILL_VGPR ; defm SI_SPILL_AV160 : SI_SPILL_VGPR ; defm SI_SPILL_AV192 : SI_SPILL_VGPR ; defm SI_SPILL_AV224 : SI_SPILL_VGPR ; defm SI_SPILL_AV256 : SI_SPILL_VGPR ; defm SI_SPILL_AV288 : SI_SPILL_VGPR ; defm SI_SPILL_AV320 : SI_SPILL_VGPR ; defm SI_SPILL_AV352 : SI_SPILL_VGPR ; defm SI_SPILL_AV384 : SI_SPILL_VGPR ; defm SI_SPILL_AV512 : SI_SPILL_VGPR ; defm SI_SPILL_AV1024 : SI_SPILL_VGPR ; let isConvergent = 1 in { defm SI_SPILL_WWM_V32 : SI_SPILL_VGPR ; defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR ; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < (outs SReg_64:$dst), (ins si_ga:$ptr_lo, si_ga:$ptr_hi), [(set SReg_64:$dst, (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> { let Defs = [SCC]; } def : GCNPat < (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0), (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0)) >; def : GCNPat< (AMDGPUtrap timm:$trapid), (S_TRAP $trapid) >; def : GCNPat< (AMDGPUelse i1:$src, bb:$target), (SI_ELSE $src, $target) >; def : Pat < (int_amdgcn_kill i1:$src), (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0) >; def : Pat < (int_amdgcn_kill (i1 (not i1:$src))), (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1) >; def : Pat < (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))), (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) >; def : Pat < (int_amdgcn_wqm_demote i1:$src), (SI_DEMOTE_I1 SCSrc_i1:$src, 0) >; def : Pat < (int_amdgcn_wqm_demote (i1 (not i1:$src))), (SI_DEMOTE_I1 SCSrc_i1:$src, -1) >; // TODO: we could add more variants for other types of conditionals def : Pat < (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), (COPY $src) // Return the SGPRs representing i1 src >; def : Pat < (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), (COPY $src) // Return the SGPRs representing i1 src >; //===----------------------------------------------------------------------===// // VOP1 Patterns //===----------------------------------------------------------------------===// multiclass f16_fp_Pats { // f16_to_fp patterns def : GCNPat < (f32 (any_f16_to_fp i32:$src0)), (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0) >; def : GCNPat < (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0) >; def : GCNPat < (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0))) >; def : GCNPat < (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0) >; def : GCNPat < (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0) >; def : GCNPat < (f64 (any_fpextend f16:$src)), (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src)) >; // fp_to_fp16 patterns def : GCNPat < (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0) >; def : GCNPat < (i32 (fp_to_sint f16:$src)), (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src)) >; def : GCNPat < (i32 (fp_to_uint f16:$src)), (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src)) >; def : GCNPat < (f16 (sint_to_fp i32:$src)), (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src)) >; def : GCNPat < (f16 (uint_to_fp i32:$src)), (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src)) >; // This is only used on targets without half support // TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering def : GCNPat < (i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0) >; } let SubtargetPredicate = NotHasTrue16BitInsts in defm : f16_fp_Pats; let SubtargetPredicate = HasTrue16BitInsts in defm : f16_fp_Pats; //===----------------------------------------------------------------------===// // VOP2 Patterns //===----------------------------------------------------------------------===// // NoMods pattern used for mac. If there are any source modifiers then it's // better to select mad instead of mac. class FMADPat : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)), (vt (VOP3NoMods vt:$src1)), (vt (VOP3NoMods vt:$src2)))), (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; // Prefer mac form when there are no modifiers. let AddedComplexity = 9 in { let OtherPredicates = [HasMadMacF32Insts] in def : FMADPat ; // Don't allow source modifiers. If there are any source modifiers then it's // better to select mad instead of mac. let SubtargetPredicate = isGFX6GFX7GFX10, OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in def : GCNPat < (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0), (VOP3NoMods f32:$src1)), (VOP3NoMods f32:$src2))), (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; // Don't allow source modifiers. If there are any source modifiers then it's // better to select fma instead of fmac. let SubtargetPredicate = HasFmaLegacy32 in def : GCNPat < (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0), (VOP3NoMods f32:$src1), (VOP3NoMods f32:$src2))), (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; let SubtargetPredicate = Has16BitInsts in def : FMADPat ; } // AddedComplexity = 9 let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in def : GCNPat < (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod), (VOP3Mods f32:$src1, i32:$src1_mod)), (VOP3Mods f32:$src2, i32:$src2_mod))), (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1, $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; class VOPSelectModsPat : GCNPat < (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods), (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))), (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2, FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0) >; class VOPSelectPat : GCNPat < (vt (select i1:$src0, vt:$src1, vt:$src2)), (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0) >; def : VOPSelectModsPat ; def : VOPSelectModsPat ; def : VOPSelectPat ; def : VOPSelectPat ; let AddedComplexity = 1 in { def : GCNPat < (i32 (add (i32 (DivergentUnaryFrag i32:$popcnt)), i32:$val)), (V_BCNT_U32_B32_e64 $popcnt, $val) >; } def : GCNPat < (i32 (DivergentUnaryFrag i32:$popcnt)), (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0)) >; def : GCNPat < (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag i32:$popcnt)))), i16:$val)), (V_BCNT_U32_B32_e64 $popcnt, $val) >; def : GCNPat < (i64 (DivergentUnaryFrag i64:$src)), (REG_SEQUENCE VReg_64, (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)), (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0, (i32 (V_MOV_B32_e32 (i32 0))), sub1) >; /********** ============================================ **********/ /********** Extraction, Insertion, Building and Casting **********/ /********** ============================================ **********/ // Special case for 2 element vectors. REQ_SEQUENCE produces better code // than an INSERT_SUBREG. multiclass Insert_Element_V2 { def : GCNPat < (insertelt vec_type:$vec, elem_type:$elem, 0), (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1) >; def : GCNPat < (insertelt vec_type:$vec, elem_type:$elem, 1), (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1) >; } foreach Index = 0-1 in { def Extract_Element_v2i32_#Index : Extract_Element < i32, v2i32, Index, !cast(sub#Index) >; def Extract_Element_v2f32_#Index : Extract_Element < f32, v2f32, Index, !cast(sub#Index) >; } defm : Insert_Element_V2 ; defm : Insert_Element_V2 ; foreach Index = 0-2 in { def Extract_Element_v3i32_#Index : Extract_Element < i32, v3i32, Index, !cast(sub#Index) >; def Insert_Element_v3i32_#Index : Insert_Element < i32, v3i32, Index, !cast(sub#Index) >; def Extract_Element_v3f32_#Index : Extract_Element < f32, v3f32, Index, !cast(sub#Index) >; def Insert_Element_v3f32_#Index : Insert_Element < f32, v3f32, Index, !cast(sub#Index) >; } foreach Index = 0-3 in { def Extract_Element_v4i32_#Index : Extract_Element < i32, v4i32, Index, !cast(sub#Index) >; def Insert_Element_v4i32_#Index : Insert_Element < i32, v4i32, Index, !cast(sub#Index) >; def Extract_Element_v4f32_#Index : Extract_Element < f32, v4f32, Index, !cast(sub#Index) >; def Insert_Element_v4f32_#Index : Insert_Element < f32, v4f32, Index, !cast(sub#Index) >; } foreach Index = 0-4 in { def Extract_Element_v5i32_#Index : Extract_Element < i32, v5i32, Index, !cast(sub#Index) >; def Insert_Element_v5i32_#Index : Insert_Element < i32, v5i32, Index, !cast(sub#Index) >; def Extract_Element_v5f32_#Index : Extract_Element < f32, v5f32, Index, !cast(sub#Index) >; def Insert_Element_v5f32_#Index : Insert_Element < f32, v5f32, Index, !cast(sub#Index) >; } foreach Index = 0-5 in { def Extract_Element_v6i32_#Index : Extract_Element < i32, v6i32, Index, !cast(sub#Index) >; def Insert_Element_v6i32_#Index : Insert_Element < i32, v6i32, Index, !cast(sub#Index) >; def Extract_Element_v6f32_#Index : Extract_Element < f32, v6f32, Index, !cast(sub#Index) >; def Insert_Element_v6f32_#Index : Insert_Element < f32, v6f32, Index, !cast(sub#Index) >; } foreach Index = 0-6 in { def Extract_Element_v7i32_#Index : Extract_Element < i32, v7i32, Index, !cast(sub#Index) >; def Insert_Element_v7i32_#Index : Insert_Element < i32, v7i32, Index, !cast(sub#Index) >; def Extract_Element_v7f32_#Index : Extract_Element < f32, v7f32, Index, !cast(sub#Index) >; def Insert_Element_v7f32_#Index : Insert_Element < f32, v7f32, Index, !cast(sub#Index) >; } foreach Index = 0-7 in { def Extract_Element_v8i32_#Index : Extract_Element < i32, v8i32, Index, !cast(sub#Index) >; def Insert_Element_v8i32_#Index : Insert_Element < i32, v8i32, Index, !cast(sub#Index) >; def Extract_Element_v8f32_#Index : Extract_Element < f32, v8f32, Index, !cast(sub#Index) >; def Insert_Element_v8f32_#Index : Insert_Element < f32, v8f32, Index, !cast(sub#Index) >; } foreach Index = 0-8 in { def Extract_Element_v9i32_#Index : Extract_Element < i32, v9i32, Index, !cast(sub#Index) >; def Insert_Element_v9i32_#Index : Insert_Element < i32, v9i32, Index, !cast(sub#Index) >; def Extract_Element_v9f32_#Index : Extract_Element < f32, v9f32, Index, !cast(sub#Index) >; def Insert_Element_v9f32_#Index : Insert_Element < f32, v9f32, Index, !cast(sub#Index) >; } foreach Index = 0-9 in { def Extract_Element_v10i32_#Index : Extract_Element < i32, v10i32, Index, !cast(sub#Index) >; def Insert_Element_v10i32_#Index : Insert_Element < i32, v10i32, Index, !cast(sub#Index) >; def Extract_Element_v10f32_#Index : Extract_Element < f32, v10f32, Index, !cast(sub#Index) >; def Insert_Element_v10f32_#Index : Insert_Element < f32, v10f32, Index, !cast(sub#Index) >; } foreach Index = 0-10 in { def Extract_Element_v11i32_#Index : Extract_Element < i32, v11i32, Index, !cast(sub#Index) >; def Insert_Element_v11i32_#Index : Insert_Element < i32, v11i32, Index, !cast(sub#Index) >; def Extract_Element_v11f32_#Index : Extract_Element < f32, v11f32, Index, !cast(sub#Index) >; def Insert_Element_v11f32_#Index : Insert_Element < f32, v11f32, Index, !cast(sub#Index) >; } foreach Index = 0-11 in { def Extract_Element_v12i32_#Index : Extract_Element < i32, v12i32, Index, !cast(sub#Index) >; def Insert_Element_v12i32_#Index : Insert_Element < i32, v12i32, Index, !cast(sub#Index) >; def Extract_Element_v12f32_#Index : Extract_Element < f32, v12f32, Index, !cast(sub#Index) >; def Insert_Element_v12f32_#Index : Insert_Element < f32, v12f32, Index, !cast(sub#Index) >; } foreach Index = 0-15 in { def Extract_Element_v16i32_#Index : Extract_Element < i32, v16i32, Index, !cast(sub#Index) >; def Insert_Element_v16i32_#Index : Insert_Element < i32, v16i32, Index, !cast(sub#Index) >; def Extract_Element_v16f32_#Index : Extract_Element < f32, v16f32, Index, !cast(sub#Index) >; def Insert_Element_v16f32_#Index : Insert_Element < f32, v16f32, Index, !cast(sub#Index) >; } foreach Index = 0-31 in { def Extract_Element_v32i32_#Index : Extract_Element < i32, v32i32, Index, !cast(sub#Index) >; def Insert_Element_v32i32_#Index : Insert_Element < i32, v32i32, Index, !cast(sub#Index) >; def Extract_Element_v32f32_#Index : Extract_Element < f32, v32f32, Index, !cast(sub#Index) >; def Insert_Element_v32f32_#Index : Insert_Element < f32, v32f32, Index, !cast(sub#Index) >; } // FIXME: Why do only some of these type combinations for SReg and // VReg? // 16-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 32-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 64-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // FIXME: Make SGPR def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 96-bit bitcast def : BitConvert ; def : BitConvert ; // 128-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 160-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 192-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 224-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 256-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 288-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 320-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 320-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 384-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 512-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 1024-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; /********** =================== **********/ /********** Src & Dst modifiers **********/ /********** =================== **********/ // If denormals are not enabled, it only impacts the compare of the // inputs. The output result is not flushed. class ClampPat : GCNPat < (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), (inst i32:$src0_modifiers, vt:$src0, i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) >; def : ClampPat; let SubtargetPredicate = isNotGFX12Plus in def : ClampPat; let SubtargetPredicate = isGFX12Plus in def : ClampPat; let SubtargetPredicate = NotHasTrue16BitInsts in def : ClampPat; let SubtargetPredicate = UseRealTrue16Insts in def : ClampPat; let SubtargetPredicate = UseFakeTrue16Insts in def : ClampPat; let SubtargetPredicate = HasVOP3PInsts in { def : GCNPat < (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), (V_PK_MAX_F16 $src0_modifiers, $src0, $src0_modifiers, $src0, DSTCLAMP.ENABLE) >; } /********** ================================ **********/ /********** Floating point absolute/negative **********/ /********** ================================ **********/ def : GCNPat < (UniformUnaryFrag (fabs (f32 SReg_32:$src))), (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit >; def : GCNPat < (UniformUnaryFrag (f32 SReg_32:$src)), (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff))) >; def : GCNPat < (UniformUnaryFrag (f32 SReg_32:$src)), (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) >; foreach fp16vt = [f16, bf16] in { def : GCNPat < (UniformUnaryFrag (fp16vt SReg_32:$src)), (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) >; def : GCNPat < (UniformUnaryFrag (fp16vt SReg_32:$src)), (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff))) >; def : GCNPat < (UniformUnaryFrag (fabs (fp16vt SReg_32:$src))), (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit >; } // End foreach fp16vt = ... def : GCNPat < (UniformUnaryFrag (v2f16 SReg_32:$src)), (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) >; def : GCNPat < (UniformUnaryFrag (v2f16 SReg_32:$src)), (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff))) >; // This is really (fneg (fabs v2f16:$src)) // // fabs is not reported as free because there is modifier for it in // VOP3P instructions, so it is turned into the bit op. def : GCNPat < (UniformUnaryFrag (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))), (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit >; def : GCNPat < (UniformUnaryFrag (v2f16 (fabs SReg_32:$src))), (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit >; // COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead // of the real value. def : GCNPat < (UniformUnaryFrag (v2f32 SReg_64:$src)), (v2f32 (REG_SEQUENCE SReg_64, (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)), (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), sub0, (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)), (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), sub1)) >; def : GCNPat < (UniformUnaryFrag (v2f32 SReg_64:$src)), (v2f32 (REG_SEQUENCE SReg_64, (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)), (i32 (S_MOV_B32 (i32 0x7fffffff)))), SReg_32)), sub0, (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)), (i32 (S_MOV_B32 (i32 0x7fffffff)))), SReg_32)), sub1)) >; def : GCNPat < (UniformUnaryFrag (fabs (v2f32 SReg_64:$src))), (v2f32 (REG_SEQUENCE SReg_64, (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)), (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), sub0, (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)), (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), sub1)) >; // FIXME: Use S_BITSET0_B32/B64? def : GCNPat < (UniformUnaryFrag (f64 SReg_64:$src)), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), sub0, (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit. sub1) >; def : GCNPat < (UniformUnaryFrag (f64 SReg_64:$src)), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), sub0, (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), sub1) >; def : GCNPat < (UniformUnaryFrag (fabs (f64 SReg_64:$src))), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), sub0, (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit. sub1) >; def : GCNPat < (fneg (fabs (f32 VGPR_32:$src))), (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit >; def : GCNPat < (fabs (f32 VGPR_32:$src)), (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src) >; def : GCNPat < (fneg (f32 VGPR_32:$src)), (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) >; foreach fp16vt = [f16, bf16] in { def : GCNPat < (fabs (fp16vt VGPR_32:$src)), (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src) >; def : GCNPat < (fneg (fp16vt VGPR_32:$src)), (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) >; def : GCNPat < (fneg (fabs (fp16vt VGPR_32:$src))), (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit >; } // End foreach fp16vt = ... def : GCNPat < (fneg (v2f16 VGPR_32:$src)), (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) >; def : GCNPat < (fabs (v2f16 VGPR_32:$src)), (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src) >; def : GCNPat < (fneg (v2f16 (fabs VGPR_32:$src))), (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) >; def : GCNPat < (fabs (f64 VReg_64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), sub0, (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))), (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), sub1) >; def : GCNPat < (fneg (f64 VReg_64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), sub0, (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))), (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), sub1) >; def : GCNPat < (fneg (fabs (f64 VReg_64:$src))), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), sub0, (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))), (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), sub1) >; def : GCNPat < (DivergentUnaryFrag (v2f32 VReg_64:$src)), (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src, 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, (i64 0), 0, 0, 0, 0, 0) > { let SubtargetPredicate = HasPackedFP32Ops; } foreach fp16vt = [f16, bf16] in { def : GCNPat < (fcopysign fp16vt:$src0, fp16vt:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) >; def : GCNPat < (fcopysign f32:$src0, fp16vt:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, (V_LSHLREV_B32_e64 (i32 16), $src1)) >; def : GCNPat < (fcopysign f64:$src0, fp16vt:$src1), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) >; def : GCNPat < (fcopysign fp16vt:$src0, f32:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, (V_LSHRREV_B32_e64 (i32 16), $src1)) >; def : GCNPat < (fcopysign fp16vt:$src0, f64:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) >; } // End foreach fp16vt = [f16, bf16] /********** ================== **********/ /********** Immediate Patterns **********/ /********** ================== **********/ def : GCNPat < (VGPRImm<(i32 imm)>:$imm), (V_MOV_B32_e32 imm:$imm) >; def : GCNPat < (VGPRImm<(f32 fpimm)>:$imm), (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (i32 imm:$imm), (S_MOV_B32 imm:$imm) >; def : GCNPat < (VGPRImm<(SIlds tglobaladdr:$ga)>), (V_MOV_B32_e32 $ga) >; def : GCNPat < (SIlds tglobaladdr:$ga), (S_MOV_B32 $ga) >; // FIXME: Workaround for ordering issue with peephole optimizer where // a register class copy interferes with immediate folding. Should // use s_mov_b32, which can be shrunk to s_movk_i32 def : GCNPat < (VGPRImm<(f16 fpimm)>:$imm), (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (VGPRImm<(bf16 fpimm)>:$imm), (V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm))) >; // V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit // immediate and wil be expanded as needed, but we will only use these patterns // for values which can be encoded. def : GCNPat < (VGPRImm<(i64 imm)>:$imm), (V_MOV_B64_PSEUDO imm:$imm) >; def : GCNPat < (VGPRImm<(f64 fpimm)>:$imm), (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm))) >; def : GCNPat < (i64 imm:$imm), (S_MOV_B64_IMM_PSEUDO imm:$imm) >; def : GCNPat < (f64 fpimm:$imm), (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm))) >; def : GCNPat < (f32 fpimm:$imm), (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (f16 fpimm:$imm), (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (bf16 fpimm:$imm), (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) >; def : GCNPat < (p5 frameindex:$fi), (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi))) >; def : GCNPat < (p5 frameindex:$fi), (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi))) >; def : GCNPat < (i64 InlineImm64:$imm), (S_MOV_B64 InlineImm64:$imm) >; // XXX - Should this use a s_cmp to set SCC? // Set to sign-extended 64-bit value (true = -1, false = 0) def : GCNPat < (i1 imm:$imm), (S_MOV_B64 (i64 (as_i64imm $imm))) > { let WaveSizePredicate = isWave64; } def : GCNPat < (i1 imm:$imm), (S_MOV_B32 (i32 (as_i32imm $imm))) > { let WaveSizePredicate = isWave32; } def : GCNPat < (f64 InlineImmFP64:$imm), (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm))) >; /********** ================== **********/ /********** Intrinsic Patterns **********/ /********** ================== **********/ def : GCNPat < (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))), (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0)) >; def : GCNPat < (i32 (sext i1:$src0)), (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0) >; class Ext32Pat : GCNPat < (i32 (ext i1:$src0)), (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0) >; def : Ext32Pat ; def : Ext32Pat ; // The multiplication scales from [0,1) to the unsigned integer range, // rounding down a bit to avoid unwanted overflow. def : GCNPat < (AMDGPUurecip i32:$src0), (V_CVT_U32_F32_e32 (V_MUL_F32_e32 (i32 CONST.FP_4294966784), (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) >; //===----------------------------------------------------------------------===// // VOP3 Patterns //===----------------------------------------------------------------------===// def : IMad24Pat; def : UMad24Pat; // BFI patterns def BFIImm32 : PatFrag< (ops node:$x, node:$y, node:$z), (i32 (DivergentBinFrag (and node:$y, node:$x), (and node:$z, imm))), [{ auto *X = dyn_cast(N->getOperand(0)->getOperand(1)); auto *NotX = dyn_cast(N->getOperand(1)->getOperand(1)); return X && NotX && ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue(); }] >; // Definition from ISA doc: // (y & x) | (z & ~x) def : AMDGPUPatIgnoreCopies < (DivergentBinFrag (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32)) >; // (y & C) | (z & ~C) def : AMDGPUPatIgnoreCopies < (BFIImm32 i32:$x, i32:$y, i32:$z), (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z) >; // 64-bit version def : AMDGPUPatIgnoreCopies < (DivergentBinFrag (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), (REG_SEQUENCE VReg_64, (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0, (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1) >; // SHA-256 Ch function // z ^ (x & (y ^ z)) def : AMDGPUPatIgnoreCopies < (DivergentBinFrag i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32)) >; // 64-bit version def : AMDGPUPatIgnoreCopies < (DivergentBinFrag i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), (REG_SEQUENCE VReg_64, (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0, (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1) >; def : AMDGPUPat < (fcopysign f32:$src0, f32:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1) >; def : AMDGPUPat < (fcopysign f32:$src0, f64:$src1), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))) >; def : AMDGPUPat < (fcopysign f64:$src0, f64:$src1), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1) >; def : AMDGPUPat < (fcopysign f64:$src0, f32:$src1), (REG_SEQUENCE SReg_64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), $src1), sub1) >; def : ROTRPattern ; def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; /********** ====================== **********/ /********** Indirect addressing **********/ /********** ====================== **********/ multiclass SI_INDIRECT_Pattern { // Extract with offset def : GCNPat< (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), (!cast("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) >; // Insert with offset def : GCNPat< (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), (!cast("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) >; } defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; //===----------------------------------------------------------------------===// // SAD Patterns //===----------------------------------------------------------------------===// def : GCNPat < (add (sub_oneuse (umax i32:$src0, i32:$src1), (umin i32:$src0, i32:$src1)), i32:$src2), (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) >; def : GCNPat < (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), (sub i32:$src0, i32:$src1), (sub i32:$src1, i32:$src0)), i32:$src2), (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) >; //===----------------------------------------------------------------------===// // Conversion Patterns //===----------------------------------------------------------------------===// def : GCNPat<(i32 (UniformSextInreg i32:$src)), (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 // Handle sext_inreg in i64 def : GCNPat < (i64 (UniformSextInreg i64:$src)), (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 >; def : GCNPat < (i16 (UniformSextInreg i16:$src)), (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 >; def : GCNPat < (i16 (UniformSextInreg i16:$src)), (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 >; def : GCNPat < (i64 (UniformSextInreg i64:$src)), (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 >; def : GCNPat < (i64 (UniformSextInreg i64:$src)), (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 >; def : GCNPat < (i64 (UniformSextInreg i64:$src)), (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 >; def : GCNPat< (i32 (DivergentSextInreg i32:$src)), (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>; def : GCNPat < (i16 (DivergentSextInreg i16:$src)), (V_BFE_I32_e64 $src, (i32 0), (i32 1)) >; def : GCNPat < (i16 (DivergentSextInreg i16:$src)), (V_BFE_I32_e64 $src, (i32 0), (i32 8)) >; def : GCNPat< (i32 (DivergentSextInreg i32:$src)), (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8)) >; def : GCNPat < (i32 (DivergentSextInreg i32:$src)), (V_BFE_I32_e64 $src, (i32 0), (i32 16)) >; def : GCNPat < (i64 (DivergentSextInreg i64:$src)), (REG_SEQUENCE VReg_64, (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0, (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1) >; def : GCNPat < (i64 (DivergentSextInreg i64:$src)), (REG_SEQUENCE VReg_64, (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0, (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1) >; def : GCNPat < (i64 (DivergentSextInreg i64:$src)), (REG_SEQUENCE VReg_64, (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0, (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1) >; def : GCNPat < (i64 (DivergentSextInreg i64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0, (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1) >; def : GCNPat < (i64 (zext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) >; def : GCNPat < (i64 (anyext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) >; class ZExt_i64_i1_Pat : GCNPat < (i64 (ext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 1), $src), sub0, (S_MOV_B32 (i32 0)), sub1) >; def : ZExt_i64_i1_Pat; def : ZExt_i64_i1_Pat; // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that // REG_SEQUENCE patterns don't support instructions with multiple outputs. def : GCNPat < (i64 (UniformUnaryFrag i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) >; def : GCNPat < (i64 (DivergentUnaryFrag i32:$src)), (REG_SEQUENCE VReg_64, $src, sub0, (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1) >; def : GCNPat < (i64 (sext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0, (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1) >; class FPToI1Pat : GCNPat < (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) >; let OtherPredicates = [NotHasTrue16BitInsts] in { def : FPToI1Pat; def : FPToI1Pat; } // end OtherPredicates = [NotHasTrue16BitInsts] let OtherPredicates = [HasTrue16BitInsts] in { def : FPToI1Pat; def : FPToI1Pat; } // end OtherPredicates = [HasTrue16BitInsts] def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; // If we need to perform a logical operation on i1 values, we need to // use vector comparisons since there is only one SCC register. Vector // comparisons may write to a pair of SGPRs or a single SGPR, so treat // these as 32 or 64-bit comparisons. When legalizing SGPR copies, // instructions resulting in the copies from SCC to these instructions // will be moved to the VALU. let WaveSizePredicate = isWave64 in { def : GCNPat < (i1 (and i1:$src0, i1:$src1)), (S_AND_B64 $src0, $src1) >; def : GCNPat < (i1 (or i1:$src0, i1:$src1)), (S_OR_B64 $src0, $src1) >; def : GCNPat < (i1 (xor i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; def : GCNPat < (i1 (add i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; def : GCNPat < (i1 (sub i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; let AddedComplexity = 1 in { def : GCNPat < (i1 (add i1:$src0, (i1 -1))), (S_NOT_B64 $src0) >; def : GCNPat < (i1 (sub i1:$src0, (i1 -1))), (S_NOT_B64 $src0) >; } } // end isWave64 let WaveSizePredicate = isWave32 in { def : GCNPat < (i1 (and i1:$src0, i1:$src1)), (S_AND_B32 $src0, $src1) >; def : GCNPat < (i1 (or i1:$src0, i1:$src1)), (S_OR_B32 $src0, $src1) >; def : GCNPat < (i1 (xor i1:$src0, i1:$src1)), (S_XOR_B32 $src0, $src1) >; def : GCNPat < (i1 (add i1:$src0, i1:$src1)), (S_XOR_B32 $src0, $src1) >; def : GCNPat < (i1 (sub i1:$src0, i1:$src1)), (S_XOR_B32 $src0, $src1) >; let AddedComplexity = 1 in { def : GCNPat < (i1 (add i1:$src0, (i1 -1))), (S_NOT_B32 $src0) >; def : GCNPat < (i1 (sub i1:$src0, (i1 -1))), (S_NOT_B32 $src0) >; } } // end isWave32 def : GCNPat < (i32 (DivergentBinFrag i32:$src0, (i32 -1))), (V_NOT_B32_e32 $src0) >; def : GCNPat < (i64 (DivergentBinFrag i64:$src0, (i64 -1))), (REG_SEQUENCE VReg_64, (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0, (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1 ) >; let SubtargetPredicate = NotHasTrue16BitInsts in def : GCNPat < (f16 (sint_to_fp i1:$src)), (V_CVT_F16_F32_e32 ( V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), SSrc_i1:$src)) >; let SubtargetPredicate = HasTrue16BitInsts in def : GCNPat < (f16 (sint_to_fp i1:$src)), (V_CVT_F16_F32_t16_e32 ( V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), SSrc_i1:$src)) >; let SubtargetPredicate = NotHasTrue16BitInsts in def : GCNPat < (f16 (uint_to_fp i1:$src)), (V_CVT_F16_F32_e32 ( V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), SSrc_i1:$src)) >; let SubtargetPredicate = HasTrue16BitInsts in def : GCNPat < (f16 (uint_to_fp i1:$src)), (V_CVT_F16_F32_t16_e32 ( V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), SSrc_i1:$src)) >; def : GCNPat < (f32 (sint_to_fp i1:$src)), (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), SSrc_i1:$src) >; def : GCNPat < (f32 (uint_to_fp i1:$src)), (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), SSrc_i1:$src) >; def : GCNPat < (f64 (sint_to_fp i1:$src)), (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 -1), SSrc_i1:$src)) >; def : GCNPat < (f64 (uint_to_fp i1:$src)), (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), /*src1mod*/(i32 0), /*src1*/(i32 1), SSrc_i1:$src)) >; //===----------------------------------------------------------------------===// // Miscellaneous Patterns //===----------------------------------------------------------------------===// // Eliminate a zero extension from an fp16 operation if it already // zeros the high bits of the 32-bit register. // // This is complicated on gfx9+. Some instructions maintain the legacy // zeroing behavior, but others preserve the high bits. Some have a // control bit to change the behavior. We can't simply say with // certainty what the source behavior is without more context on how // the src is lowered. e.g. fptrunc + fma may be lowered to a // v_fma_mix* instruction which does not zero, or may not. def : GCNPat< (i32 (DivergentUnaryFrag i32:$src)), (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>; let AddedComplexity = 1 in { def : GCNPat< (i32 (DivergentUnaryFrag i32:$src)), (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{ let SubtargetPredicate = HasAddNoCarryInsts; } } // AddedComplexity = 1 def : GCNPat< (i32 (DivergentUnaryFrag i16:$src)), (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src) >; def : GCNPat< (i64 (DivergentUnaryFrag i16:$src)), (REG_SEQUENCE VReg_64, (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0, (S_MOV_B32 (i32 0)), sub1) >; def : GCNPat< (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))), (COPY VSrc_b16:$src)>; def : GCNPat < (i32 (trunc i64:$a)), (EXTRACT_SUBREG $a, sub0) >; def : GCNPat < (i1 (UniformUnaryFrag i32:$a)), (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1)) >; def : GCNPat < (i1 (UniformUnaryFrag i16:$a)), (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1)) >; def : GCNPat < (i1 (UniformUnaryFrag i64:$a)), (S_CMP_EQ_U32 (S_AND_B32 (i32 1), (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) >; def : GCNPat < (i1 (DivergentUnaryFrag i32:$a)), (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1)) >; def : GCNPat < (i1 (DivergentUnaryFrag i16:$a)), (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1)) >; def IMMBitSelConst : SDNodeXFormgetTargetConstant(1ULL << N->getZExtValue(), SDLoc(N), MVT::i32); }]>; // Matching separate SRL and TRUNC instructions // with dependent operands (SRL dest is source of TRUNC) // generates three instructions. However, by using bit shifts, // the V_LSHRREV_B32_e64 result can be directly used in the // operand of the V_AND_B32_e64 instruction: // (trunc i32 (srl i32 $a, i32 $b)) -> // v_and_b32_e64 $a, (1 << $b), $a // v_cmp_ne_u32_e64 $a, 0, $a // Handle the VALU case. def : GCNPat < (i1 (DivergentUnaryFrag (i32 (srl i32:$a, (i32 imm:$b))))), (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a), (i32 0)) >; // Handle the scalar case. def : GCNPat < (i1 (UniformUnaryFrag (i32 (srl i32:$a, (i32 imm:$b))))), (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a), (i32 0)) >; def : GCNPat < (i1 (DivergentUnaryFrag i64:$a)), (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) >; def : GCNPat < (i32 (bswap i32:$a)), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)), (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8))) >; // FIXME: This should have been narrowed to i32 during legalization. // This pattern should also be skipped for GlobalISel def : GCNPat < (i64 (bswap i64:$a)), (REG_SEQUENCE VReg_64, (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), (i32 24)), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), (i32 8))), sub0, (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), (i32 24)), (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), (i32 8))), sub1) >; // FIXME: The AddedComplexity should not be needed, but in GlobalISel // the BFI pattern ends up taking precedence without it. let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in { // Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24) // // My reading of the manual suggests we should be using src0 for the // register value, but this is what seems to work. def : GCNPat < (i32 (bswap i32:$a)), (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203))) >; // FIXME: This should have been narrowed to i32 during legalization. // This pattern should also be skipped for GlobalISel def : GCNPat < (i64 (bswap i64:$a)), (REG_SEQUENCE VReg_64, (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1), (S_MOV_B32 (i32 0x00010203))), sub0, (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0), (S_MOV_B32 (i32 0x00010203))), sub1) >; // Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24) // The 12s emit 0s. def : GCNPat < (i16 (bswap i16:$a)), (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) >; def : GCNPat < (i32 (zext (bswap i16:$a))), (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) >; // Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24) def : GCNPat < (v2i16 (bswap v2i16:$a)), (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001))) >; } def : GCNPat< (i64 (DivergentUnaryFrag i64:$a)), (REG_SEQUENCE VReg_64, (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0, (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>; // If fcanonicalize's operand is implicitly canonicalized, we only need a copy. let AddedComplexity = 1000 in { foreach vt = [f16, v2f16, f32, v2f32, f64] in { def : GCNPat< (fcanonicalize (vt is_canonicalized:$src)), (COPY vt:$src) >; } } // Prefer selecting to max when legal, but using mul is always valid. let AddedComplexity = -5 in { let OtherPredicates = [NotHasTrue16BitInsts] in { def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) >; def : GCNPat< (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) >; } // End OtherPredicates let OtherPredicates = [HasTrue16BitInsts] in { def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) >; def : GCNPat< (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) >; } // End OtherPredicates def : GCNPat< (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) >; def : GCNPat< (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src) >; def : GCNPat< (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src) >; let SubtargetPredicate = HasPackedFP32Ops in { def : GCNPat< (fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))), (V_PK_MUL_F32 0, (i64 CONST.FP32_ONE), $src_mods, $src) >; } // TODO: Handle fneg like other types. let SubtargetPredicate = isNotGFX12Plus in { def : GCNPat< (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), (V_MUL_F64_e64 0, (i64 CONST.FP64_ONE), $src_mods, $src) >; } } // End AddedComplexity = -5 multiclass SelectCanonicalizeAsMax< list f32_preds = [], list f64_preds = [], list f16_preds = []> { def : GCNPat< (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> { let OtherPredicates = f32_preds; } def : GCNPat< (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), (V_MAX_F64_e64 $src_mods, $src, $src_mods, $src)> { let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]); } def : GCNPat< (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), (V_MAX_NUM_F64_e64 $src_mods, $src, $src_mods, $src)> { let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]); } def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]); } def : GCNPat< (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), (V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]); } def : GCNPat< (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> { // FIXME: Should have VOP3P subtarget predicate let OtherPredicates = f16_preds; } } // On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal // mode, and would never flush. For f64, it's faster to do implement // this with a max. For f16/f32 it's a wash, but prefer max when // valid. // // FIXME: Lowering f32/f16 with max is worse since we can use a // smaller encoding if the input is fneg'd. It also adds an extra // register use. let SubtargetPredicate = HasMinMaxDenormModes in { defm : SelectCanonicalizeAsMax<[], [], []>; } // End SubtargetPredicate = HasMinMaxDenormModes let SubtargetPredicate = NotHasMinMaxDenormModes in { // Use the max lowering if we don't need to flush. // FIXME: We don't do use this for f32 as a workaround for the // library being compiled with the default ieee mode, but // potentially being called from flushing kernels. Really we should // not be mixing code expecting different default FP modes, but mul // works in any FP environment. defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>; } // End SubtargetPredicate = NotHasMinMaxDenormModes let OtherPredicates = [HasDLInsts] in { // Don't allow source modifiers. If there are any source modifiers then it's // better to select fma instead of fmac. def : GCNPat < (fma (f32 (VOP3NoMods f32:$src0)), (f32 (VOP3NoMods f32:$src1)), (f32 (VOP3NoMods f32:$src2))), (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2) >; } // End OtherPredicates = [HasDLInsts] let SubtargetPredicate = isGFX10Plus in { // Don't allow source modifiers. If there are any source modifiers then it's // better to select fma instead of fmac. let OtherPredicates = [NotHasTrue16BitInsts] in def : GCNPat < (fma (f16 (VOP3NoMods f32:$src0)), (f16 (VOP3NoMods f32:$src1)), (f16 (VOP3NoMods f32:$src2))), (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2) >; let OtherPredicates = [HasTrue16BitInsts] in def : GCNPat < (fma (f16 (VOP3NoMods f32:$src0)), (f16 (VOP3NoMods f32:$src1)), (f16 (VOP3NoMods f32:$src2))), (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2) >; } let OtherPredicates = [HasFmacF64Inst] in // Don't allow source modifiers. If there are any source modifiers then it's // better to select fma instead of fmac. def : GCNPat < (fma (f64 (VOP3NoMods f64:$src0)), (f64 (VOP3NoMods f64:$src1)), (f64 (VOP3NoMods f64:$src2))), (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2) >; // COPY is workaround tablegen bug from multiple outputs // from S_LSHL_B32's multiple outputs from implicit scc def. let AddedComplexity = 1 in { def : GCNPat < (v2i16 (UniformBinFrag (i16 0), (i16 SReg_32:$src1))), (S_LSHL_B32 SReg_32:$src1, (i16 16)) >; def : GCNPat < (v2i16 (DivergentBinFrag (i16 0), (i16 VGPR_32:$src1))), (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1)) >; def : GCNPat < (v2i16 (UniformBinFrag (i16 SReg_32:$src1), (i16 0))), (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) >; def : GCNPat < (v2i16 (DivergentBinFrag (i16 VGPR_32:$src1), (i16 0))), (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1)) >; def : GCNPat < (v2f16 (UniformBinFrag (f16 SReg_32:$src1), (f16 FP_ZERO))), (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) >; def : GCNPat < (v2f16 (DivergentBinFrag (f16 VGPR_32:$src1), (f16 FP_ZERO))), (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1)) >; foreach vecTy = [v2i16, v2f16, v2bf16] in { defvar Ty = vecTy.ElementType; def : GCNPat < (vecTy (UniformBinFrag (Ty SReg_32:$src0), (Ty undef))), (COPY_TO_REGCLASS SReg_32:$src0, SReg_32) >; def : GCNPat < (vecTy (DivergentBinFrag (Ty VGPR_32:$src0), (Ty undef))), (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32) >; def : GCNPat < (vecTy (UniformBinFrag (Ty undef), (Ty SReg_32:$src1))), (S_LSHL_B32 SReg_32:$src1, (i32 16)) >; def : GCNPat < (vecTy (DivergentBinFrag (Ty undef), (Ty VGPR_32:$src1))), (vecTy (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1)) >; } // End foreach Ty = ... } let SubtargetPredicate = HasVOP3PInsts in { def : GCNPat < (v2i16 (DivergentBinFrag (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))), (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0)))) >; // With multiple uses of the shift, this will duplicate the shift and // increase register pressure. def : GCNPat < (v2i16 (UniformBinFrag (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1)) >; def : GCNPat < (v2i16 (UniformBinFrag (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1) >; foreach vecTy = [v2i16, v2f16, v2bf16] in { defvar Ty = vecTy.ElementType; defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero); def : GCNPat < (vecTy (UniformBinFrag (Ty SReg_32:$src0), (Ty SReg_32:$src1))), (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) >; // Take the lower 16 bits from each VGPR_32 and concat them def : GCNPat < (vecTy (DivergentBinFrag (Ty VGPR_32:$a), (Ty VGPR_32:$b))), (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100))) >; // Take the lower 16 bits from V[0] and the upper 16 bits from V[1] // Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000) def : GCNPat < (vecTy (DivergentBinFrag (Ty (immzeroTy)), (Ty !if(!eq(Ty, i16), (Ty (trunc (srl VGPR_32:$b, (i32 16)))), (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b) >; // Take the lower 16 bits from V[0] and the upper 16 bits from V[1] // Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000) def : GCNPat < (vecTy (DivergentBinFrag (Ty VGPR_32:$a), (Ty !if(!eq(Ty, i16), (Ty (trunc (srl VGPR_32:$b, (i32 16)))), (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)), VGPR_32:$a, VGPR_32:$b) >; // Take the upper 16 bits from V[0] and the lower 16 bits from V[1] // Special case, can use V_ALIGNBIT (always uses encoded literal) def : GCNPat < (vecTy (DivergentBinFrag (Ty !if(!eq(Ty, i16), (Ty (trunc (srl VGPR_32:$a, (i32 16)))), (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))), (Ty VGPR_32:$b))), (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16)) >; // Take the upper 16 bits from each VGPR_32 and concat them def : GCNPat < (vecTy (DivergentBinFrag (Ty !if(!eq(Ty, i16), (Ty (trunc (srl VGPR_32:$a, (i32 16)))), (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))), (Ty !if(!eq(Ty, i16), (Ty (trunc (srl VGPR_32:$b, (i32 16)))), (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302))) >; } // end foreach Ty let AddedComplexity = 5 in { def : GCNPat < (v2f16 (is_canonicalized_2 (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)), (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))), (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1) >; } } // End SubtargetPredicate = HasVOP3PInsts // With multiple uses of the shift, this will duplicate the shift and // increase register pressure. let SubtargetPredicate = isGFX11Plus in def : GCNPat < (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))), (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1)) >; def : GCNPat < (v2f16 (scalar_to_vector f16:$src0)), (COPY $src0) >; def : GCNPat < (v2i16 (scalar_to_vector i16:$src0)), (COPY $src0) >; def : GCNPat < (v4i16 (scalar_to_vector i16:$src0)), (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) >; def : GCNPat < (v4f16 (scalar_to_vector f16:$src0)), (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) >; def : GCNPat < (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, timm:$bank_mask, timm:$bound_ctrl)), (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl), (as_i32timm $row_mask), (as_i32timm $bank_mask), (as_i1timm $bound_ctrl)) >; foreach vt = Reg64Types.types in { def : GCNPat < (vt (int_amdgcn_update_dpp vt:$old, vt:$src, timm:$dpp_ctrl, timm:$row_mask, timm:$bank_mask, timm:$bound_ctrl)), (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl), (as_i32timm $row_mask), (as_i32timm $bank_mask), (as_i1timm $bound_ctrl)) >; } //===----------------------------------------------------------------------===// // Fract Patterns //===----------------------------------------------------------------------===// let SubtargetPredicate = isGFX6 in { // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient // way to implement it is using V_FRACT_F64. // The workaround for the V_FRACT bug is: // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) // Convert floor(x) to (x - fract(x)) // Don't bother handling this for GlobalISel, it's handled during // lowering. // // FIXME: DAG should also custom lower this. def : GCNPat < (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), (V_ADD_F64_e64 $mods, $x, SRCMODS.NEG, (V_CNDMASK_B64_PSEUDO (V_MIN_F64_e64 SRCMODS.NONE, (V_FRACT_F64_e64 $mods, $x), SRCMODS.NONE, (V_MOV_B64_PSEUDO (i64 0x3fefffffffffffff))), $x, (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/)))) >; } // End SubtargetPredicates = isGFX6 //============================================================================// // Miscellaneous Optimization Patterns //============================================================================// // Undo sub x, c -> add x, -c canonicalization since c is more likely // an inline immediate than -c. // TODO: Also do for 64-bit. def : GCNPat< (UniformBinFrag i32:$src0, (i32 NegSubInlineConst32:$src1)), (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1) >; def : GCNPat< (DivergentBinFrag i32:$src0, (i32 NegSubInlineConst32:$src1)), (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { let SubtargetPredicate = HasAddNoCarryInsts; } def : GCNPat< (DivergentBinFrag i32:$src0, (i32 NegSubInlineConst32:$src1)), (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { let SubtargetPredicate = NotHasAddNoCarryInsts; } // Avoid pointlessly materializing a constant in VGPR. // FIXME: Should also do this for readlane, but tablegen crashes on // the ignored src1. def : GCNPat< (i32 (int_amdgcn_readfirstlane (i32 imm:$src))), (S_MOV_B32 SReg_32:$src) >; multiclass BFMPatterns { def : GCNPat < (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), (BFM $a, $b) >; def : GCNPat < (vt (ADD (vt (shl 1, vt:$a)), -1)), (BFM $a, (i32 0)) >; } defm : BFMPatterns , UniformBinFrag, S_BFM_B32>; // FIXME: defm : BFMPatterns , UniformBinFrag, S_BFM_B64>; defm : BFMPatterns , DivergentBinFrag, V_BFM_B32_e64>; // Bitfield extract patterns def IMMZeroBasedBitfieldMask : ImmLeaf ; def IMMPopCount : SDNodeXFormgetTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N), MVT::i32); }]>; def : AMDGPUPat < (DivergentBinFrag (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask), (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask))) >; // x & ((1 << y) - 1) def : AMDGPUPat < (DivergentBinFrag i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), (V_BFE_U32_e64 $src, (i32 0), $width) >; // x & ~(-1 << y) def : AMDGPUPat < (DivergentBinFrag i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), (V_BFE_U32_e64 $src, (i32 0), $width) >; // x & (-1 >> (bitwidth - y)) def : AMDGPUPat < (DivergentBinFrag i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), (V_BFE_U32_e64 $src, (i32 0), $width) >; // x << (bitwidth - y) >> (bitwidth - y) def : AMDGPUPat < (DivergentBinFrag (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (V_BFE_U32_e64 $src, (i32 0), $width) >; def : AMDGPUPat < (DivergentBinFrag (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (V_BFE_I32_e64 $src, (i32 0), $width) >; // SHA-256 Ma patterns // ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y def : AMDGPUPatIgnoreCopies < (DivergentBinFrag (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)), (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32), (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)) >; def : AMDGPUPatIgnoreCopies < (DivergentBinFrag (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), (REG_SEQUENCE VReg_64, (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0, (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)), (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1) >; multiclass IntMed3Pat { // This matches 16 permutations of // min(max(a, b), max(min(a, b), c)) def : AMDGPUPat < (min (max i32:$src0, i32:$src1), (max (min i32:$src0, i32:$src1), i32:$src2)), (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) >; // This matches 16 permutations of // max(min(x, y), min(max(x, y), z)) def : AMDGPUPat < (max (min i32:$src0, i32:$src1), (min (max i32:$src0, i32:$src1), i32:$src2)), (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) >; } defm : IntMed3Pat; defm : IntMed3Pat; multiclass FPMed3Pat { // This matches 16 permutations of max(min(x, y), min(max(x, y), z)) def : GCNPat< (fmaxnum_like_nnan (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods)), (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods)), (vt (VOP3Mods vt:$src2, i32:$src2_mods)))), (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)>; // This matches 16 permutations of min(max(x, y), max(min(x, y), z)) def : GCNPat< (fminnum_like_nnan (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods)), (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods)), (vt (VOP3Mods vt:$src2, i32:$src2_mods)))), (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)>; } multiclass Int16Med3Pat { // This matches 16 permutations of // max(min(x, y), min(max(x, y), z)) def : GCNPat < (max (min i16:$src0, i16:$src1), (min (max i16:$src0, i16:$src1), i16:$src2)), (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) >; // This matches 16 permutations of // min(max(a, b), max(min(a, b), c)) def : GCNPat < (min (max i16:$src0, i16:$src1), (max (min i16:$src0, i16:$src1), i16:$src2)), (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) >; } defm : FPMed3Pat; let SubtargetPredicate = HasMed3_16 in { defm : FPMed3Pat; } class IntMinMaxPat : AMDGPUPat < (DivergentBinFrag (max_or_min_oneuse i32:$src0, i32:$src1), i32:$src2), (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) >; class FPMinMaxPat : GCNPat < (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods)), (vt (VOP3Mods vt:$src2, i32:$src2_mods))), (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; class FPMinCanonMaxPat : GCNPat < (min_or_max (is_canonicalized_1 (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods), (VOP3Mods vt:$src1, i32:$src1_mods))), (vt (VOP3Mods vt:$src2, i32:$src2_mods))), (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) >; let OtherPredicates = [isGFX11Plus] in { def : IntMinMaxPat; def : IntMinMaxPat; def : IntMinMaxPat; def : IntMinMaxPat; def : FPMinMaxPat; def : FPMinMaxPat; def : FPMinMaxPat; def : FPMinMaxPat; def : FPMinCanonMaxPat; def : FPMinCanonMaxPat; def : FPMinCanonMaxPat; def : FPMinCanonMaxPat; } let OtherPredicates = [isGFX9Plus] in { defm : Int16Med3Pat; defm : Int16Med3Pat; } // End Predicates = [isGFX9Plus] let OtherPredicates = [isGFX12Plus] in { def : FPMinMaxPat, fminimum_oneuse>; def : FPMinMaxPat, fmaximum_oneuse>; def : FPMinMaxPat, fminimum_oneuse>; def : FPMinMaxPat, fmaximum_oneuse>; def : FPMinCanonMaxPat, fminimum_oneuse>; def : FPMinCanonMaxPat, fmaximum_oneuse>; def : FPMinCanonMaxPat, fminimum_oneuse>; def : FPMinCanonMaxPat, fmaximum_oneuse>; } // Convert a floating-point power of 2 to the integer exponent. def FPPow2ToExponentXForm : SDNodeXFormgetValueAPF(); int Log2 = APF.getExactLog2Abs(); assert(Log2 != INT_MIN); return CurDAG->getTargetConstant(Log2, SDLoc(N), MVT::i32); }]>; // Check if a floating point value is a power of 2 floating-point // immediate where it's preferable to emit a multiply by as an // ldexp. We skip over 0.5 to 4.0 as those are inline immediates // anyway. def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf 2); }], FPPow2ToExponentXForm >; def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf 2); }], FPPow2ToExponentXForm >; // f64 is different because we also want to handle cases that may // require materialization of the exponent. // TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma // TODO: For f32/f16, it's not a clear win on code size to use ldexp // in place of mul since we have to use the vop3 form. Are there power // savings or some other reason to prefer ldexp over mul? def : GCNPat< (any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)), fpimm_pos_pow2_prefer_ldexp_f64:$src1), (V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0, 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) >; def : GCNPat< (any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1), (V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0, 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) >; // We want to avoid using VOP3Mods which could pull in another fneg // which we would need to be re-negated (which should never happen in // practice). I don't see a way to apply an SDNodeXForm that accounts // for a second operand. def : GCNPat< (any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1), (V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0, 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) >; class AMDGPUGenericInstruction : GenericInstruction { let Namespace = "AMDGPU"; } // Convert a wave address to a swizzled vector address (i.e. this is // for copying the stack pointer to a vector address appropriate to // use in the offset field of mubuf instructions). def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src); let hasSideEffects = 0; } // Returns -1 if the input is zero. def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$src); let hasSideEffects = 0; } // Returns -1 if the input is zero. def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$src); let hasSideEffects = 0; } def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$src); let hasSideEffects = 0; } class BufferLoadGenericInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayLoad = 1; } class TBufferLoadGenericInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayLoad = 1; } def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_UBYTE_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_SBYTE_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_USHORT_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_SSHORT_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction; def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction; def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction; def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction; class BufferStoreGenericInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs); let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayStore = 1; } class TBufferStoreGenericInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs); let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayStore = 1; } def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction; def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction; def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction; def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction; def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction; def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction; def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction; def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1); let hasSideEffects = 0; } def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1); let hasSideEffects = 0; } foreach N = 0-3 in { def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0); let hasSideEffects = 0; } } def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1); let hasSideEffects = 0; } def G_AMDGPU_SMED3 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); let hasSideEffects = 0; } def G_AMDGPU_UMED3 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); let hasSideEffects = 0; } def G_AMDGPU_FMED3 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); let hasSideEffects = 0; } def G_AMDGPU_CLAMP : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src); let hasSideEffects = 0; } // Integer multiply-add: arg0 * arg1 + arg2. // // arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned), // arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out. class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst, type1:$carry_out); let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2); let hasSideEffects = 0; } def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32; def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32; // Atomic cmpxchg. $cmpval ad $newval are packed in a single vector // operand Expects a MachineMemOperand in addition to explicit // operands. def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$oldval); let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 1; } class BufferAtomicGenericInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 1; } def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction; def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex, type2:$voffset, type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 1; } // Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as // a workaround for the intrinsic being defined as readnone, but // really needs a memory operand. class SBufferLoadInstruction : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 0; } def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction; def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction; def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction; def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction; def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction; def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1); let hasSideEffects = 0; } def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins type0:$src0, type0:$src1); let hasSideEffects = 0; } // This is equivalent to the G_INTRINSIC*, but the operands may have // been legalized depending on the subtarget requirements. def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayLoad = 1; // FIXME: Use separate opcode for atomics. let mayStore = 1; } def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayLoad = 1; // FIXME: Use separate opcode for atomics. let mayStore = 1; } def G_AMDGPU_INTRIN_IMAGE_LOAD_NORET : AMDGPUGenericInstruction { let OutOperandList = (outs); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 1; } // This is equivalent to the G_INTRINSIC*, but the operands may have // been legalized depending on the subtarget requirements. def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction { let OutOperandList = (outs); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayStore = 1; } def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction { let OutOperandList = (outs); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayStore = 1; } def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$dst); let InOperandList = (ins unknown:$intrin, variable_ops); let hasSideEffects = 0; let mayLoad = 1; let mayStore = 0; } // Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop // if necessary. def G_SI_CALL : AMDGPUGenericInstruction { let OutOperandList = (outs SReg_64:$dst); let InOperandList = (ins type0:$src0, unknown:$callee); let Size = 4; let isCall = 1; let UseNamedOperandTable = 1; let SchedRW = [WriteBranch]; // TODO: Should really base this on the call target let isConvergent = 1; } def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$vdst); let InOperandList = (ins type1:$src0); let hasSideEffects = 0; } def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction { let OutOperandList = (outs type0:$vdst); let InOperandList = (ins type1:$src0); let hasSideEffects = 0; } //============================================================================// // Dummy Instructions //============================================================================// def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> { let Inst{31-0} = 0x00000000; let FixedSize = 1; let Size = 4; let Uses = [EXEC]; let hasSideEffects = 1; let SubtargetPredicate = isGFX10Plus; }