//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass does misc. AMDGPU optimizations on IR before instruction /// selection. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUTargetMachine.h" #include "SIModeRegisterDefaults.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/UniformityAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/IntegerDivision.h" #include "llvm/Transforms/Utils/Local.h" #define DEBUG_TYPE "amdgpu-codegenprepare" using namespace llvm; using namespace llvm::PatternMatch; namespace { static cl::opt WidenLoads( "amdgpu-codegenprepare-widen-constant-loads", cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); static cl::opt Widen16BitOps( "amdgpu-codegenprepare-widen-16-bit-ops", cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(true)); static cl::opt BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", cl::desc("Break large PHI nodes for DAGISel"), cl::ReallyHidden, cl::init(true)); static cl::opt ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", cl::desc("For testing purposes, always break large " "PHIs even if it isn't profitable."), cl::ReallyHidden, cl::init(false)); static cl::opt BreakLargePHIsThreshold( "amdgpu-codegenprepare-break-large-phis-threshold", cl::desc("Minimum type size in bits for breaking large PHI nodes"), cl::ReallyHidden, cl::init(32)); static cl::opt UseMul24Intrin( "amdgpu-codegenprepare-mul24", cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(true)); // Legalize 64-bit division by using the generic IR expansion. static cl::opt ExpandDiv64InIR( "amdgpu-codegenprepare-expand-div64", cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); // Leave all division operations as they are. This supersedes ExpandDiv64InIR // and is used for testing the legalizer. static cl::opt DisableIDivExpand( "amdgpu-codegenprepare-disable-idiv-expansion", cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); // Disable processing of fdiv so we can better test the backend implementations. static cl::opt DisableFDivExpand( "amdgpu-codegenprepare-disable-fdiv-expansion", cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), cl::ReallyHidden, cl::init(false)); class AMDGPUCodeGenPrepareImpl : public InstVisitor { public: const GCNSubtarget *ST = nullptr; const AMDGPUTargetMachine *TM = nullptr; const TargetLibraryInfo *TLInfo = nullptr; AssumptionCache *AC = nullptr; DominatorTree *DT = nullptr; UniformityInfo *UA = nullptr; Module *Mod = nullptr; const DataLayout *DL = nullptr; bool HasUnsafeFPMath = false; bool HasFP32DenormalFlush = false; bool FlowChanged = false; mutable Function *SqrtF32 = nullptr; mutable Function *LdexpF32 = nullptr; DenseMap BreakPhiNodesCache; Function *getSqrtF32() const { if (SqrtF32) return SqrtF32; LLVMContext &Ctx = Mod->getContext(); SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, {Type::getFloatTy(Ctx)}); return SqrtF32; } Function *getLdexpF32() const { if (LdexpF32) return LdexpF32; LLVMContext &Ctx = Mod->getContext(); LdexpF32 = Intrinsic::getDeclaration( Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); return LdexpF32; } bool canBreakPHINode(const PHINode &I); /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to /// binary operation \p V. /// /// \returns Binary operation \p V. /// \returns \p T's base element bit width. unsigned getBaseElementBitWidth(const Type *T) const; /// \returns Equivalent 32 bit integer type for given type \p T. For example, /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> /// is returned. Type *getI32Ty(IRBuilder<> &B, const Type *T) const; /// \returns True if binary operation \p I is a signed binary operation, false /// otherwise. bool isSigned(const BinaryOperator &I) const; /// \returns True if the condition of 'select' operation \p I comes from a /// signed 'icmp' operation, false otherwise. bool isSigned(const SelectInst &I) const; /// \returns True if type \p T needs to be promoted to 32 bit integer type, /// false otherwise. bool needsPromotionToI32(const Type *T) const; /// Return true if \p T is a legal scalar floating point type. bool isLegalFloatingTy(const Type *T) const; /// Wrapper to pass all the arguments to computeKnownFPClass KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, const Instruction *CtxI) const { return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, DT); } bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { return HasFP32DenormalFlush || computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); } /// Promotes uniform binary operation \p I to equivalent 32 bit binary /// operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and /// truncating the result of 32 bit binary operation back to \p I's original /// type. Division operation is not promoted. /// /// \returns True if \p I is promoted to equivalent 32 bit binary operation, /// false otherwise. bool promoteUniformOpToI32(BinaryOperator &I) const; /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. /// /// \returns True. bool promoteUniformOpToI32(ICmpInst &I) const; /// Promotes uniform 'select' operation \p I to 32 bit 'select' /// operation. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by sign or zero extending operands to /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the /// result of 32 bit 'select' operation back to \p I's original type. /// /// \returns True. bool promoteUniformOpToI32(SelectInst &I) const; /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' /// intrinsic. /// /// \details \p I's base element bit width must be greater than 1 and less /// than or equal 16. Promotion is done by zero extending the operand to 32 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the /// shift amount is 32 minus \p I's base element bit width), and truncating /// the result of the shift operation back to \p I's original type. /// /// \returns True. bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; /// \returns The minimum number of bits needed to store the value of \Op as an /// unsigned integer. Truncating to this size and then zero-extending to /// the original will not change the value. unsigned numBitsUnsigned(Value *Op) const; /// \returns The minimum number of bits needed to store the value of \Op as a /// signed integer. Truncating to this size and then sign-extending to /// the original size will not change the value. unsigned numBitsSigned(Value *Op) const; /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. /// SelectionDAG has an issue where an and asserting the bits are known bool replaceMulWithMul24(BinaryOperator &I) const; /// Perform same function as equivalently named function in DAGCombiner. Since /// we expand some divisions here, we need to perform this before obscuring. bool foldBinOpIntoSelect(BinaryOperator &I) const; bool divHasSpecialOptimization(BinaryOperator &I, Value *Num, Value *Den) const; int getDivNumBits(BinaryOperator &I, Value *Num, Value *Den, unsigned AtLeast, bool Signed) const; /// Expands 24 bit div or rem. Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, bool IsDiv, bool IsSigned) const; Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, unsigned NumBits, bool IsDiv, bool IsSigned) const; /// Expands 32 bit div or rem. Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const; Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const; void expandDivRem64(BinaryOperator &I) const; /// Widen a scalar load. /// /// \details \p Widen scalar load for uniform, small type loads from constant // memory / to a full 32-bits and then truncate the input to allow a scalar // load instead of a vector load. // /// \returns True. bool canWidenScalarExtLoad(LoadInst &I) const; Value *matchFractPat(IntrinsicInst &I); Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, FastMathFlags SqrtFMF) const; Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, FastMathFlags SqrtFMF, const Instruction *CtxI) const; Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags FMF, const Instruction *CtxI) const; Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const; Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDiv, float ReqdAccuracy) const; std::pair getFrexpResults(IRBuilder<> &Builder, Value *Src) const; Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, bool IsNegative) const; Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, FastMathFlags FMF) const; Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, FastMathFlags FMF) const; public: bool visitFDiv(BinaryOperator &I); bool visitInstruction(Instruction &I) { return false; } bool visitBinaryOperator(BinaryOperator &I); bool visitLoadInst(LoadInst &I); bool visitICmpInst(ICmpInst &I); bool visitSelectInst(SelectInst &I); bool visitPHINode(PHINode &I); bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); bool visitIntrinsicInst(IntrinsicInst &I); bool visitBitreverseIntrinsicInst(IntrinsicInst &I); bool visitMinNum(IntrinsicInst &I); bool visitSqrt(IntrinsicInst &I); bool run(Function &F); }; class AMDGPUCodeGenPrepare : public FunctionPass { private: AMDGPUCodeGenPrepareImpl Impl; public: static char ID; AMDGPUCodeGenPrepare() : FunctionPass(ID) { initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); // FIXME: Division expansion needs to preserve the dominator tree. if (!ExpandDiv64InIR) AU.setPreservesAll(); } bool runOnFunction(Function &F) override; bool doInitialization(Module &M) override; StringRef getPassName() const override { return "AMDGPU IR optimizations"; } }; } // end anonymous namespace bool AMDGPUCodeGenPrepareImpl::run(Function &F) { BreakPhiNodesCache.clear(); bool MadeChange = false; Function::iterator NextBB; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { BasicBlock *BB = &*FI; NextBB = std::next(FI); BasicBlock::iterator Next; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { Next = std::next(I); MadeChange |= visit(*I); if (Next != E) { // Control flow changed BasicBlock *NextInstBB = Next->getParent(); if (NextInstBB != BB) { BB = NextInstBB; E = BB->end(); FE = F.end(); } } } } return MadeChange; } unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { assert(needsPromotionToI32(T) && "T does not need promotion to i32"); if (T->isIntegerTy()) return T->getIntegerBitWidth(); return cast(T)->getElementType()->getIntegerBitWidth(); } Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { assert(needsPromotionToI32(T) && "T does not need promotion to i32"); if (T->isIntegerTy()) return B.getInt32Ty(); return FixedVectorType::get(B.getInt32Ty(), cast(T)); } bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { return I.getOpcode() == Instruction::AShr || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; } bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { return isa(I.getOperand(0)) ? cast(I.getOperand(0))->isSigned() : false; } bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { if (!Widen16BitOps) return false; const IntegerType *IntTy = dyn_cast(T); if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) return true; if (const VectorType *VT = dyn_cast(T)) { // TODO: The set of packed operations is more limited, so may want to // promote some anyway. if (ST->hasVOP3PInsts()) return false; return needsPromotionToI32(VT->getElementType()); } return false; } bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { return Ty->isFloatTy() || Ty->isDoubleTy() || (Ty->isHalfTy() && ST->has16BitInsts()); } // Return true if the op promoted to i32 should have nsw set. static bool promotedOpIsNSW(const Instruction &I) { switch (I.getOpcode()) { case Instruction::Shl: case Instruction::Add: case Instruction::Sub: return true; case Instruction::Mul: return I.hasNoUnsignedWrap(); default: return false; } } // Return true if the op promoted to i32 should have nuw set. static bool promotedOpIsNUW(const Instruction &I) { switch (I.getOpcode()) { case Instruction::Shl: case Instruction::Add: case Instruction::Mul: return true; case Instruction::Sub: return I.hasNoUnsignedWrap(); default: return false; } } bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { Type *Ty = I.getType(); const DataLayout &DL = Mod->getDataLayout(); int TySize = DL.getTypeSizeInBits(Ty); Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); } bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); if (I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SRem || I.getOpcode() == Instruction::URem) return false; IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Value *ExtOp0 = nullptr; Value *ExtOp1 = nullptr; Value *ExtRes = nullptr; Value *TruncRes = nullptr; if (isSigned(I)) { ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); } else { ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); } ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); if (Instruction *Inst = dyn_cast(ExtRes)) { if (promotedOpIsNSW(cast(I))) Inst->setHasNoSignedWrap(); if (promotedOpIsNUW(cast(I))) Inst->setHasNoUnsignedWrap(); if (const auto *ExactOp = dyn_cast(&I)) Inst->setIsExact(ExactOp->isExact()); } TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { assert(needsPromotionToI32(I.getOperand(0)->getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); Value *ExtOp0 = nullptr; Value *ExtOp1 = nullptr; Value *NewICmp = nullptr; if (I.isSigned()) { ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); } else { ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); } NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); I.replaceAllUsesWith(NewICmp); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Value *ExtOp1 = nullptr; Value *ExtOp2 = nullptr; Value *ExtRes = nullptr; Value *TruncRes = nullptr; if (isSigned(I)) { ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); } else { ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); } ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( IntrinsicInst &I) const { assert(I.getIntrinsicID() == Intrinsic::bitreverse && "I must be bitreverse intrinsic"); assert(needsPromotionToI32(I.getType()) && "I does not need promotion to i32"); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = getI32Ty(Builder, I.getType()); Function *I32 = Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); Value *LShrOp = Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); Value *TruncRes = Builder.CreateTrunc(LShrOp, I.getType()); I.replaceAllUsesWith(TruncRes); I.eraseFromParent(); return true; } unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); } unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { return ComputeMaxSignificantBits(Op, *DL, 0, AC); } static void extractValues(IRBuilder<> &Builder, SmallVectorImpl &Values, Value *V) { auto *VT = dyn_cast(V->getType()); if (!VT) { Values.push_back(V); return; } for (int I = 0, E = VT->getNumElements(); I != E; ++I) Values.push_back(Builder.CreateExtractElement(V, I)); } static Value *insertValues(IRBuilder<> &Builder, Type *Ty, SmallVectorImpl &Values) { if (!Ty->isVectorTy()) { assert(Values.size() == 1); return Values[0]; } Value *NewVal = PoisonValue::get(Ty); for (int I = 0, E = Values.size(); I != E; ++I) NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); return NewVal; } bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { if (I.getOpcode() != Instruction::Mul) return false; Type *Ty = I.getType(); unsigned Size = Ty->getScalarSizeInBits(); if (Size <= 16 && ST->has16BitInsts()) return false; // Prefer scalar if this could be s_mul_i32 if (UA->isUniform(&I)) return false; Value *LHS = I.getOperand(0); Value *RHS = I.getOperand(1); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); unsigned LHSBits = 0, RHSBits = 0; bool IsSigned = false; if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && (RHSBits = numBitsUnsigned(RHS)) <= 24) { IsSigned = false; } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && (RHSBits = numBitsSigned(RHS)) <= 24) { IsSigned = true; } else return false; SmallVector LHSVals; SmallVector RHSVals; SmallVector ResultVals; extractValues(Builder, LHSVals, LHS); extractValues(Builder, RHSVals, RHS); IntegerType *I32Ty = Builder.getInt32Ty(); IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; Type *DstTy = LHSVals[0]->getType(); for (int I = 0, E = LHSVals.size(); I != E; ++I) { Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); Intrinsic::ID ID = IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) : Builder.CreateZExtOrTrunc(Result, DstTy); ResultVals.push_back(Result); } Value *NewVal = insertValues(Builder, Ty, ResultVals); NewVal->takeName(&I); I.replaceAllUsesWith(NewVal); I.eraseFromParent(); return true; } // Find a select instruction, which may have been casted. This is mostly to deal // with cases where i16 selects were promoted here to i32. static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { Cast = nullptr; if (SelectInst *Sel = dyn_cast(V)) return Sel; if ((Cast = dyn_cast(V))) { if (SelectInst *Sel = dyn_cast(Cast->getOperand(0))) return Sel; } return nullptr; } bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { // Don't do this unless the old select is going away. We want to eliminate the // binary operator, not replace a binop with a select. int SelOpNo = 0; CastInst *CastOp; // TODO: Should probably try to handle some cases with multiple // users. Duplicating the select may be profitable for division. SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); if (!Sel || !Sel->hasOneUse()) { SelOpNo = 1; Sel = findSelectThroughCast(BO.getOperand(1), CastOp); } if (!Sel || !Sel->hasOneUse()) return false; Constant *CT = dyn_cast(Sel->getTrueValue()); Constant *CF = dyn_cast(Sel->getFalseValue()); Constant *CBO = dyn_cast(BO.getOperand(SelOpNo ^ 1)); if (!CBO || !CT || !CF) return false; if (CastOp) { if (!CastOp->hasOneUse()) return false; CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); } // TODO: Handle special 0/-1 cases DAG combine does, although we only really // need to handle divisions here. Constant *FoldedT = SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); if (!FoldedT || isa(FoldedT)) return false; Constant *FoldedF = SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); if (!FoldedF || isa(FoldedF)) return false; IRBuilder<> Builder(&BO); Builder.SetCurrentDebugLocation(BO.getDebugLoc()); if (const FPMathOperator *FPOp = dyn_cast(&BO)) Builder.setFastMathFlags(FPOp->getFastMathFlags()); Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), FoldedT, FoldedF); NewSelect->takeName(&BO); BO.replaceAllUsesWith(NewSelect); BO.eraseFromParent(); if (CastOp) CastOp->eraseFromParent(); Sel->eraseFromParent(); return true; } std::pair AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, Value *Src) const { Type *Ty = Src->getType(); Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, {Ty, Builder.getInt32Ty()}, Src); Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); // Bypass the bug workaround for the exponent result since it doesn't matter. // TODO: Does the bug workaround even really need to consider the exponent // result? It's unspecified by the spec. Value *FrexpExp = ST->hasFractBug() ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, {Builder.getInt32Ty(), Ty}, Src) : Builder.CreateExtractValue(Frexp, {1}); return {FrexpMant, FrexpExp}; } /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, bool IsNegative) const { // Same as for 1.0, but expand the sign out of the constant. // -1.0 / x -> rcp (fneg x) if (IsNegative) Src = Builder.CreateFNeg(Src); // The rcp instruction doesn't support denormals, so scale the input // out of the denormal range and convert at the end. // // Expand as 2^-n * (1.0 / (x * 2^n)) // TODO: Skip scaling if input is known never denormal and the input // range won't underflow to denormal. The hard part is knowing the // result. We need a range check, the result could be denormal for // 0x1p+126 < den <= 0x1p+127. auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); Value *ScaleFactor = Builder.CreateNeg(FrexpExp); Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); } /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, FastMathFlags FMF) const { // If we have have to work around the fract/frexp bug, we're worse off than // using the fdiv.fast expansion. The full safe expansion is faster if we have // fast FMA. if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && (!FMF.noNaNs() || !FMF.noInfs())) return nullptr; // We're scaling the LHS to avoid a denormal input, and scale the denominator // to avoid large values underflowing the result. auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the // result. Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); } /// Emit a sqrt that handles denormals and is accurate to 2ulp. Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, FastMathFlags FMF) const { Type *Ty = Src->getType(); APFloat SmallestNormal = APFloat::getSmallestNormalized(Ty->getFltSemantics()); Value *NeedScale = Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); ConstantInt *Zero = Builder.getInt32(0); Value *InputScaleFactor = Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); Value *OutputScaleFactor = Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); } /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, bool IsNegative) { // bool need_scale = x < 0x1p-126f; // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; // rsq(x * input_scale) * output_scale; Type *Ty = Src->getType(); APFloat SmallestNormal = APFloat::getSmallestNormalized(Ty->getFltSemantics()); Value *NeedScale = Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); Constant *One = ConstantFP::get(Ty, 1.0); Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); Constant *OutputScale = ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); Value *OutputScaleFactor = Builder.CreateSelect( NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); return Builder.CreateFMul(Rsq, OutputScaleFactor); } bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, FastMathFlags SqrtFMF) const { // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) return false; // v_rsq_f32 gives 1ulp return SqrtFMF.approxFunc() || HasUnsafeFPMath || SqrtOp->getFPAccuracy() >= 1.0f; } Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, const FastMathFlags SqrtFMF, const Instruction *CtxI) const { // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. assert(DivFMF.allowContract() && SqrtFMF.allowContract()); // rsq_f16 is accurate to 0.51 ulp. // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. // rsq_f64 is never accurate. const ConstantFP *CLHS = dyn_cast(Num); if (!CLHS) return nullptr; assert(Den->getType()->isFloatTy()); bool IsNegative = false; // TODO: Handle other numerator values with arcp. if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { // Add in the sqrt flags. IRBuilder<>::FastMathFlagGuard Guard(Builder); Builder.setFastMathFlags(DivFMF | SqrtFMF); if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || canIgnoreDenormalInput(Den, CtxI)) { Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); // -1.0 / sqrt(x) -> fneg(rsq(x)) return IsNegative ? Builder.CreateFNeg(Result) : Result; } return emitRsqIEEE1ULP(Builder, Den, IsNegative); } return nullptr; } // Optimize fdiv with rcp: // // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is // allowed with unsafe-fp-math or afn. // // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 Value * AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags FMF, const Instruction *CtxI) const { // rcp_f16 is accurate to 0.51 ulp. // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. // rcp_f64 is never accurate. assert(Den->getType()->isFloatTy()); if (const ConstantFP *CLHS = dyn_cast(Num)) { bool IsNegative = false; if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { Value *Src = Den; if (HasFP32DenormalFlush || FMF.approxFunc()) { // -1.0 / x -> 1.0 / fneg(x) if (IsNegative) Src = Builder.CreateFNeg(Src); // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK // to use it as long as we aren't trying to use denormals. // // v_rcp_f16 and v_rsq_f16 DO support denormals. // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't // insert rsq intrinsic here. // 1.0 / x -> rcp(x) return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); } // TODO: If the input isn't denormal, and we know the input exponent isn't // big enough to introduce a denormal we can avoid the scaling. return emitRcpIEEE1ULP(Builder, Src, IsNegative); } } if (FMF.allowReciprocal()) { // x / y -> x * (1.0 / y) // TODO: Could avoid denormal scaling and use raw rcp if we knew the output // will never underflow. if (HasFP32DenormalFlush || FMF.approxFunc()) { Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); return Builder.CreateFMul(Num, Recip); } Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); return Builder.CreateFMul(Num, Recip); } return nullptr; } // optimize with fdiv.fast: // // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. // // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. // // NOTE: optimizeWithRcp should be tried first because rcp is the preference. Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { // fdiv.fast can achieve 2.5 ULP accuracy. if (ReqdAccuracy < 2.5f) return nullptr; // Only have fdiv.fast for f32. assert(Den->getType()->isFloatTy()); bool NumIsOne = false; if (const ConstantFP *CNum = dyn_cast(Num)) { if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) NumIsOne = true; } // fdiv does not support denormals. But 1.0/x is always fine to use it. // // TODO: This works for any value with a specific known exponent range, don't // just limit to constant 1. if (!HasFP32DenormalFlush && !NumIsOne) return nullptr; return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); } Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, float ReqdDivAccuracy) const { if (RsqOp) { Value *Rsq = optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); if (Rsq) return Rsq; } Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); if (Rcp) return Rcp; // In the basic case fdiv_fast has the same instruction count as the frexp div // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can // potentially be fused into a user. Also, materialization of the constants // can be reused for multiple instances. Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); if (FDivFast) return FDivFast; return emitFrexpDiv(Builder, Num, Den, DivFMF); } // Optimizations is performed based on fpmath, fast math flags as well as // denormals to optimize fdiv with either rcp or fdiv.fast. // // With rcp: // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is // allowed with unsafe-fp-math or afn. // // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. // // With fdiv.fast: // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. // // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. // // NOTE: rcp is the preference in cases that both are legal. bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { if (DisableFDivExpand) return false; Type *Ty = FDiv.getType()->getScalarType(); if (!Ty->isFloatTy()) return false; // The f64 rcp/rsq approximations are pretty inaccurate. We can do an // expansion around them in codegen. f16 is good enough to always use. const FPMathOperator *FPOp = cast(&FDiv); const FastMathFlags DivFMF = FPOp->getFastMathFlags(); const float ReqdAccuracy = FPOp->getFPAccuracy(); FastMathFlags SqrtFMF; Value *Num = FDiv.getOperand(0); Value *Den = FDiv.getOperand(1); Value *RsqOp = nullptr; auto *DenII = dyn_cast(Den); if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && DenII->hasOneUse()) { const auto *SqrtOp = cast(DenII); SqrtFMF = SqrtOp->getFastMathFlags(); if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) RsqOp = SqrtOp->getOperand(0); } // Inaccurate rcp is allowed with unsafe-fp-math or afn. // // Defer to codegen to handle this. // // TODO: Decide on an interpretation for interactions between afn + arcp + // !fpmath, and make it consistent between here and codegen. For now, defer // expansion of afn to codegen. The current interpretation is so aggressive we // don't need any pre-consideration here when we have better information. A // more conservative interpretation could use handling here. const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); if (!RsqOp && AllowInaccurateRcp) return false; // Defer the correct implementations to codegen. if (ReqdAccuracy < 1.0f) return false; IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); Builder.setFastMathFlags(DivFMF); Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); SmallVector NumVals; SmallVector DenVals; SmallVector RsqDenVals; extractValues(Builder, NumVals, Num); extractValues(Builder, DenVals, Den); if (RsqOp) extractValues(Builder, RsqDenVals, RsqOp); SmallVector ResultVals(NumVals.size()); for (int I = 0, E = NumVals.size(); I != E; ++I) { Value *NumElt = NumVals[I]; Value *DenElt = DenVals[I]; Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; Value *NewElt = visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, cast(FPOp), ReqdAccuracy); if (!NewElt) { // Keep the original, but scalarized. // This has the unfortunate side effect of sometimes scalarizing when // we're not going to do anything. NewElt = Builder.CreateFDiv(NumElt, DenElt); if (auto *NewEltInst = dyn_cast(NewElt)) NewEltInst->copyMetadata(FDiv); } ResultVals[I] = NewElt; } Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); if (NewVal) { FDiv.replaceAllUsesWith(NewVal); NewVal->takeName(&FDiv); RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); } return true; } static bool hasUnsafeFPMath(const Function &F) { Attribute Attr = F.getFnAttribute("unsafe-fp-math"); return Attr.getValueAsBool(); } static std::pair getMul64(IRBuilder<> &Builder, Value *LHS, Value *RHS) { Type *I32Ty = Builder.getInt32Ty(); Type *I64Ty = Builder.getInt64Ty(); Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); Hi = Builder.CreateTrunc(Hi, I32Ty); return std::pair(Lo, Hi); } static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { return getMul64(Builder, LHS, RHS).second; } /// Figure out how many bits are really needed for this division. \p AtLeast is /// an optimization hint to bypass the second ComputeNumSignBits call if we the /// first one is insufficient. Returns -1 on failure. int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, Value *Den, unsigned AtLeast, bool IsSigned) const { const DataLayout &DL = Mod->getDataLayout(); unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); if (LHSSignBits < AtLeast) return -1; unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); if (RHSSignBits < AtLeast) return -1; unsigned SignBits = std::min(LHSSignBits, RHSSignBits); unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; if (IsSigned) ++DivBits; return DivBits; } // The fractional part of a float is enough to accurately represent up to // a 24-bit signed integer. Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, bool IsDiv, bool IsSigned) const { unsigned SSBits = Num->getType()->getScalarSizeInBits(); // If Num bits <= 24, assume 0 signbits. unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); if (DivBits == -1) return nullptr; return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); } Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, unsigned DivBits, bool IsDiv, bool IsSigned) const { Type *I32Ty = Builder.getInt32Ty(); Num = Builder.CreateTrunc(Num, I32Ty); Den = Builder.CreateTrunc(Den, I32Ty); Type *F32Ty = Builder.getFloatTy(); ConstantInt *One = Builder.getInt32(1); Value *JQ = One; if (IsSigned) { // char|short jq = ia ^ ib; JQ = Builder.CreateXor(Num, Den); // jq = jq >> (bitsize - 2) JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); // jq = jq | 0x1 JQ = Builder.CreateOr(JQ, One); } // int ia = (int)LHS; Value *IA = Num; // int ib, (int)RHS; Value *IB = Den; // float fa = (float)ia; Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) : Builder.CreateUIToFP(IA, F32Ty); // float fb = (float)ib; Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) : Builder.CreateUIToFP(IB,F32Ty); Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, Builder.getFloatTy()); Value *RCP = Builder.CreateCall(RcpDecl, { FB }); Value *FQM = Builder.CreateFMul(FA, RCP); // fq = trunc(fqm); CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); FQ->copyFastMathFlags(Builder.getFastMathFlags()); // float fqneg = -fq; Value *FQNeg = Builder.CreateFNeg(FQ); // float fr = mad(fqneg, fb, fa); auto FMAD = !ST->hasMadMacF32Insts() ? Intrinsic::fma : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; Value *FR = Builder.CreateIntrinsic(FMAD, {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); // int iq = (int)fq; Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) : Builder.CreateFPToUI(FQ, I32Ty); // fr = fabs(fr); FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); // fb = fabs(fb); FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); // int cv = fr >= fb; Value *CV = Builder.CreateFCmpOGE(FR, FB); // jq = (cv ? jq : 0); JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); // dst = iq + jq; Value *Div = Builder.CreateAdd(IQ, JQ); Value *Res = Div; if (!IsDiv) { // Rem needs compensation, it's easier to recompute it Value *Rem = Builder.CreateMul(Div, Den); Res = Builder.CreateSub(Num, Rem); } if (DivBits != 0 && DivBits < 32) { // Extend in register from the number of bits this divide really is. if (IsSigned) { int InRegBits = 32 - DivBits; Res = Builder.CreateShl(Res, InRegBits); Res = Builder.CreateAShr(Res, InRegBits); } else { ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); Res = Builder.CreateAnd(Res, TruncMask); } } return Res; } // Try to recognize special cases the DAG will emit special, better expansions // than the general expansion we do here. // TODO: It would be better to just directly handle those optimizations here. bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, Value *Num, Value *Den) const { if (Constant *C = dyn_cast(Den)) { // Arbitrary constants get a better expansion as long as a wider mulhi is // legal. if (C->getType()->getScalarSizeInBits() <= 32) return true; // TODO: Sdiv check for not exact for some reason. // If there's no wider mulhi, there's only a better expansion for powers of // two. // TODO: Should really know for each vector element. if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) return true; return false; } if (BinaryOperator *BinOpDen = dyn_cast(Den)) { // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (BinOpDen->getOpcode() == Instruction::Shl && isa(BinOpDen->getOperand(0)) && isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 0, AC, &I, DT)) { return true; } } return false; } static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { // Check whether the sign can be determined statically. KnownBits Known = computeKnownBits(V, *DL); if (Known.isNegative()) return Constant::getAllOnesValue(V->getType()); if (Known.isNonNegative()) return Constant::getNullValue(V->getType()); return Builder.CreateAShr(V, Builder.getInt32(31)); } Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, Value *X, Value *Y) const { Instruction::BinaryOps Opc = I.getOpcode(); assert(Opc == Instruction::URem || Opc == Instruction::UDiv || Opc == Instruction::SRem || Opc == Instruction::SDiv); FastMathFlags FMF; FMF.setFast(); Builder.setFastMathFlags(FMF); if (divHasSpecialOptimization(I, X, Y)) return nullptr; // Keep it for later optimization. bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; Type *Ty = X->getType(); Type *I32Ty = Builder.getInt32Ty(); Type *F32Ty = Builder.getFloatTy(); if (Ty->getScalarSizeInBits() != 32) { if (IsSigned) { X = Builder.CreateSExtOrTrunc(X, I32Ty); Y = Builder.CreateSExtOrTrunc(Y, I32Ty); } else { X = Builder.CreateZExtOrTrunc(X, I32Ty); Y = Builder.CreateZExtOrTrunc(Y, I32Ty); } } if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : Builder.CreateZExtOrTrunc(Res, Ty); } ConstantInt *Zero = Builder.getInt32(0); ConstantInt *One = Builder.getInt32(1); Value *Sign = nullptr; if (IsSigned) { Value *SignX = getSign32(X, Builder, DL); Value *SignY = getSign32(Y, Builder, DL); // Remainder sign is the same as LHS Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; X = Builder.CreateAdd(X, SignX); Y = Builder.CreateAdd(Y, SignY); X = Builder.CreateXor(X, SignX); Y = Builder.CreateXor(Y, SignY); } // The algorithm here is based on ideas from "Software Integer Division", Tom // Rodeheffer, August 2008. // // unsigned udiv(unsigned x, unsigned y) { // // Initial estimate of inv(y). The constant is less than 2^32 to ensure // // that this is a lower bound on inv(y), even if some of the calculations // // round up. // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); // // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. // // Empirically this is guaranteed to give a "two-y" lower bound on // // inv(y). // z += umulh(z, -y * z); // // // Quotient/remainder estimate. // unsigned q = umulh(x, z); // unsigned r = x - q * y; // // // Two rounds of quotient/remainder refinement. // if (r >= y) { // ++q; // r -= y; // } // if (r >= y) { // ++q; // r -= y; // } // // return q; // } // Initial estimate of inv(y). Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast(0x4F7FFFFE)); Value *ScaledY = Builder.CreateFMul(RcpY, Scale); Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); // One round of UNR. Value *NegY = Builder.CreateSub(Zero, Y); Value *NegYZ = Builder.CreateMul(NegY, Z); Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); // Quotient/remainder estimate. Value *Q = getMulHu(Builder, X, Z); Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); // First quotient/remainder refinement. Value *Cond = Builder.CreateICmpUGE(R, Y); if (IsDiv) Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); // Second quotient/remainder refinement. Cond = Builder.CreateICmpUGE(R, Y); Value *Res; if (IsDiv) Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); else Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); if (IsSigned) { Res = Builder.CreateXor(Res, Sign); Res = Builder.CreateSub(Res, Sign); Res = Builder.CreateSExtOrTrunc(Res, Ty); } else { Res = Builder.CreateZExtOrTrunc(Res, Ty); } return Res; } Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den) const { if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) return nullptr; // Keep it for later optimization. Instruction::BinaryOps Opc = I.getOpcode(); bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); if (NumDivBits == -1) return nullptr; Value *Narrowed = nullptr; if (NumDivBits <= 24) { Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, IsDiv, IsSigned); } else if (NumDivBits <= 32) { Narrowed = expandDivRem32(Builder, I, Num, Den); } if (Narrowed) { return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : Builder.CreateZExt(Narrowed, Num->getType()); } return nullptr; } void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { Instruction::BinaryOps Opc = I.getOpcode(); // Do the general expansion. if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { expandDivisionUpTo64Bits(&I); return; } if (Opc == Instruction::URem || Opc == Instruction::SRem) { expandRemainderUpTo64Bits(&I); return; } llvm_unreachable("not a division"); } bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { if (foldBinOpIntoSelect(I)) return true; if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && UA->isUniform(&I) && promoteUniformOpToI32(I)) return true; if (UseMul24Intrin && replaceMulWithMul24(I)) return true; bool Changed = false; Instruction::BinaryOps Opc = I.getOpcode(); Type *Ty = I.getType(); Value *NewDiv = nullptr; unsigned ScalarSize = Ty->getScalarSizeInBits(); SmallVector Div64ToExpand; if ((Opc == Instruction::URem || Opc == Instruction::UDiv || Opc == Instruction::SRem || Opc == Instruction::SDiv) && ScalarSize <= 64 && !DisableIDivExpand) { Value *Num = I.getOperand(0); Value *Den = I.getOperand(1); IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); if (auto *VT = dyn_cast(Ty)) { NewDiv = PoisonValue::get(VT); for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { Value *NumEltN = Builder.CreateExtractElement(Num, N); Value *DenEltN = Builder.CreateExtractElement(Den, N); Value *NewElt; if (ScalarSize <= 32) { NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); if (!NewElt) NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); } else { // See if this 64-bit division can be shrunk to 32/24-bits before // producing the general expansion. NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); if (!NewElt) { // The general 64-bit expansion introduces control flow and doesn't // return the new value. Just insert a scalar copy and defer // expanding it. NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); Div64ToExpand.push_back(cast(NewElt)); } } if (auto *NewEltI = dyn_cast(NewElt)) NewEltI->copyIRFlags(&I); NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); } } else { if (ScalarSize <= 32) NewDiv = expandDivRem32(Builder, I, Num, Den); else { NewDiv = shrinkDivRem64(Builder, I, Num, Den); if (!NewDiv) Div64ToExpand.push_back(&I); } } if (NewDiv) { I.replaceAllUsesWith(NewDiv); I.eraseFromParent(); Changed = true; } } if (ExpandDiv64InIR) { // TODO: We get much worse code in specially handled constant cases. for (BinaryOperator *Div : Div64ToExpand) { expandDivRem64(*Div); FlowChanged = true; Changed = true; } } return Changed; } bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { if (!WidenLoads) return false; if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && canWidenScalarExtLoad(I)) { IRBuilder<> Builder(&I); Builder.SetCurrentDebugLocation(I.getDebugLoc()); Type *I32Ty = Builder.getInt32Ty(); LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); WidenLoad->copyMetadata(I); // If we have range metadata, we need to convert the type, and not make // assumptions about the high bits. if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { ConstantInt *Lower = mdconst::extract(Range->getOperand(0)); if (Lower->isNullValue()) { WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); } else { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), // Don't make assumptions about the high bits. ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) }; WidenLoad->setMetadata(LLVMContext::MD_range, MDNode::get(Mod->getContext(), LowAndHigh)); } } int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); Type *IntNTy = Builder.getIntNTy(TySize); Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); I.replaceAllUsesWith(ValOrig); I.eraseFromParent(); return true; } return false; } bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { bool Changed = false; if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && UA->isUniform(&I)) Changed |= promoteUniformOpToI32(I); return Changed; } bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { Value *Cond = I.getCondition(); Value *TrueVal = I.getTrueValue(); Value *FalseVal = I.getFalseValue(); Value *CmpVal; FCmpInst::Predicate Pred; if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { if (UA->isUniform(&I)) return promoteUniformOpToI32(I); return false; } // Match fract pattern with nan check. if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) return false; FPMathOperator *FPOp = dyn_cast(&I); if (!FPOp) return false; IRBuilder<> Builder(&I); Builder.setFastMathFlags(FPOp->getFastMathFlags()); auto *IITrue = dyn_cast(TrueVal); auto *IIFalse = dyn_cast(FalseVal); Value *Fract = nullptr; if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && CmpVal == matchFractPat(*IIFalse)) { // isnan(x) ? x : fract(x) Fract = applyFractPat(Builder, CmpVal); } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && CmpVal == matchFractPat(*IITrue)) { // !isnan(x) ? fract(x) : x Fract = applyFractPat(Builder, CmpVal); } else return false; Fract->takeName(&I); I.replaceAllUsesWith(Fract); RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); return true; } static bool areInSameBB(const Value *A, const Value *B) { const auto *IA = dyn_cast(A); const auto *IB = dyn_cast(B); return IA && IB && IA->getParent() == IB->getParent(); } // Helper for breaking large PHIs that returns true when an extractelement on V // is likely to be folded away by the DAG combiner. static bool isInterestingPHIIncomingValue(const Value *V) { const auto *FVT = dyn_cast(V->getType()); if (!FVT) return false; const Value *CurVal = V; // Check for insertelements, keeping track of the elements covered. BitVector EltsCovered(FVT->getNumElements()); while (const auto *IE = dyn_cast(CurVal)) { const auto *Idx = dyn_cast(IE->getOperand(2)); // Non constant index/out of bounds index -> folding is unlikely. // The latter is more of a sanity check because canonical IR should just // have replaced those with poison. if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) return false; const auto *VecSrc = IE->getOperand(0); // If the vector source is another instruction, it must be in the same basic // block. Otherwise, the DAGCombiner won't see the whole thing and is // unlikely to be able to do anything interesting here. if (isa(VecSrc) && !areInSameBB(VecSrc, IE)) return false; CurVal = VecSrc; EltsCovered.set(Idx->getZExtValue()); // All elements covered. if (EltsCovered.all()) return true; } // We either didn't find a single insertelement, or the insertelement chain // ended before all elements were covered. Check for other interesting values. // Constants are always interesting because we can just constant fold the // extractelements. if (isa(CurVal)) return true; // shufflevector is likely to be profitable if either operand is a constant, // or if either source is in the same block. // This is because shufflevector is most often lowered as a series of // insert/extract elements anyway. if (const auto *SV = dyn_cast(CurVal)) { return isa(SV->getOperand(1)) || areInSameBB(SV, SV->getOperand(0)) || areInSameBB(SV, SV->getOperand(1)); } return false; } static void collectPHINodes(const PHINode &I, SmallPtrSet &SeenPHIs) { const auto [It, Inserted] = SeenPHIs.insert(&I); if (!Inserted) return; for (const Value *Inc : I.incoming_values()) { if (const auto *PhiInc = dyn_cast(Inc)) collectPHINodes(*PhiInc, SeenPHIs); } for (const User *U : I.users()) { if (const auto *PhiU = dyn_cast(U)) collectPHINodes(*PhiU, SeenPHIs); } } bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { // Check in the cache first. if (const auto It = BreakPhiNodesCache.find(&I); It != BreakPhiNodesCache.end()) return It->second; // We consider PHI nodes as part of "chains", so given a PHI node I, we // recursively consider all its users and incoming values that are also PHI // nodes. We then make a decision about all of those PHIs at once. Either they // all get broken up, or none of them do. That way, we avoid cases where a // single PHI is/is not broken and we end up reforming/exploding a vector // multiple times, or even worse, doing it in a loop. SmallPtrSet WorkList; collectPHINodes(I, WorkList); #ifndef NDEBUG // Check that none of the PHI nodes in the worklist are in the map. If some of // them are, it means we're not good enough at collecting related PHIs. for (const PHINode *WLP : WorkList) { assert(BreakPhiNodesCache.count(WLP) == 0); } #endif // To consider a PHI profitable to break, we need to see some interesting // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist // must have one to consider all PHIs breakable. // // This threshold has been determined through performance testing. // // Note that the computation below is equivalent to // // (unsigned)ceil((K / 3.0) * 2) // // It's simply written this way to avoid mixing integral/FP arithmetic. const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); unsigned NumBreakablePHIs = 0; bool CanBreak = false; for (const PHINode *Cur : WorkList) { // Don't break PHIs that have no interesting incoming values. That is, where // there is no clear opportunity to fold the "extractelement" instructions // we would add. // // Note: IC does not run after this pass, so we're only interested in the // foldings that the DAG combiner can do. if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { if (++NumBreakablePHIs >= Threshold) { CanBreak = true; break; } } } for (const PHINode *Cur : WorkList) BreakPhiNodesCache[Cur] = CanBreak; return CanBreak; } /// Helper class for "break large PHIs" (visitPHINode). /// /// This represents a slice of a PHI's incoming value, which is made up of: /// - The type of the slice (Ty) /// - The index in the incoming value's vector where the slice starts (Idx) /// - The number of elements in the slice (NumElts). /// It also keeps track of the NewPHI node inserted for this particular slice. /// /// Slice examples: /// <4 x i64> -> Split into four i64 slices. /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] class VectorSlice { public: VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) : Ty(Ty), Idx(Idx), NumElts(NumElts) {} Type *Ty = nullptr; unsigned Idx = 0; unsigned NumElts = 0; PHINode *NewPHI = nullptr; /// Slice \p Inc according to the information contained within this slice. /// This is cached, so if called multiple times for the same \p BB & \p Inc /// pair, it returns the same Sliced value as well. /// /// Note this *intentionally* does not return the same value for, say, /// [%bb.0, %0] & [%bb.1, %0] as: /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then /// the value in bb.1 may not be reachable from bb.0 if it's its /// predecessor.) /// - We also want to make our extract instructions as local as possible so /// the DAG has better chances of folding them out. Duplicating them like /// that is beneficial in that regard. /// /// This is both a minor optimization to avoid creating duplicate /// instructions, but also a requirement for correctness. It is not forbidden /// for a PHI node to have the same [BB, Val] pair multiple times. If we /// returned a new value each time, those previously identical pairs would all /// have different incoming values (from the same block) and it'd cause a "PHI /// node has multiple entries for the same basic block with different incoming /// values!" verifier error. Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { Value *&Res = SlicedVals[{BB, Inc}]; if (Res) return Res; IRBuilder<> B(BB->getTerminator()); if (Instruction *IncInst = dyn_cast(Inc)) B.SetCurrentDebugLocation(IncInst->getDebugLoc()); if (NumElts > 1) { SmallVector Mask; for (unsigned K = Idx; K < (Idx + NumElts); ++K) Mask.push_back(K); Res = B.CreateShuffleVector(Inc, Mask, NewValName); } else Res = B.CreateExtractElement(Inc, Idx, NewValName); return Res; } private: SmallDenseMap, Value *> SlicedVals; }; bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { // Break-up fixed-vector PHIs into smaller pieces. // Default threshold is 32, so it breaks up any vector that's >32 bits into // its elements, or into 32-bit pieces (for 8/16 bit elts). // // This is only helpful for DAGISel because it doesn't handle large PHIs as // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. // With large, odd-sized PHIs we may end up needing many `build_vector` // operations with most elements being "undef". This inhibits a lot of // optimization opportunities and can result in unreasonably high register // pressure and the inevitable stack spilling. if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) return false; FixedVectorType *FVT = dyn_cast(I.getType()); if (!FVT || FVT->getNumElements() == 1 || DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) return false; if (!ForceBreakLargePHIs && !canBreakPHINode(I)) return false; std::vector Slices; Type *EltTy = FVT->getElementType(); { unsigned Idx = 0; // For 8/16 bits type, don't scalarize fully but break it up into as many // 32-bit slices as we can, and scalarize the tail. const unsigned EltSize = DL->getTypeSizeInBits(EltTy); const unsigned NumElts = FVT->getNumElements(); if (EltSize == 8 || EltSize == 16) { const unsigned SubVecSize = (32 / EltSize); Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; Idx += SubVecSize) Slices.emplace_back(SubVecTy, Idx, SubVecSize); } // Scalarize all remaining elements. for (; Idx < NumElts; ++Idx) Slices.emplace_back(EltTy, Idx, 1); } assert(Slices.size() > 1); // Create one PHI per vector piece. The "VectorSlice" class takes care of // creating the necessary instruction to extract the relevant slices of each // incoming value. IRBuilder<> B(I.getParent()); B.SetCurrentDebugLocation(I.getDebugLoc()); unsigned IncNameSuffix = 0; for (VectorSlice &S : Slices) { // We need to reset the build on each iteration, because getSlicedVal may // have inserted something into I's BB. B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); for (const auto &[Idx, BB] : enumerate(I.blocks())) { S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), "largephi.extractslice" + std::to_string(IncNameSuffix++)), BB); } } // And replace this PHI with a vector of all the previous PHI values. Value *Vec = PoisonValue::get(FVT); unsigned NameSuffix = 0; for (VectorSlice &S : Slices) { const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); if (S.NumElts > 1) Vec = B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); else Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); } I.replaceAllUsesWith(Vec); I.eraseFromParent(); return true; } /// \param V Value to check /// \param DL DataLayout /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) /// \param AS Target Address Space /// \return true if \p V cannot be the null value of \p AS, false otherwise. static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, const AMDGPUTargetMachine &TM, unsigned AS) { // Pointer cannot be null if it's a block address, GV or alloca. // NOTE: We don't support extern_weak, but if we did, we'd need to check for // it as the symbol could be null in such cases. if (isa(V) || isa(V) || isa(V)) return true; // Check nonnull arguments. if (const auto *Arg = dyn_cast(V); Arg && Arg->hasNonNullAttr()) return true; // getUnderlyingObject may have looked through another addrspacecast, although // the optimizable situations most likely folded out by now. if (AS != cast(V->getType())->getAddressSpace()) return false; // TODO: Calls that return nonnull? // For all other things, use KnownBits. // We either use 0 or all bits set to indicate null, so check whether the // value can be zero or all ones. // // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some // address spaces have non-zero null values. auto SrcPtrKB = computeKnownBits(V, DL); const auto NullVal = TM.getNullPointerValue(AS); assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); assert((NullVal == 0 || NullVal == -1) && "don't know how to check for this null value!"); return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); } bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { // Intrinsic doesn't support vectors, also it seems that it's often difficult // to prove that a vector cannot have any nulls in it so it's unclear if it's // worth supporting. if (I.getType()->isVectorTy()) return false; // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. // This is only worthwhile for casts from/to priv/local to flat. const unsigned SrcAS = I.getSrcAddressSpace(); const unsigned DstAS = I.getDestAddressSpace(); bool CanLower = false; if (SrcAS == AMDGPUAS::FLAT_ADDRESS) CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || DstAS == AMDGPUAS::PRIVATE_ADDRESS); else if (DstAS == AMDGPUAS::FLAT_ADDRESS) CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS); if (!CanLower) return false; SmallVector WorkList; getUnderlyingObjects(I.getOperand(0), WorkList); if (!all_of(WorkList, [&](const Value *V) { return isPtrKnownNeverNull(V, *DL, *TM, SrcAS); })) return false; IRBuilder<> B(&I); auto *Intrin = B.CreateIntrinsic( I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); I.replaceAllUsesWith(Intrin); I.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { switch (I.getIntrinsicID()) { case Intrinsic::bitreverse: return visitBitreverseIntrinsicInst(I); case Intrinsic::minnum: return visitMinNum(I); case Intrinsic::sqrt: return visitSqrt(I); default: return false; } } bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { bool Changed = false; if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && UA->isUniform(&I)) Changed |= promoteUniformBitreverseToI32(I); return Changed; } /// Match non-nan fract pattern. /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) /// /// If fract is a useful instruction for the subtarget. Does not account for the /// nan handling; the instruction has a nan check on the input value. Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { if (ST->hasFractBug()) return nullptr; if (I.getIntrinsicID() != Intrinsic::minnum) return nullptr; Type *Ty = I.getType(); if (!isLegalFloatingTy(Ty->getScalarType())) return nullptr; Value *Arg0 = I.getArgOperand(0); Value *Arg1 = I.getArgOperand(1); const APFloat *C; if (!match(Arg1, m_APFloat(C))) return nullptr; APFloat One(1.0); bool LosesInfo; One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); // Match nextafter(1.0, -1) One.next(true); if (One != *C) return nullptr; Value *FloorSrc; if (match(Arg0, m_FSub(m_Value(FloorSrc), m_Intrinsic(m_Deferred(FloorSrc))))) return FloorSrc; return nullptr; } Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, Value *FractArg) { SmallVector FractVals; extractValues(Builder, FractVals, FractArg); SmallVector ResultVals(FractVals.size()); Type *Ty = FractArg->getType()->getScalarType(); for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { ResultVals[I] = Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); } return insertValues(Builder, FractArg->getType(), ResultVals); } bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { Value *FractArg = matchFractPat(I); if (!FractArg) return false; // Match pattern for fract intrinsic in contexts where the nan check has been // optimized out (and hope the knowledge the source can't be nan wasn't lost). if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo))) return false; IRBuilder<> Builder(&I); FastMathFlags FMF = I.getFastMathFlags(); FMF.setNoNaNs(); Builder.setFastMathFlags(FMF); Value *Fract = applyFractPat(Builder, FractArg); Fract->takeName(&I); I.replaceAllUsesWith(Fract); RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); return true; } static bool isOneOrNegOne(const Value *Val) { const APFloat *C; return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; } // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { Type *Ty = Sqrt.getType()->getScalarType(); if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) return false; const FPMathOperator *FPOp = cast(&Sqrt); FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); // We're trying to handle the fast-but-not-that-fast case only. The lowering // of fast llvm.sqrt will give the raw instruction anyway. if (SqrtFMF.approxFunc() || HasUnsafeFPMath) return false; const float ReqdAccuracy = FPOp->getFPAccuracy(); // Defer correctly rounded expansion to codegen. if (ReqdAccuracy < 1.0f) return false; // FIXME: This is an ugly hack for this pass using forward iteration instead // of reverse. If it worked like a normal combiner, the rsq would form before // we saw a sqrt call. auto *FDiv = dyn_cast_or_null(Sqrt.getUniqueUndroppableUser()); if (FDiv && FDiv->getOpcode() == Instruction::FDiv && FDiv->getFPAccuracy() >= 1.0f && canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && // TODO: We should also handle the arcp case for the fdiv with non-1 value isOneOrNegOne(FDiv->getOperand(0))) return false; Value *SrcVal = Sqrt.getOperand(0); bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); // The raw instruction is 1 ulp, but the correction for denormal handling // brings it to 2. if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) return false; IRBuilder<> Builder(&Sqrt); SmallVector SrcVals; extractValues(Builder, SrcVals, SrcVal); SmallVector ResultVals(SrcVals.size()); for (int I = 0, E = SrcVals.size(); I != E; ++I) { if (CanTreatAsDAZ) ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); else ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); } Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); NewSqrt->takeName(&Sqrt); Sqrt.replaceAllUsesWith(NewSqrt); Sqrt.eraseFromParent(); return true; } bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { Impl.Mod = &M; Impl.DL = &Impl.Mod->getDataLayout(); Impl.SqrtF32 = nullptr; Impl.LdexpF32 = nullptr; return false; } bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto *TPC = getAnalysisIfAvailable(); if (!TPC) return false; const AMDGPUTargetMachine &TM = TPC->getTM(); Impl.TM = &TM; Impl.TLInfo = &getAnalysis().getTLI(F); Impl.ST = &TM.getSubtarget(F); Impl.AC = &getAnalysis().getAssumptionCache(F); Impl.UA = &getAnalysis().getUniformityInfo(); auto *DTWP = getAnalysisIfAvailable(); Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); SIModeRegisterDefaults Mode(F, *Impl.ST); Impl.HasFP32DenormalFlush = Mode.FP32Denormals == DenormalMode::getPreserveSign(); return Impl.run(F); } PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, FunctionAnalysisManager &FAM) { AMDGPUCodeGenPrepareImpl Impl; Impl.Mod = F.getParent(); Impl.DL = &Impl.Mod->getDataLayout(); Impl.TM = static_cast(&TM); Impl.TLInfo = &FAM.getResult(F); Impl.ST = &TM.getSubtarget(F); Impl.AC = &FAM.getResult(F); Impl.UA = &FAM.getResult(F); Impl.DT = FAM.getCachedResult(F); Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); SIModeRegisterDefaults Mode(F, *Impl.ST); Impl.HasFP32DenormalFlush = Mode.FP32Denormals == DenormalMode::getPreserveSign(); PreservedAnalyses PA = PreservedAnalyses::none(); if (!Impl.FlowChanged) PA.preserveSet(); return Impl.run(F) ? PA : PreservedAnalyses::all(); } INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", false, false) char AMDGPUCodeGenPrepare::ID = 0; FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { return new AMDGPUCodeGenPrepare(); }