//===- Win32/Process.cpp - Win32 Process Implementation ------- -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides the Win32 specific implementation of the Process class. // //===----------------------------------------------------------------------===// #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/WindowsError.h" #include #include // The Windows.h header must be after LLVM and standard headers. #include "llvm/Support/Windows/WindowsSupport.h" #include #include #include #include #if !defined(__MINGW32__) #pragma comment(lib, "psapi.lib") #pragma comment(lib, "shell32.lib") #endif //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only Win32 specific code //=== and must not be UNIX code //===----------------------------------------------------------------------===// #ifdef __MINGW32__ // This ban should be lifted when MinGW 1.0+ has defined this value. #define _HEAPOK (-2) #endif using namespace llvm; Process::Pid Process::getProcessId() { static_assert(sizeof(Pid) >= sizeof(DWORD), "Process::Pid should be big enough to store DWORD"); return Pid(::GetCurrentProcessId()); } // This function retrieves the page size using GetNativeSystemInfo() and is // present solely so it can be called once to initialize the self_process member // below. static unsigned computePageSize() { // GetNativeSystemInfo() provides the physical page size which may differ // from GetSystemInfo() in 32-bit applications running under WOW64. SYSTEM_INFO info; GetNativeSystemInfo(&info); // FIXME: FileOffset in MapViewOfFile() should be aligned to not dwPageSize, // but dwAllocationGranularity. return static_cast(info.dwPageSize); } Expected Process::getPageSize() { static unsigned Ret = computePageSize(); return Ret; } size_t Process::GetMallocUsage() { _HEAPINFO hinfo; hinfo._pentry = NULL; size_t size = 0; while (_heapwalk(&hinfo) == _HEAPOK) size += hinfo._size; return size; } void Process::GetTimeUsage(TimePoint<> &elapsed, std::chrono::nanoseconds &user_time, std::chrono::nanoseconds &sys_time) { elapsed = std::chrono::system_clock::now(); ; FILETIME ProcCreate, ProcExit, KernelTime, UserTime; if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime, &UserTime) == 0) return; user_time = toDuration(UserTime); sys_time = toDuration(KernelTime); } // Some LLVM programs such as bugpoint produce core files as a normal part of // their operation. To prevent the disk from filling up, this configuration // item does what's necessary to prevent their generation. void Process::PreventCoreFiles() { // Windows does have the concept of core files, called minidumps. However, // disabling minidumps for a particular application extends past the lifetime // of that application, which is the incorrect behavior for this API. // Additionally, the APIs require elevated privileges to disable and re- // enable minidumps, which makes this untenable. For more information, see // WerAddExcludedApplication and WerRemoveExcludedApplication (Vista and // later). // // Windows also has modal pop-up message boxes. As this method is used by // bugpoint, preventing these pop-ups is additionally important. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); coreFilesPrevented = true; } /// Returns the environment variable \arg Name's value as a string encoded in /// UTF-8. \arg Name is assumed to be in UTF-8 encoding. std::optional Process::GetEnv(StringRef Name) { // Convert the argument to UTF-16 to pass it to _wgetenv(). SmallVector NameUTF16; if (windows::UTF8ToUTF16(Name, NameUTF16)) return std::nullopt; // Environment variable can be encoded in non-UTF8 encoding, and there's no // way to know what the encoding is. The only reliable way to look up // multibyte environment variable is to use GetEnvironmentVariableW(). SmallVector Buf; size_t Size = MAX_PATH; do { Buf.resize_for_overwrite(Size); SetLastError(NO_ERROR); Size = GetEnvironmentVariableW(NameUTF16.data(), Buf.data(), Buf.size()); if (Size == 0 && GetLastError() == ERROR_ENVVAR_NOT_FOUND) return std::nullopt; // Try again with larger buffer. } while (Size > Buf.size()); Buf.truncate(Size); // Convert the result from UTF-16 to UTF-8. SmallVector Res; if (windows::UTF16ToUTF8(Buf.data(), Size, Res)) return std::nullopt; return std::string(Res.data()); } /// Perform wildcard expansion of Arg, or just push it into Args if it doesn't /// have wildcards or doesn't match any files. static std::error_code WildcardExpand(StringRef Arg, SmallVectorImpl &Args, StringSaver &Saver) { std::error_code EC; // Don't expand Arg if it does not contain any wildcard characters. This is // the common case. Also don't wildcard expand /?. Always treat it as an // option. Paths that start with \\?\ are absolute paths, and aren't // expected to be used with wildcard expressions. if (Arg.find_first_of("*?") == StringRef::npos || Arg == "/?" || Arg == "-?" || Arg.starts_with("\\\\?\\")) { Args.push_back(Arg.data()); return EC; } // Convert back to UTF-16 so we can call FindFirstFileW. SmallVector ArgW; EC = windows::UTF8ToUTF16(Arg, ArgW); if (EC) return EC; // Search for matching files. // FIXME: This assumes the wildcard is only in the file name and not in the // directory portion of the file path. For example, it doesn't handle // "*\foo.c" nor "s?c\bar.cpp". WIN32_FIND_DATAW FileData; HANDLE FindHandle = FindFirstFileW(ArgW.data(), &FileData); if (FindHandle == INVALID_HANDLE_VALUE) { Args.push_back(Arg.data()); return EC; } // Extract any directory part of the argument. SmallString Dir = Arg; sys::path::remove_filename(Dir); const int DirSize = Dir.size(); do { SmallString FileName; EC = windows::UTF16ToUTF8(FileData.cFileName, wcslen(FileData.cFileName), FileName); if (EC) break; // Append FileName to Dir, and remove it afterwards. llvm::sys::path::append(Dir, FileName); Args.push_back(Saver.save(Dir.str()).data()); Dir.resize(DirSize); } while (FindNextFileW(FindHandle, &FileData)); FindClose(FindHandle); return EC; } static std::error_code GetExecutableName(SmallVectorImpl &Filename) { // The first argument may contain just the name of the executable (e.g., // "clang") rather than the full path, so swap it with the full path. wchar_t ModuleName[MAX_PATH]; size_t Length = ::GetModuleFileNameW(NULL, ModuleName, MAX_PATH); if (Length == 0 || Length == MAX_PATH) { return mapWindowsError(GetLastError()); } // If the first argument is a shortened (8.3) name (which is possible even // if we got the module name), the driver will have trouble distinguishing it // (e.g., clang.exe v. clang++.exe), so expand it now. Length = GetLongPathNameW(ModuleName, ModuleName, MAX_PATH); if (Length == 0) return mapWindowsError(GetLastError()); if (Length > MAX_PATH) { // We're not going to try to deal with paths longer than MAX_PATH, so we'll // treat this as an error. GetLastError() returns ERROR_SUCCESS, which // isn't useful, so we'll hardcode an appropriate error value. return mapWindowsError(ERROR_INSUFFICIENT_BUFFER); } std::error_code EC = windows::UTF16ToUTF8(ModuleName, Length, Filename); if (EC) return EC; // Make a copy of the filename since assign makes the StringRef invalid. std::string Base = sys::path::filename(Filename.data()).str(); Filename.assign(Base.begin(), Base.end()); return std::error_code(); } std::error_code windows::GetCommandLineArguments(SmallVectorImpl &Args, BumpPtrAllocator &Alloc) { const wchar_t *CmdW = GetCommandLineW(); assert(CmdW); std::error_code EC; SmallString Cmd; EC = windows::UTF16ToUTF8(CmdW, wcslen(CmdW), Cmd); if (EC) return EC; SmallVector TmpArgs; StringSaver Saver(Alloc); cl::TokenizeWindowsCommandLineFull(Cmd, Saver, TmpArgs, /*MarkEOLs=*/false); for (const char *Arg : TmpArgs) { EC = WildcardExpand(Arg, Args, Saver); if (EC) return EC; } if (Args.size() == 0) return std::make_error_code(std::errc::invalid_argument); SmallVector Arg0(Args[0], Args[0] + strlen(Args[0])); SmallVector Filename; sys::path::remove_filename(Arg0); EC = GetExecutableName(Filename); if (EC) return EC; sys::path::make_preferred(Arg0); sys::path::append(Arg0, Filename); Args[0] = Saver.save(Arg0).data(); return std::error_code(); } std::error_code Process::FixupStandardFileDescriptors() { return std::error_code(); } std::error_code Process::SafelyCloseFileDescriptor(int FD) { if (::close(FD) < 0) return errnoAsErrorCode(); return std::error_code(); } bool Process::StandardInIsUserInput() { return FileDescriptorIsDisplayed(0); } bool Process::StandardOutIsDisplayed() { return FileDescriptorIsDisplayed(1); } bool Process::StandardErrIsDisplayed() { return FileDescriptorIsDisplayed(2); } bool Process::FileDescriptorIsDisplayed(int fd) { DWORD Mode; // Unused return (GetConsoleMode((HANDLE)_get_osfhandle(fd), &Mode) != 0); } unsigned Process::StandardOutColumns() { unsigned Columns = 0; CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi)) Columns = csbi.dwSize.X; return Columns; } unsigned Process::StandardErrColumns() { unsigned Columns = 0; CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_ERROR_HANDLE), &csbi)) Columns = csbi.dwSize.X; return Columns; } // The terminal always has colors. bool Process::FileDescriptorHasColors(int fd) { return FileDescriptorIsDisplayed(fd); } bool Process::StandardOutHasColors() { return FileDescriptorHasColors(1); } bool Process::StandardErrHasColors() { return FileDescriptorHasColors(2); } static bool UseANSI = false; void Process::UseANSIEscapeCodes(bool enable) { #if defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING) if (enable) { HANDLE Console = GetStdHandle(STD_OUTPUT_HANDLE); DWORD Mode; GetConsoleMode(Console, &Mode); Mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING; SetConsoleMode(Console, Mode); } #endif UseANSI = enable; } namespace { class DefaultColors { private: WORD defaultColor; public: DefaultColors() : defaultColor(GetCurrentColor()) {} static unsigned GetCurrentColor() { CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi)) return csbi.wAttributes; return 0; } WORD operator()() const { return defaultColor; } }; DefaultColors defaultColors; WORD fg_color(WORD color) { return color & (FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_INTENSITY | FOREGROUND_RED); } WORD bg_color(WORD color) { return color & (BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_INTENSITY | BACKGROUND_RED); } } // namespace bool Process::ColorNeedsFlush() { return !UseANSI; } const char *Process::OutputBold(bool bg) { if (UseANSI) return "\033[1m"; WORD colors = DefaultColors::GetCurrentColor(); if (bg) colors |= BACKGROUND_INTENSITY; else colors |= FOREGROUND_INTENSITY; SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors); return 0; } const char *Process::OutputColor(char code, bool bold, bool bg) { if (UseANSI) return colorcodes[bg ? 1 : 0][bold ? 1 : 0][code & 15]; WORD current = DefaultColors::GetCurrentColor(); WORD colors; if (bg) { colors = ((code & 1) ? BACKGROUND_RED : 0) | ((code & 2) ? BACKGROUND_GREEN : 0) | ((code & 4) ? BACKGROUND_BLUE : 0); if (bold) colors |= BACKGROUND_INTENSITY; colors |= fg_color(current); } else { colors = ((code & 1) ? FOREGROUND_RED : 0) | ((code & 2) ? FOREGROUND_GREEN : 0) | ((code & 4) ? FOREGROUND_BLUE : 0); if (bold) colors |= FOREGROUND_INTENSITY; colors |= bg_color(current); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors); return 0; } static WORD GetConsoleTextAttribute(HANDLE hConsoleOutput) { CONSOLE_SCREEN_BUFFER_INFO info; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info); return info.wAttributes; } const char *Process::OutputReverse() { if (UseANSI) return "\033[7m"; const WORD attributes = GetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE)); const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY; const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_INTENSITY; const WORD color_mask = foreground_mask | background_mask; WORD new_attributes = ((attributes & FOREGROUND_BLUE) ? BACKGROUND_BLUE : 0) | ((attributes & FOREGROUND_GREEN) ? BACKGROUND_GREEN : 0) | ((attributes & FOREGROUND_RED) ? BACKGROUND_RED : 0) | ((attributes & FOREGROUND_INTENSITY) ? BACKGROUND_INTENSITY : 0) | ((attributes & BACKGROUND_BLUE) ? FOREGROUND_BLUE : 0) | ((attributes & BACKGROUND_GREEN) ? FOREGROUND_GREEN : 0) | ((attributes & BACKGROUND_RED) ? FOREGROUND_RED : 0) | ((attributes & BACKGROUND_INTENSITY) ? FOREGROUND_INTENSITY : 0) | 0; new_attributes = (attributes & ~color_mask) | (new_attributes & color_mask); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), new_attributes); return 0; } const char *Process::ResetColor() { if (UseANSI) return "\033[0m"; SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), defaultColors()); return 0; } static unsigned GetRandomNumberSeed() { // Generate a random number seed from the millisecond-resolution Windows // system clock and the current process id. FILETIME Time; GetSystemTimeAsFileTime(&Time); DWORD Pid = GetCurrentProcessId(); return hash_combine(Time.dwHighDateTime, Time.dwLowDateTime, Pid); } static unsigned GetPseudoRandomNumber() { // Arrange to call srand once when this function is first used, and // otherwise (if GetRandomNumber always succeeds in using // CryptGenRandom) don't bother at all. static int x = (static_cast(::srand(GetRandomNumberSeed())), 0); (void)x; return ::rand(); } unsigned Process::GetRandomNumber() { // Try to use CryptGenRandom. HCRYPTPROV HCPC; if (::CryptAcquireContextW(&HCPC, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { ScopedCryptContext CryptoProvider(HCPC); unsigned Ret; if (::CryptGenRandom(CryptoProvider, sizeof(Ret), reinterpret_cast(&Ret))) return Ret; } // If that fails, fall back to pseudo-random numbers. return GetPseudoRandomNumber(); } typedef NTSTATUS(WINAPI *RtlGetVersionPtr)(PRTL_OSVERSIONINFOW); #define STATUS_SUCCESS ((NTSTATUS)0x00000000L) static RTL_OSVERSIONINFOEXW GetWindowsVer() { auto getVer = []() -> RTL_OSVERSIONINFOEXW { HMODULE hMod = ::GetModuleHandleW(L"ntdll.dll"); assert(hMod); auto getVer = (RtlGetVersionPtr)(void *)::GetProcAddress(hMod, "RtlGetVersion"); assert(getVer); RTL_OSVERSIONINFOEXW info{}; info.dwOSVersionInfoSize = sizeof(info); NTSTATUS r = getVer((PRTL_OSVERSIONINFOW)&info); (void)r; assert(r == STATUS_SUCCESS); return info; }; static RTL_OSVERSIONINFOEXW info = getVer(); return info; } llvm::VersionTuple llvm::GetWindowsOSVersion() { RTL_OSVERSIONINFOEXW info = GetWindowsVer(); return llvm::VersionTuple(info.dwMajorVersion, info.dwMinorVersion, 0, info.dwBuildNumber); } bool llvm::RunningWindows8OrGreater() { // Windows 8 is version 6.2, service pack 0. return GetWindowsOSVersion() >= llvm::VersionTuple(6, 2, 0, 0); } bool llvm::RunningWindows11OrGreater() { RTL_OSVERSIONINFOEXW info = GetWindowsVer(); auto ver = llvm::VersionTuple(info.dwMajorVersion, info.dwMinorVersion, 0, info.dwBuildNumber); // Windows Server 2022 if (info.wProductType == VER_NT_SERVER) return ver >= llvm::VersionTuple(10, 0, 0, 20348); // Windows 11 return ver >= llvm::VersionTuple(10, 0, 0, 22000); } [[noreturn]] void Process::ExitNoCleanup(int RetCode) { TerminateProcess(GetCurrentProcess(), RetCode); llvm_unreachable("TerminateProcess doesn't return"); }