//===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "AMDGPU.h" #include "AMDGPUHSAMetadataStreamer.h" #include "AMDGPUResourceUsageAnalysis.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUInstPrinter.h" #include "MCTargetDesc/AMDGPUMCExpr.h" #include "MCTargetDesc/AMDGPUMCKernelDescriptor.h" #include "MCTargetDesc/AMDGPUTargetStreamer.h" #include "R600AsmPrinter.h" #include "SIMachineFunctionInfo.h" #include "TargetInfo/AMDGPUTargetInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "Utils/AMDKernelCodeTUtils.h" #include "Utils/SIDefinesUtils.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/AMDHSAKernelDescriptor.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/TargetParser/TargetParser.h" using namespace llvm; using namespace llvm::AMDGPU; // This should get the default rounding mode from the kernel. We just set the // default here, but this could change if the OpenCL rounding mode pragmas are // used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(SIModeRegisterDefaults Mode) { return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) | FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue()); } static AsmPrinter * createAMDGPUAsmPrinterPass(TargetMachine &tm, std::unique_ptr &&Streamer) { return new AMDGPUAsmPrinter(tm, std::move(Streamer)); } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUAsmPrinter() { TargetRegistry::RegisterAsmPrinter(getTheR600Target(), llvm::createR600AsmPrinterPass); TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)) { assert(OutStreamer && "AsmPrinter constructed without streamer"); } StringRef AMDGPUAsmPrinter::getPassName() const { return "AMDGPU Assembly Printer"; } const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const { return TM.getMCSubtargetInfo(); } AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { if (!OutStreamer) return nullptr; return static_cast(OutStreamer->getTargetStreamer()); } void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) { IsTargetStreamerInitialized = false; } void AMDGPUAsmPrinter::initTargetStreamer(Module &M) { IsTargetStreamerInitialized = true; // TODO: Which one is called first, emitStartOfAsmFile or // emitFunctionBodyStart? if (getTargetStreamer() && !getTargetStreamer()->getTargetID()) initializeTargetID(M); if (TM.getTargetTriple().getOS() != Triple::AMDHSA && TM.getTargetTriple().getOS() != Triple::AMDPAL) return; getTargetStreamer()->EmitDirectiveAMDGCNTarget(); if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { getTargetStreamer()->EmitDirectiveAMDHSACodeObjectVersion( CodeObjectVersion); HSAMetadataStream->begin(M, *getTargetStreamer()->getTargetID()); } if (TM.getTargetTriple().getOS() == Triple::AMDPAL) getTargetStreamer()->getPALMetadata()->readFromIR(M); } void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) { // Init target streamer if it has not yet happened if (!IsTargetStreamerInitialized) initTargetStreamer(M); if (TM.getTargetTriple().getOS() != Triple::AMDHSA) getTargetStreamer()->EmitISAVersion(); // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). // Emit HSA Metadata (NT_AMD_HSA_METADATA). if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { HSAMetadataStream->end(); bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); (void)Success; assert(Success && "Malformed HSA Metadata"); } } void AMDGPUAsmPrinter::emitFunctionBodyStart() { const SIMachineFunctionInfo &MFI = *MF->getInfo(); const GCNSubtarget &STM = MF->getSubtarget(); const Function &F = MF->getFunction(); // TODO: We're checking this late, would be nice to check it earlier. if (STM.requiresCodeObjectV6() && CodeObjectVersion < AMDGPU::AMDHSA_COV6) { report_fatal_error( STM.getCPU() + " is only available on code object version 6 or better", /*gen_crash_diag*/ false); } // TODO: Which one is called first, emitStartOfAsmFile or // emitFunctionBodyStart? if (!getTargetStreamer()->getTargetID()) initializeTargetID(*F.getParent()); const auto &FunctionTargetID = STM.getTargetID(); // Make sure function's xnack settings are compatible with module's // xnack settings. if (FunctionTargetID.isXnackSupported() && FunctionTargetID.getXnackSetting() != IsaInfo::TargetIDSetting::Any && FunctionTargetID.getXnackSetting() != getTargetStreamer()->getTargetID()->getXnackSetting()) { OutContext.reportError({}, "xnack setting of '" + Twine(MF->getName()) + "' function does not match module xnack setting"); return; } // Make sure function's sramecc settings are compatible with module's // sramecc settings. if (FunctionTargetID.isSramEccSupported() && FunctionTargetID.getSramEccSetting() != IsaInfo::TargetIDSetting::Any && FunctionTargetID.getSramEccSetting() != getTargetStreamer()->getTargetID()->getSramEccSetting()) { OutContext.reportError({}, "sramecc setting of '" + Twine(MF->getName()) + "' function does not match module sramecc setting"); return; } if (!MFI.isEntryFunction()) return; if (STM.isMesaKernel(F) && (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || F.getCallingConv() == CallingConv::SPIR_KERNEL)) { AMDGPUMCKernelCodeT KernelCode; getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); KernelCode.validate(&STM, MF->getContext()); getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); } if (STM.isAmdHsaOS()) HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); if (MFI.getNumKernargPreloadedSGPRs() > 0) { assert(AMDGPU::hasKernargPreload(STM)); getTargetStreamer()->EmitKernargPreloadHeader(*getGlobalSTI(), STM.isAmdHsaOS()); } } void AMDGPUAsmPrinter::emitFunctionBodyEnd() { const SIMachineFunctionInfo &MFI = *MF->getInfo(); if (!MFI.isEntryFunction()) return; if (TM.getTargetTriple().getOS() != Triple::AMDHSA) return; auto &Streamer = getTargetStreamer()->getStreamer(); auto &Context = Streamer.getContext(); auto &ObjectFileInfo = *Context.getObjectFileInfo(); auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); Streamer.pushSection(); Streamer.switchSection(&ReadOnlySection); // CP microcode requires the kernel descriptor to be allocated on 64 byte // alignment. Streamer.emitValueToAlignment(Align(64), 0, 1, 0); ReadOnlySection.ensureMinAlignment(Align(64)); const GCNSubtarget &STM = MF->getSubtarget(); SmallString<128> KernelName; getNameWithPrefix(KernelName, &MF->getFunction()); getTargetStreamer()->EmitAmdhsaKernelDescriptor( STM, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), CurrentProgramInfo.NumVGPRsForWavesPerEU, MCBinaryExpr::createSub( CurrentProgramInfo.NumSGPRsForWavesPerEU, AMDGPUMCExpr::createExtraSGPRs( CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, getTargetStreamer()->getTargetID()->isXnackOnOrAny(), Context), Context), CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed); Streamer.popSection(); } void AMDGPUAsmPrinter::emitImplicitDef(const MachineInstr *MI) const { Register RegNo = MI->getOperand(0).getReg(); SmallString<128> Str; raw_svector_ostream OS(Str); OS << "implicit-def: " << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); if (MI->getAsmPrinterFlags() & AMDGPU::SGPR_SPILL) OS << " : SGPR spill to VGPR lane"; OutStreamer->AddComment(OS.str()); OutStreamer->addBlankLine(); } void AMDGPUAsmPrinter::emitFunctionEntryLabel() { if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { AsmPrinter::emitFunctionEntryLabel(); return; } const SIMachineFunctionInfo *MFI = MF->getInfo(); const GCNSubtarget &STM = MF->getSubtarget(); if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { SmallString<128> SymbolName; getNameWithPrefix(SymbolName, &MF->getFunction()), getTargetStreamer()->EmitAMDGPUSymbolType( SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); } if (DumpCodeInstEmitter) { // Disassemble function name label to text. DisasmLines.push_back(MF->getName().str() + ":"); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.emplace_back(""); } AsmPrinter::emitFunctionEntryLabel(); } void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) { // Write a line for the basic block label if it is not only fallthrough. DisasmLines.push_back( (Twine("BB") + Twine(getFunctionNumber()) + "_" + Twine(MBB.getNumber()) + ":").str()); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.emplace_back(""); } AsmPrinter::emitBasicBlockStart(MBB); } void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { if (GV->hasInitializer() && !isa(GV->getInitializer())) { OutContext.reportError({}, Twine(GV->getName()) + ": unsupported initializer for address space"); return; } // LDS variables aren't emitted in HSA or PAL yet. const Triple::OSType OS = TM.getTargetTriple().getOS(); if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) return; MCSymbol *GVSym = getSymbol(GV); GVSym->redefineIfPossible(); if (GVSym->isDefined() || GVSym->isVariable()) report_fatal_error("symbol '" + Twine(GVSym->getName()) + "' is already defined"); const DataLayout &DL = GV->getDataLayout(); uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); Align Alignment = GV->getAlign().value_or(Align(4)); emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); emitLinkage(GV, GVSym); auto TS = getTargetStreamer(); TS->emitAMDGPULDS(GVSym, Size, Alignment); return; } AsmPrinter::emitGlobalVariable(GV); } bool AMDGPUAsmPrinter::doInitialization(Module &M) { CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(M); if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { switch (CodeObjectVersion) { case AMDGPU::AMDHSA_COV4: HSAMetadataStream = std::make_unique(); break; case AMDGPU::AMDHSA_COV5: HSAMetadataStream = std::make_unique(); break; case AMDGPU::AMDHSA_COV6: HSAMetadataStream = std::make_unique(); break; default: report_fatal_error("Unexpected code object version"); } } return AsmPrinter::doInitialization(M); } bool AMDGPUAsmPrinter::doFinalization(Module &M) { // Pad with s_code_end to help tools and guard against instruction prefetch // causing stale data in caches. Arguably this should be done by the linker, // which is why this isn't done for Mesa. const MCSubtargetInfo &STI = *getGlobalSTI(); if ((AMDGPU::isGFX10Plus(STI) || AMDGPU::isGFX90A(STI)) && (STI.getTargetTriple().getOS() == Triple::AMDHSA || STI.getTargetTriple().getOS() == Triple::AMDPAL)) { OutStreamer->switchSection(getObjFileLowering().getTextSection()); getTargetStreamer()->EmitCodeEnd(STI); } return AsmPrinter::doFinalization(M); } // Print comments that apply to both callable functions and entry points. void AMDGPUAsmPrinter::emitCommonFunctionComments( uint32_t NumVGPR, std::optional NumAGPR, uint32_t TotalNumVGPR, uint32_t NumSGPR, uint64_t ScratchSize, uint64_t CodeSize, const AMDGPUMachineFunction *MFI) { OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); if (NumAGPR) { OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false); OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR), false); } OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), false); } SmallString<128> AMDGPUAsmPrinter::getMCExprStr(const MCExpr *Value) { SmallString<128> Str; raw_svector_ostream OSS(Str); int64_t IVal; if (Value->evaluateAsAbsolute(IVal)) { OSS << static_cast(IVal); } else { Value->print(OSS, MAI); } return Str; } void AMDGPUAsmPrinter::emitCommonFunctionComments( const MCExpr *NumVGPR, const MCExpr *NumAGPR, const MCExpr *TotalNumVGPR, const MCExpr *NumSGPR, const MCExpr *ScratchSize, uint64_t CodeSize, const AMDGPUMachineFunction *MFI) { OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); OutStreamer->emitRawComment(" NumSgprs: " + getMCExprStr(NumSGPR), false); OutStreamer->emitRawComment(" NumVgprs: " + getMCExprStr(NumVGPR), false); if (NumAGPR && TotalNumVGPR) { OutStreamer->emitRawComment(" NumAgprs: " + getMCExprStr(NumAGPR), false); OutStreamer->emitRawComment(" TotalNumVgprs: " + getMCExprStr(TotalNumVGPR), false); } OutStreamer->emitRawComment(" ScratchSize: " + getMCExprStr(ScratchSize), false); OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), false); } const MCExpr *AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( const MachineFunction &MF) const { const SIMachineFunctionInfo &MFI = *MF.getInfo(); MCContext &Ctx = MF.getContext(); uint16_t KernelCodeProperties = 0; const GCNUserSGPRUsageInfo &UserSGPRInfo = MFI.getUserSGPRInfo(); if (UserSGPRInfo.hasPrivateSegmentBuffer()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (UserSGPRInfo.hasDispatchPtr()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; } if (UserSGPRInfo.hasQueuePtr() && CodeObjectVersion < AMDGPU::AMDHSA_COV5) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; } if (UserSGPRInfo.hasKernargSegmentPtr()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; } if (UserSGPRInfo.hasDispatchID()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; } if (UserSGPRInfo.hasFlatScratchInit()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; } if (UserSGPRInfo.hasPrivateSegmentSize()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE; } if (MF.getSubtarget().isWave32()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; } // CurrentProgramInfo.DynamicCallStack is a MCExpr and could be // un-evaluatable at this point so it cannot be conditionally checked here. // Instead, we'll directly shift the possibly unknown MCExpr into its place // and bitwise-or it into KernelCodeProperties. const MCExpr *KernelCodePropExpr = MCConstantExpr::create(KernelCodeProperties, Ctx); const MCExpr *OrValue = MCConstantExpr::create( amdhsa::KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK_SHIFT, Ctx); OrValue = MCBinaryExpr::createShl(CurrentProgramInfo.DynamicCallStack, OrValue, Ctx); KernelCodePropExpr = MCBinaryExpr::createOr(KernelCodePropExpr, OrValue, Ctx); return KernelCodePropExpr; } MCKernelDescriptor AMDGPUAsmPrinter::getAmdhsaKernelDescriptor(const MachineFunction &MF, const SIProgramInfo &PI) const { const GCNSubtarget &STM = MF.getSubtarget(); const Function &F = MF.getFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); MCContext &Ctx = MF.getContext(); MCKernelDescriptor KernelDescriptor; KernelDescriptor.group_segment_fixed_size = MCConstantExpr::create(PI.LDSSize, Ctx); KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; Align MaxKernArgAlign; KernelDescriptor.kernarg_size = MCConstantExpr::create( STM.getKernArgSegmentSize(F, MaxKernArgAlign), Ctx); KernelDescriptor.compute_pgm_rsrc1 = PI.getComputePGMRSrc1(STM, Ctx); KernelDescriptor.compute_pgm_rsrc2 = PI.getComputePGMRSrc2(Ctx); KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); int64_t PGRM_Rsrc3 = 1; bool EvaluatableRsrc3 = CurrentProgramInfo.ComputePGMRSrc3GFX90A->evaluateAsAbsolute(PGRM_Rsrc3); (void)PGRM_Rsrc3; (void)EvaluatableRsrc3; assert(STM.hasGFX90AInsts() || !EvaluatableRsrc3 || static_cast(PGRM_Rsrc3) == 0); KernelDescriptor.compute_pgm_rsrc3 = CurrentProgramInfo.ComputePGMRSrc3GFX90A; KernelDescriptor.kernarg_preload = MCConstantExpr::create( AMDGPU::hasKernargPreload(STM) ? Info->getNumKernargPreloadedSGPRs() : 0, Ctx); return KernelDescriptor; } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { // Init target streamer lazily on the first function so that previous passes // can set metadata. if (!IsTargetStreamerInitialized) initTargetStreamer(*MF.getFunction().getParent()); ResourceUsage = &getAnalysis(); CurrentProgramInfo.reset(MF); const AMDGPUMachineFunction *MFI = MF.getInfo(); MCContext &Ctx = MF.getContext(); // The starting address of all shader programs must be 256 bytes aligned. // Regular functions just need the basic required instruction alignment. MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4)); SetupMachineFunction(MF); const GCNSubtarget &STM = MF.getSubtarget(); MCContext &Context = getObjFileLowering().getContext(); // FIXME: This should be an explicit check for Mesa. if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); OutStreamer->switchSection(ConfigSection); } if (MFI->isModuleEntryFunction()) { getSIProgramInfo(CurrentProgramInfo, MF); } if (STM.isAmdPalOS()) { if (MFI->isEntryFunction()) EmitPALMetadata(MF, CurrentProgramInfo); else if (MFI->isModuleEntryFunction()) emitPALFunctionMetadata(MF); } else if (!STM.isAmdHsaOS()) { EmitProgramInfoSI(MF, CurrentProgramInfo); } DumpCodeInstEmitter = nullptr; if (STM.dumpCode()) { // For -dumpcode, get the assembler out of the streamer. This only works // with -filetype=obj. MCAssembler *Assembler = OutStreamer->getAssemblerPtr(); if (Assembler) DumpCodeInstEmitter = Assembler->getEmitterPtr(); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; emitFunctionBody(); emitResourceUsageRemarks(MF, CurrentProgramInfo, MFI->isModuleEntryFunction(), STM.hasMAIInsts()); if (isVerbose()) { MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); OutStreamer->switchSection(CommentSection); if (!MFI->isEntryFunction()) { OutStreamer->emitRawComment(" Function info:", false); const AMDGPUResourceUsageAnalysis::SIFunctionResourceInfo &Info = ResourceUsage->getResourceInfo(&MF.getFunction()); emitCommonFunctionComments( Info.NumVGPR, STM.hasMAIInsts() ? Info.NumAGPR : std::optional(), Info.getTotalNumVGPRs(STM), Info.getTotalNumSGPRs(MF.getSubtarget()), Info.PrivateSegmentSize, getFunctionCodeSize(MF), MFI); return false; } OutStreamer->emitRawComment(" Kernel info:", false); emitCommonFunctionComments( CurrentProgramInfo.NumArchVGPR, STM.hasMAIInsts() ? CurrentProgramInfo.NumAccVGPR : nullptr, CurrentProgramInfo.NumVGPR, CurrentProgramInfo.NumSGPR, CurrentProgramInfo.ScratchSize, getFunctionCodeSize(MF), MFI); OutStreamer->emitRawComment( " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); OutStreamer->emitRawComment( " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); OutStreamer->emitRawComment( " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + " bytes/workgroup (compile time only)", false); OutStreamer->emitRawComment( " SGPRBlocks: " + getMCExprStr(CurrentProgramInfo.SGPRBlocks), false); OutStreamer->emitRawComment( " VGPRBlocks: " + getMCExprStr(CurrentProgramInfo.VGPRBlocks), false); OutStreamer->emitRawComment( " NumSGPRsForWavesPerEU: " + getMCExprStr(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); OutStreamer->emitRawComment( " NumVGPRsForWavesPerEU: " + getMCExprStr(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); if (STM.hasGFX90AInsts()) { const MCExpr *AdjustedAccum = MCBinaryExpr::createAdd( CurrentProgramInfo.AccumOffset, MCConstantExpr::create(1, Ctx), Ctx); AdjustedAccum = MCBinaryExpr::createMul( AdjustedAccum, MCConstantExpr::create(4, Ctx), Ctx); OutStreamer->emitRawComment( " AccumOffset: " + getMCExprStr(AdjustedAccum), false); } OutStreamer->emitRawComment( " Occupancy: " + getMCExprStr(CurrentProgramInfo.Occupancy), false); OutStreamer->emitRawComment( " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:SCRATCH_EN: " + getMCExprStr(CurrentProgramInfo.ScratchEnable), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " + Twine(CurrentProgramInfo.UserSGPR), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + Twine(CurrentProgramInfo.TrapHandlerEnable), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " + Twine(CurrentProgramInfo.TGIdXEnable), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " + Twine(CurrentProgramInfo.TGIdYEnable), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " + Twine(CurrentProgramInfo.TGIdZEnable), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + Twine(CurrentProgramInfo.TIdIGCompCount), false); [[maybe_unused]] int64_t PGMRSrc3; assert(STM.hasGFX90AInsts() || (CurrentProgramInfo.ComputePGMRSrc3GFX90A->evaluateAsAbsolute( PGMRSrc3) && static_cast(PGMRSrc3) == 0)); if (STM.hasGFX90AInsts()) { OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC3_GFX90A:ACCUM_OFFSET: " + getMCExprStr(MCKernelDescriptor::bits_get( CurrentProgramInfo.ComputePGMRSrc3GFX90A, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET_SHIFT, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET, Ctx)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC3_GFX90A:TG_SPLIT: " + getMCExprStr(MCKernelDescriptor::bits_get( CurrentProgramInfo.ComputePGMRSrc3GFX90A, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT_SHIFT, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, Ctx)), false); } } if (DumpCodeInstEmitter) { OutStreamer->switchSection( Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0)); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment = "\n"; if (!HexLines[i].empty()) { Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; } OutStreamer->emitBytes(StringRef(DisasmLines[i])); OutStreamer->emitBytes(StringRef(Comment)); } } return false; } // TODO: Fold this into emitFunctionBodyStart. void AMDGPUAsmPrinter::initializeTargetID(const Module &M) { // In the beginning all features are either 'Any' or 'NotSupported', // depending on global target features. This will cover empty modules. getTargetStreamer()->initializeTargetID(*getGlobalSTI(), getGlobalSTI()->getFeatureString()); // If module is empty, we are done. if (M.empty()) return; // If module is not empty, need to find first 'Off' or 'On' feature // setting per feature from functions in module. for (auto &F : M) { auto &TSTargetID = getTargetStreamer()->getTargetID(); if ((!TSTargetID->isXnackSupported() || TSTargetID->isXnackOnOrOff()) && (!TSTargetID->isSramEccSupported() || TSTargetID->isSramEccOnOrOff())) break; const GCNSubtarget &STM = TM.getSubtarget(F); const IsaInfo::AMDGPUTargetID &STMTargetID = STM.getTargetID(); if (TSTargetID->isXnackSupported()) if (TSTargetID->getXnackSetting() == IsaInfo::TargetIDSetting::Any) TSTargetID->setXnackSetting(STMTargetID.getXnackSetting()); if (TSTargetID->isSramEccSupported()) if (TSTargetID->getSramEccSetting() == IsaInfo::TargetIDSetting::Any) TSTargetID->setSramEccSetting(STMTargetID.getSramEccSetting()); } } uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { const GCNSubtarget &STM = MF.getSubtarget(); const SIInstrInfo *TII = STM.getInstrInfo(); uint64_t CodeSize = 0; for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. // TODO: Should we count size of debug info? if (MI.isDebugInstr()) continue; CodeSize += TII->getInstSizeInBytes(MI); } } return CodeSize; } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) { const AMDGPUResourceUsageAnalysis::SIFunctionResourceInfo &Info = ResourceUsage->getResourceInfo(&MF.getFunction()); const GCNSubtarget &STM = MF.getSubtarget(); MCContext &Ctx = MF.getContext(); auto CreateExpr = [&Ctx](int64_t Value) { return MCConstantExpr::create(Value, Ctx); }; auto TryGetMCExprValue = [](const MCExpr *Value, uint64_t &Res) -> bool { int64_t Val; if (Value->evaluateAsAbsolute(Val)) { Res = Val; return true; } return false; }; ProgInfo.NumArchVGPR = CreateExpr(Info.NumVGPR); ProgInfo.NumAccVGPR = CreateExpr(Info.NumAGPR); ProgInfo.NumVGPR = CreateExpr(Info.getTotalNumVGPRs(STM)); ProgInfo.AccumOffset = CreateExpr(alignTo(std::max(1, Info.NumVGPR), 4) / 4 - 1); ProgInfo.TgSplit = STM.isTgSplitEnabled(); ProgInfo.NumSGPR = CreateExpr(Info.NumExplicitSGPR); ProgInfo.ScratchSize = CreateExpr(Info.PrivateSegmentSize); ProgInfo.VCCUsed = CreateExpr(Info.UsesVCC); ProgInfo.FlatUsed = CreateExpr(Info.UsesFlatScratch); ProgInfo.DynamicCallStack = CreateExpr(Info.HasDynamicallySizedStack || Info.HasRecursion); const uint64_t MaxScratchPerWorkitem = STM.getMaxWaveScratchSize() / STM.getWavefrontSize(); uint64_t ScratchSize; if (TryGetMCExprValue(ProgInfo.ScratchSize, ScratchSize) && ScratchSize > MaxScratchPerWorkitem) { DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), ScratchSize, MaxScratchPerWorkitem, DS_Error); MF.getFunction().getContext().diagnose(DiagStackSize); } const SIMachineFunctionInfo *MFI = MF.getInfo(); // The calculations related to SGPR/VGPR blocks are // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be // unified. const MCExpr *ExtraSGPRs = AMDGPUMCExpr::createExtraSGPRs( ProgInfo.VCCUsed, ProgInfo.FlatUsed, getTargetStreamer()->getTargetID()->isXnackOnOrAny(), Ctx); // Check the addressable register limit before we add ExtraSGPRs. if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && !STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); uint64_t NumSgpr; if (TryGetMCExprValue(ProgInfo.NumSGPR, NumSgpr) && NumSgpr > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag( MF.getFunction(), "addressable scalar registers", NumSgpr, MaxAddressableNumSGPRs, DS_Error, DK_ResourceLimit); Ctx.diagnose(Diag); ProgInfo.NumSGPR = CreateExpr(MaxAddressableNumSGPRs - 1); } } // Account for extra SGPRs and VGPRs reserved for debugger use. ProgInfo.NumSGPR = MCBinaryExpr::createAdd(ProgInfo.NumSGPR, ExtraSGPRs, Ctx); const Function &F = MF.getFunction(); // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave // dispatch registers are function args. unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; if (isShader(F.getCallingConv())) { bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS && !STM.isAmdHsaOS(); // Calculate the number of VGPR registers based on the SPI input registers uint32_t InputEna = 0; uint32_t InputAddr = 0; unsigned LastEna = 0; if (IsPixelShader) { // Note for IsPixelShader: // By this stage, all enabled inputs are tagged in InputAddr as well. // We will use InputAddr to determine whether the input counts against the // vgpr total and only use the InputEnable to determine the last input // that is relevant - if extra arguments are used, then we have to honour // the InputAddr for any intermediate non-enabled inputs. InputEna = MFI->getPSInputEnable(); InputAddr = MFI->getPSInputAddr(); // We only need to consider input args up to the last used arg. assert((InputEna || InputAddr) && "PSInputAddr and PSInputEnable should " "never both be 0 for AMDGPU_PS shaders"); // There are some rare circumstances where InputAddr is non-zero and // InputEna can be set to 0. In this case we default to setting LastEna // to 1. LastEna = InputEna ? llvm::Log2_32(InputEna) + 1 : 1; } // FIXME: We should be using the number of registers determined during // calling convention lowering to legalize the types. const DataLayout &DL = F.getDataLayout(); unsigned PSArgCount = 0; unsigned IntermediateVGPR = 0; for (auto &Arg : F.args()) { unsigned NumRegs = (DL.getTypeSizeInBits(Arg.getType()) + 31) / 32; if (Arg.hasAttribute(Attribute::InReg)) { WaveDispatchNumSGPR += NumRegs; } else { // If this is a PS shader and we're processing the PS Input args (first // 16 VGPR), use the InputEna and InputAddr bits to define how many // VGPRs are actually used. // Any extra VGPR arguments are handled as normal arguments (and // contribute to the VGPR count whether they're used or not). if (IsPixelShader && PSArgCount < 16) { if ((1 << PSArgCount) & InputAddr) { if (PSArgCount < LastEna) WaveDispatchNumVGPR += NumRegs; else IntermediateVGPR += NumRegs; } PSArgCount++; } else { // If there are extra arguments we have to include the allocation for // the non-used (but enabled with InputAddr) input arguments if (IntermediateVGPR) { WaveDispatchNumVGPR += IntermediateVGPR; IntermediateVGPR = 0; } WaveDispatchNumVGPR += NumRegs; } } } ProgInfo.NumSGPR = AMDGPUMCExpr::createMax( {ProgInfo.NumSGPR, CreateExpr(WaveDispatchNumSGPR)}, Ctx); ProgInfo.NumArchVGPR = AMDGPUMCExpr::createMax( {ProgInfo.NumVGPR, CreateExpr(WaveDispatchNumVGPR)}, Ctx); ProgInfo.NumVGPR = AMDGPUMCExpr::createTotalNumVGPR( ProgInfo.NumAccVGPR, ProgInfo.NumArchVGPR, Ctx); } // Adjust number of registers used to meet default/requested minimum/maximum // number of waves per execution unit request. unsigned MaxWaves = MFI->getMaxWavesPerEU(); ProgInfo.NumSGPRsForWavesPerEU = AMDGPUMCExpr::createMax({ProgInfo.NumSGPR, CreateExpr(1ul), CreateExpr(STM.getMinNumSGPRs(MaxWaves))}, Ctx); ProgInfo.NumVGPRsForWavesPerEU = AMDGPUMCExpr::createMax({ProgInfo.NumVGPR, CreateExpr(1ul), CreateExpr(STM.getMinNumVGPRs(MaxWaves))}, Ctx); if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); uint64_t NumSgpr; if (TryGetMCExprValue(ProgInfo.NumSGPR, NumSgpr) && NumSgpr > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm to use // the registers which are usually reserved for vcc etc. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "scalar registers", NumSgpr, MaxAddressableNumSGPRs, DS_Error, DK_ResourceLimit); Ctx.diagnose(Diag); ProgInfo.NumSGPR = CreateExpr(MaxAddressableNumSGPRs); ProgInfo.NumSGPRsForWavesPerEU = CreateExpr(MaxAddressableNumSGPRs); } } if (STM.hasSGPRInitBug()) { ProgInfo.NumSGPR = CreateExpr(AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG); ProgInfo.NumSGPRsForWavesPerEU = CreateExpr(AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG); } if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", MFI->getNumUserSGPRs(), STM.getMaxNumUserSGPRs(), DS_Error); Ctx.diagnose(Diag); } if (MFI->getLDSSize() > static_cast(STM.getAddressableLocalMemorySize())) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag( MF.getFunction(), "local memory", MFI->getLDSSize(), STM.getAddressableLocalMemorySize(), DS_Error); Ctx.diagnose(Diag); } // The MCExpr equivalent of getNumSGPRBlocks/getNumVGPRBlocks: // (alignTo(max(1u, NumGPR), GPREncodingGranule) / GPREncodingGranule) - 1 auto GetNumGPRBlocks = [&CreateExpr, &Ctx](const MCExpr *NumGPR, unsigned Granule) { const MCExpr *OneConst = CreateExpr(1ul); const MCExpr *GranuleConst = CreateExpr(Granule); const MCExpr *MaxNumGPR = AMDGPUMCExpr::createMax({NumGPR, OneConst}, Ctx); const MCExpr *AlignToGPR = AMDGPUMCExpr::createAlignTo(MaxNumGPR, GranuleConst, Ctx); const MCExpr *DivGPR = MCBinaryExpr::createDiv(AlignToGPR, GranuleConst, Ctx); const MCExpr *SubGPR = MCBinaryExpr::createSub(DivGPR, OneConst, Ctx); return SubGPR; }; ProgInfo.SGPRBlocks = GetNumGPRBlocks(ProgInfo.NumSGPRsForWavesPerEU, IsaInfo::getSGPREncodingGranule(&STM)); ProgInfo.VGPRBlocks = GetNumGPRBlocks(ProgInfo.NumVGPRsForWavesPerEU, IsaInfo::getVGPREncodingGranule(&STM)); const SIModeRegisterDefaults Mode = MFI->getMode(); // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(Mode); ProgInfo.IEEEMode = Mode.IEEE; // Make clamp modifier on NaN input returns 0. ProgInfo.DX10Clamp = Mode.DX10Clamp; unsigned LDSAlignShift; if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } ProgInfo.SGPRSpill = MFI->getNumSpilledSGPRs(); ProgInfo.VGPRSpill = MFI->getNumSpilledVGPRs(); ProgInfo.LDSSize = MFI->getLDSSize(); ProgInfo.LDSBlocks = alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; // The MCExpr equivalent of divideCeil. auto DivideCeil = [&Ctx](const MCExpr *Numerator, const MCExpr *Denominator) { const MCExpr *Ceil = AMDGPUMCExpr::createAlignTo(Numerator, Denominator, Ctx); return MCBinaryExpr::createDiv(Ceil, Denominator, Ctx); }; // Scratch is allocated in 64-dword or 256-dword blocks. unsigned ScratchAlignShift = STM.getGeneration() >= AMDGPUSubtarget::GFX11 ? 8 : 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. ProgInfo.ScratchSize is the amount of // scratch memory used per thread. ProgInfo.ScratchBlocks = DivideCeil( MCBinaryExpr::createMul(ProgInfo.ScratchSize, CreateExpr(STM.getWavefrontSize()), Ctx), CreateExpr(1ULL << ScratchAlignShift)); if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) { ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1; ProgInfo.MemOrdered = 1; } // 0 = X, 1 = XY, 2 = XYZ unsigned TIDIGCompCnt = 0; if (MFI->hasWorkItemIDZ()) TIDIGCompCnt = 2; else if (MFI->hasWorkItemIDY()) TIDIGCompCnt = 1; // The private segment wave byte offset is the last of the system SGPRs. We // initially assumed it was allocated, and may have used it. It shouldn't harm // anything to disable it if we know the stack isn't used here. We may still // have emitted code reading it to initialize scratch, but if that's unused // reading garbage should be OK. ProgInfo.ScratchEnable = MCBinaryExpr::createLOr( MCBinaryExpr::createGT(ProgInfo.ScratchBlocks, MCConstantExpr::create(0, Ctx), Ctx), ProgInfo.DynamicCallStack, Ctx); ProgInfo.UserSGPR = MFI->getNumUserSGPRs(); // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. ProgInfo.TrapHandlerEnable = STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled(); ProgInfo.TGIdXEnable = MFI->hasWorkGroupIDX(); ProgInfo.TGIdYEnable = MFI->hasWorkGroupIDY(); ProgInfo.TGIdZEnable = MFI->hasWorkGroupIDZ(); ProgInfo.TGSizeEnable = MFI->hasWorkGroupInfo(); ProgInfo.TIdIGCompCount = TIDIGCompCnt; ProgInfo.EXCPEnMSB = 0; // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. ProgInfo.LdsSize = STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks; ProgInfo.EXCPEnable = 0; if (STM.hasGFX90AInsts()) { // return ((Dst & ~Mask) | (Value << Shift)) auto SetBits = [&Ctx](const MCExpr *Dst, const MCExpr *Value, uint32_t Mask, uint32_t Shift) { auto Shft = MCConstantExpr::create(Shift, Ctx); auto Msk = MCConstantExpr::create(Mask, Ctx); Dst = MCBinaryExpr::createAnd(Dst, MCUnaryExpr::createNot(Msk, Ctx), Ctx); Dst = MCBinaryExpr::createOr( Dst, MCBinaryExpr::createShl(Value, Shft, Ctx), Ctx); return Dst; }; ProgInfo.ComputePGMRSrc3GFX90A = SetBits(ProgInfo.ComputePGMRSrc3GFX90A, ProgInfo.AccumOffset, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET_SHIFT); ProgInfo.ComputePGMRSrc3GFX90A = SetBits(ProgInfo.ComputePGMRSrc3GFX90A, CreateExpr(ProgInfo.TgSplit), amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT_SHIFT); } ProgInfo.Occupancy = AMDGPUMCExpr::createOccupancy( STM.computeOccupancy(F, ProgInfo.LDSSize), ProgInfo.NumSGPRsForWavesPerEU, ProgInfo.NumVGPRsForWavesPerEU, STM, Ctx); const auto [MinWEU, MaxWEU] = AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", {0, 0}, true); uint64_t Occupancy; if (TryGetMCExprValue(ProgInfo.Occupancy, Occupancy) && Occupancy < MinWEU) { DiagnosticInfoOptimizationFailure Diag( F, F.getSubprogram(), "failed to meet occupancy target given by 'amdgpu-waves-per-eu' in " "'" + F.getName() + "': desired occupancy was " + Twine(MinWEU) + ", final occupancy is " + Twine(Occupancy)); F.getContext().diagnose(Diag); } } static unsigned getRsrcReg(CallingConv::ID CallConv) { switch (CallConv) { default: [[fallthrough]]; case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; } } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SIMachineFunctionInfo *MFI = MF.getInfo(); const GCNSubtarget &STM = MF.getSubtarget(); unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); MCContext &Ctx = MF.getContext(); // (((Value) & Mask) << Shift) auto SetBits = [&Ctx](const MCExpr *Value, uint32_t Mask, uint32_t Shift) { const MCExpr *msk = MCConstantExpr::create(Mask, Ctx); const MCExpr *shft = MCConstantExpr::create(Shift, Ctx); return MCBinaryExpr::createShl(MCBinaryExpr::createAnd(Value, msk, Ctx), shft, Ctx); }; auto EmitResolvedOrExpr = [this](const MCExpr *Value, unsigned Size) { int64_t Val; if (Value->evaluateAsAbsolute(Val)) OutStreamer->emitIntValue(static_cast(Val), Size); else OutStreamer->emitValue(Value, Size); }; if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1); EmitResolvedOrExpr(CurrentProgramInfo.getComputePGMRSrc1(STM, Ctx), /*Size=*/4); OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2); EmitResolvedOrExpr(CurrentProgramInfo.getComputePGMRSrc2(Ctx), /*Size=*/4); OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE); // Sets bits according to S_0286E8_WAVESIZE_* mask and shift values for the // appropriate generation. if (STM.getGeneration() >= AMDGPUSubtarget::GFX12) { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x3FFFF, /*Shift=*/12), /*Size=*/4); } else if (STM.getGeneration() == AMDGPUSubtarget::GFX11) { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x7FFF, /*Shift=*/12), /*Size=*/4); } else { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x1FFF, /*Shift=*/12), /*Size=*/4); } // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = // 0" comment but I don't see a corresponding field in the register spec. } else { OutStreamer->emitInt32(RsrcReg); const MCExpr *GPRBlocks = MCBinaryExpr::createOr( SetBits(CurrentProgramInfo.VGPRBlocks, /*Mask=*/0x3F, /*Shift=*/0), SetBits(CurrentProgramInfo.SGPRBlocks, /*Mask=*/0x0F, /*Shift=*/6), MF.getContext()); EmitResolvedOrExpr(GPRBlocks, /*Size=*/4); OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE); // Sets bits according to S_0286E8_WAVESIZE_* mask and shift values for the // appropriate generation. if (STM.getGeneration() >= AMDGPUSubtarget::GFX12) { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x3FFFF, /*Shift=*/12), /*Size=*/4); } else if (STM.getGeneration() == AMDGPUSubtarget::GFX11) { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x7FFF, /*Shift=*/12), /*Size=*/4); } else { EmitResolvedOrExpr(SetBits(CurrentProgramInfo.ScratchBlocks, /*Mask=*/0x1FFF, /*Shift=*/12), /*Size=*/4); } } if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS); unsigned ExtraLDSSize = STM.getGeneration() >= AMDGPUSubtarget::GFX11 ? divideCeil(CurrentProgramInfo.LDSBlocks, 2) : CurrentProgramInfo.LDSBlocks; OutStreamer->emitInt32(S_00B02C_EXTRA_LDS_SIZE(ExtraLDSSize)); OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA); OutStreamer->emitInt32(MFI->getPSInputEnable()); OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR); OutStreamer->emitInt32(MFI->getPSInputAddr()); } OutStreamer->emitInt32(R_SPILLED_SGPRS); OutStreamer->emitInt32(MFI->getNumSpilledSGPRs()); OutStreamer->emitInt32(R_SPILLED_VGPRS); OutStreamer->emitInt32(MFI->getNumSpilledVGPRs()); } // Helper function to add common PAL Metadata 3.0+ static void EmitPALMetadataCommon(AMDGPUPALMetadata *MD, const SIProgramInfo &CurrentProgramInfo, CallingConv::ID CC, const GCNSubtarget &ST) { if (ST.hasIEEEMode()) MD->setHwStage(CC, ".ieee_mode", (bool)CurrentProgramInfo.IEEEMode); MD->setHwStage(CC, ".wgp_mode", (bool)CurrentProgramInfo.WgpMode); MD->setHwStage(CC, ".mem_ordered", (bool)CurrentProgramInfo.MemOrdered); if (AMDGPU::isCompute(CC)) { MD->setHwStage(CC, ".trap_present", (bool)CurrentProgramInfo.TrapHandlerEnable); MD->setHwStage(CC, ".excp_en", CurrentProgramInfo.EXCPEnable); } MD->setHwStage(CC, ".lds_size", (unsigned)(CurrentProgramInfo.LdsSize * getLdsDwGranularity(ST) * sizeof(uint32_t))); } // This is the equivalent of EmitProgramInfoSI above, but for when the OS type // is AMDPAL. It stores each compute/SPI register setting and other PAL // metadata items into the PALMD::Metadata, combining with any provided by the // frontend as LLVM metadata. Once all functions are written, the PAL metadata // is then written as a single block in the .note section. void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SIMachineFunctionInfo *MFI = MF.getInfo(); auto CC = MF.getFunction().getCallingConv(); auto MD = getTargetStreamer()->getPALMetadata(); auto &Ctx = MF.getContext(); MD->setEntryPoint(CC, MF.getFunction().getName()); MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU, Ctx); // Only set AGPRs for supported devices const GCNSubtarget &STM = MF.getSubtarget(); if (STM.hasMAIInsts()) { MD->setNumUsedAgprs(CC, CurrentProgramInfo.NumAccVGPR); } MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU, Ctx); if (MD->getPALMajorVersion() < 3) { MD->setRsrc1(CC, CurrentProgramInfo.getPGMRSrc1(CC, STM, Ctx), Ctx); if (AMDGPU::isCompute(CC)) { MD->setRsrc2(CC, CurrentProgramInfo.getComputePGMRSrc2(Ctx), Ctx); } else { const MCExpr *HasScratchBlocks = MCBinaryExpr::createGT(CurrentProgramInfo.ScratchBlocks, MCConstantExpr::create(0, Ctx), Ctx); auto [Shift, Mask] = getShiftMask(C_00B84C_SCRATCH_EN); MD->setRsrc2(CC, maskShiftSet(HasScratchBlocks, Mask, Shift, Ctx), Ctx); } } else { MD->setHwStage(CC, ".debug_mode", (bool)CurrentProgramInfo.DebugMode); MD->setHwStage(CC, ".scratch_en", msgpack::Type::Boolean, CurrentProgramInfo.ScratchEnable); EmitPALMetadataCommon(MD, CurrentProgramInfo, CC, STM); } // ScratchSize is in bytes, 16 aligned. MD->setScratchSize( CC, AMDGPUMCExpr::createAlignTo(CurrentProgramInfo.ScratchSize, MCConstantExpr::create(16, Ctx), Ctx), Ctx); if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { unsigned ExtraLDSSize = STM.getGeneration() >= AMDGPUSubtarget::GFX11 ? divideCeil(CurrentProgramInfo.LDSBlocks, 2) : CurrentProgramInfo.LDSBlocks; if (MD->getPALMajorVersion() < 3) { MD->setRsrc2( CC, MCConstantExpr::create(S_00B02C_EXTRA_LDS_SIZE(ExtraLDSSize), Ctx), Ctx); MD->setSpiPsInputEna(MFI->getPSInputEnable()); MD->setSpiPsInputAddr(MFI->getPSInputAddr()); } else { // Graphics registers const unsigned ExtraLdsDwGranularity = STM.getGeneration() >= AMDGPUSubtarget::GFX11 ? 256 : 128; MD->setGraphicsRegisters( ".ps_extra_lds_size", (unsigned)(ExtraLDSSize * ExtraLdsDwGranularity * sizeof(uint32_t))); // Set PsInputEna and PsInputAddr .spi_ps_input_ena and .spi_ps_input_addr static StringLiteral const PsInputFields[] = { ".persp_sample_ena", ".persp_center_ena", ".persp_centroid_ena", ".persp_pull_model_ena", ".linear_sample_ena", ".linear_center_ena", ".linear_centroid_ena", ".line_stipple_tex_ena", ".pos_x_float_ena", ".pos_y_float_ena", ".pos_z_float_ena", ".pos_w_float_ena", ".front_face_ena", ".ancillary_ena", ".sample_coverage_ena", ".pos_fixed_pt_ena"}; unsigned PSInputEna = MFI->getPSInputEnable(); unsigned PSInputAddr = MFI->getPSInputAddr(); for (auto [Idx, Field] : enumerate(PsInputFields)) { MD->setGraphicsRegisters(".spi_ps_input_ena", Field, (bool)((PSInputEna >> Idx) & 1)); MD->setGraphicsRegisters(".spi_ps_input_addr", Field, (bool)((PSInputAddr >> Idx) & 1)); } } } // For version 3 and above the wave front size is already set in the metadata if (MD->getPALMajorVersion() < 3 && STM.isWave32()) MD->setWave32(MF.getFunction().getCallingConv()); } void AMDGPUAsmPrinter::emitPALFunctionMetadata(const MachineFunction &MF) { auto *MD = getTargetStreamer()->getPALMetadata(); const MachineFrameInfo &MFI = MF.getFrameInfo(); StringRef FnName = MF.getFunction().getName(); MD->setFunctionScratchSize(FnName, MFI.getStackSize()); const GCNSubtarget &ST = MF.getSubtarget(); MCContext &Ctx = MF.getContext(); if (MD->getPALMajorVersion() < 3) { // Set compute registers MD->setRsrc1( CallingConv::AMDGPU_CS, CurrentProgramInfo.getPGMRSrc1(CallingConv::AMDGPU_CS, ST, Ctx), Ctx); MD->setRsrc2(CallingConv::AMDGPU_CS, CurrentProgramInfo.getComputePGMRSrc2(Ctx), Ctx); } else { EmitPALMetadataCommon(MD, CurrentProgramInfo, CallingConv::AMDGPU_CS, ST); } // Set optional info MD->setFunctionLdsSize(FnName, CurrentProgramInfo.LDSSize); MD->setFunctionNumUsedVgprs(FnName, CurrentProgramInfo.NumVGPRsForWavesPerEU); MD->setFunctionNumUsedSgprs(FnName, CurrentProgramInfo.NumSGPRsForWavesPerEU); } // This is supposed to be log2(Size) static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { switch (Size) { case 4: return AMD_ELEMENT_4_BYTES; case 8: return AMD_ELEMENT_8_BYTES; case 16: return AMD_ELEMENT_16_BYTES; default: llvm_unreachable("invalid private_element_size"); } } void AMDGPUAsmPrinter::getAmdKernelCode(AMDGPUMCKernelCodeT &Out, const SIProgramInfo &CurrentProgramInfo, const MachineFunction &MF) const { const Function &F = MF.getFunction(); assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || F.getCallingConv() == CallingConv::SPIR_KERNEL); const SIMachineFunctionInfo *MFI = MF.getInfo(); const GCNSubtarget &STM = MF.getSubtarget(); MCContext &Ctx = MF.getContext(); Out.initDefault(&STM, Ctx, /*InitMCExpr=*/false); Out.compute_pgm_resource1_registers = CurrentProgramInfo.getComputePGMRSrc1(STM, Ctx); Out.compute_pgm_resource2_registers = CurrentProgramInfo.getComputePGMRSrc2(Ctx); Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64; Out.is_dynamic_callstack = CurrentProgramInfo.DynamicCallStack; AMD_HSA_BITS_SET(Out.code_properties, AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, getElementByteSizeValue(STM.getMaxPrivateElementSize(true))); const GCNUserSGPRUsageInfo &UserSGPRInfo = MFI->getUserSGPRInfo(); if (UserSGPRInfo.hasPrivateSegmentBuffer()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (UserSGPRInfo.hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (UserSGPRInfo.hasQueuePtr() && CodeObjectVersion < AMDGPU::AMDHSA_COV5) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; if (UserSGPRInfo.hasKernargSegmentPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; if (UserSGPRInfo.hasDispatchID()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; if (UserSGPRInfo.hasFlatScratchInit()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; if (UserSGPRInfo.hasPrivateSegmentSize()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE; if (UserSGPRInfo.hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (STM.isXNACKEnabled()) Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; Align MaxKernArgAlign; Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; // kernarg_segment_alignment is specified as log of the alignment. // The minimum alignment is 16. // FIXME: The metadata treats the minimum as 4? Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign)); } bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { // First try the generic code, which knows about modifiers like 'c' and 'n'. if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O)) return false; if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'r': break; default: return true; } } // TODO: Should be able to support other operand types like globals. const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isReg()) { AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, *MF->getSubtarget().getRegisterInfo()); return false; } if (MO.isImm()) { int64_t Val = MO.getImm(); if (AMDGPU::isInlinableIntLiteral(Val)) { O << Val; } else if (isUInt<16>(Val)) { O << format("0x%" PRIx16, static_cast(Val)); } else if (isUInt<32>(Val)) { O << format("0x%" PRIx32, static_cast(Val)); } else { O << format("0x%" PRIx64, static_cast(Val)); } return false; } return true; } void AMDGPUAsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AsmPrinter::getAnalysisUsage(AU); } void AMDGPUAsmPrinter::emitResourceUsageRemarks( const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo, bool isModuleEntryFunction, bool hasMAIInsts) { if (!ORE) return; const char *Name = "kernel-resource-usage"; const char *Indent = " "; // If the remark is not specifically enabled, do not output to yaml LLVMContext &Ctx = MF.getFunction().getContext(); if (!Ctx.getDiagHandlerPtr()->isAnalysisRemarkEnabled(Name)) return; // Currently non-kernel functions have no resources to emit. if (!isEntryFunctionCC(MF.getFunction().getCallingConv())) return; auto EmitResourceUsageRemark = [&](StringRef RemarkName, StringRef RemarkLabel, auto Argument) { // Add an indent for every line besides the line with the kernel name. This // makes it easier to tell which resource usage go with which kernel since // the kernel name will always be displayed first. std::string LabelStr = RemarkLabel.str() + ": "; if (RemarkName != "FunctionName") LabelStr = Indent + LabelStr; ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(Name, RemarkName, MF.getFunction().getSubprogram(), &MF.front()) << LabelStr << ore::NV(RemarkName, Argument); }); }; // FIXME: Formatting here is pretty nasty because clang does not accept // newlines from diagnostics. This forces us to emit multiple diagnostic // remarks to simulate newlines. If and when clang does accept newlines, this // formatting should be aggregated into one remark with newlines to avoid // printing multiple diagnostic location and diag opts. EmitResourceUsageRemark("FunctionName", "Function Name", MF.getFunction().getName()); EmitResourceUsageRemark("NumSGPR", "SGPRs", getMCExprStr(CurrentProgramInfo.NumSGPR)); EmitResourceUsageRemark("NumVGPR", "VGPRs", getMCExprStr(CurrentProgramInfo.NumArchVGPR)); if (hasMAIInsts) { EmitResourceUsageRemark("NumAGPR", "AGPRs", getMCExprStr(CurrentProgramInfo.NumAccVGPR)); } EmitResourceUsageRemark("ScratchSize", "ScratchSize [bytes/lane]", getMCExprStr(CurrentProgramInfo.ScratchSize)); int64_t DynStack; bool DynStackEvaluatable = CurrentProgramInfo.DynamicCallStack->evaluateAsAbsolute(DynStack); StringRef DynamicStackStr = DynStackEvaluatable && DynStack ? "True" : "False"; EmitResourceUsageRemark("DynamicStack", "Dynamic Stack", DynamicStackStr); EmitResourceUsageRemark("Occupancy", "Occupancy [waves/SIMD]", getMCExprStr(CurrentProgramInfo.Occupancy)); EmitResourceUsageRemark("SGPRSpill", "SGPRs Spill", CurrentProgramInfo.SGPRSpill); EmitResourceUsageRemark("VGPRSpill", "VGPRs Spill", CurrentProgramInfo.VGPRSpill); if (isModuleEntryFunction) EmitResourceUsageRemark("BytesLDS", "LDS Size [bytes/block]", CurrentProgramInfo.LDSSize); }