//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for writing profiling data for clang's // instrumentation based PGO and coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProfWriter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/ProfileData/MemProf.h" #include "llvm/ProfileData/ProfileCommon.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/OnDiskHashTable.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; // A struct to define how the data stream should be patched. For Indexed // profiling, only uint64_t data type is needed. struct PatchItem { uint64_t Pos; // Where to patch. ArrayRef D; // An array of source data. }; namespace llvm { // A wrapper class to abstract writer stream with support of bytes // back patching. class ProfOStream { public: ProfOStream(raw_fd_ostream &FD) : IsFDOStream(true), OS(FD), LE(FD, llvm::endianness::little) {} ProfOStream(raw_string_ostream &STR) : IsFDOStream(false), OS(STR), LE(STR, llvm::endianness::little) {} [[nodiscard]] uint64_t tell() const { return OS.tell(); } void write(uint64_t V) { LE.write(V); } void write32(uint32_t V) { LE.write(V); } void writeByte(uint8_t V) { LE.write(V); } // \c patch can only be called when all data is written and flushed. // For raw_string_ostream, the patch is done on the target string // directly and it won't be reflected in the stream's internal buffer. void patch(ArrayRef P) { using namespace support; if (IsFDOStream) { raw_fd_ostream &FDOStream = static_cast(OS); const uint64_t LastPos = FDOStream.tell(); for (const auto &K : P) { FDOStream.seek(K.Pos); for (uint64_t Elem : K.D) write(Elem); } // Reset the stream to the last position after patching so that users // don't accidentally overwrite data. This makes it consistent with // the string stream below which replaces the data directly. FDOStream.seek(LastPos); } else { raw_string_ostream &SOStream = static_cast(OS); std::string &Data = SOStream.str(); // with flush for (const auto &K : P) { for (int I = 0, E = K.D.size(); I != E; I++) { uint64_t Bytes = endian::byte_swap(K.D[I]); Data.replace(K.Pos + I * sizeof(uint64_t), sizeof(uint64_t), (const char *)&Bytes, sizeof(uint64_t)); } } } } // If \c OS is an instance of \c raw_fd_ostream, this field will be // true. Otherwise, \c OS will be an raw_string_ostream. bool IsFDOStream; raw_ostream &OS; support::endian::Writer LE; }; class InstrProfRecordWriterTrait { public: using key_type = StringRef; using key_type_ref = StringRef; using data_type = const InstrProfWriter::ProfilingData *const; using data_type_ref = const InstrProfWriter::ProfilingData *const; using hash_value_type = uint64_t; using offset_type = uint64_t; llvm::endianness ValueProfDataEndianness = llvm::endianness::little; InstrProfSummaryBuilder *SummaryBuilder; InstrProfSummaryBuilder *CSSummaryBuilder; InstrProfRecordWriterTrait() = default; static hash_value_type ComputeHash(key_type_ref K) { return IndexedInstrProf::ComputeHash(K); } static std::pair EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { using namespace support; endian::Writer LE(Out, llvm::endianness::little); offset_type N = K.size(); LE.write(N); offset_type M = 0; for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; M += sizeof(uint64_t); // The function hash M += sizeof(uint64_t); // The size of the Counts vector M += ProfRecord.Counts.size() * sizeof(uint64_t); M += sizeof(uint64_t); // The size of the Bitmap vector M += ProfRecord.BitmapBytes.size() * sizeof(uint64_t); // Value data M += ValueProfData::getSize(ProfileData.second); } LE.write(M); return std::make_pair(N, M); } void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) { Out.write(K.data(), N); } void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { using namespace support; endian::Writer LE(Out, llvm::endianness::little); for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first)) CSSummaryBuilder->addRecord(ProfRecord); else SummaryBuilder->addRecord(ProfRecord); LE.write(ProfileData.first); // Function hash LE.write(ProfRecord.Counts.size()); for (uint64_t I : ProfRecord.Counts) LE.write(I); LE.write(ProfRecord.BitmapBytes.size()); for (uint64_t I : ProfRecord.BitmapBytes) LE.write(I); // Write value data std::unique_ptr VDataPtr = ValueProfData::serializeFrom(ProfileData.second); uint32_t S = VDataPtr->getSize(); VDataPtr->swapBytesFromHost(ValueProfDataEndianness); Out.write((const char *)VDataPtr.get(), S); } } }; } // end namespace llvm InstrProfWriter::InstrProfWriter( bool Sparse, uint64_t TemporalProfTraceReservoirSize, uint64_t MaxTemporalProfTraceLength, bool WritePrevVersion, memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema) : Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength), TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize), InfoObj(new InstrProfRecordWriterTrait()), WritePrevVersion(WritePrevVersion), MemProfVersionRequested(MemProfVersionRequested), MemProfFullSchema(MemProfFullSchema) {} InstrProfWriter::~InstrProfWriter() { delete InfoObj; } // Internal interface for testing purpose only. void InstrProfWriter::setValueProfDataEndianness(llvm::endianness Endianness) { InfoObj->ValueProfDataEndianness = Endianness; } void InstrProfWriter::setOutputSparse(bool Sparse) { this->Sparse = Sparse; } void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight, function_ref Warn) { auto Name = I.Name; auto Hash = I.Hash; addRecord(Name, Hash, std::move(I), Weight, Warn); } void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other, OverlapStats &Overlap, OverlapStats &FuncLevelOverlap, const OverlapFuncFilters &FuncFilter) { auto Name = Other.Name; auto Hash = Other.Hash; Other.accumulateCounts(FuncLevelOverlap.Test); if (!FunctionData.contains(Name)) { Overlap.addOneUnique(FuncLevelOverlap.Test); return; } if (FuncLevelOverlap.Test.CountSum < 1.0f) { Overlap.Overlap.NumEntries += 1; return; } auto &ProfileDataMap = FunctionData[Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); if (NewFunc) { Overlap.addOneMismatch(FuncLevelOverlap.Test); return; } InstrProfRecord &Dest = Where->second; uint64_t ValueCutoff = FuncFilter.ValueCutoff; if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter)) ValueCutoff = 0; Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff); } void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash, InstrProfRecord &&I, uint64_t Weight, function_ref Warn) { auto &ProfileDataMap = FunctionData[Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); InstrProfRecord &Dest = Where->second; auto MapWarn = [&](instrprof_error E) { Warn(make_error(E)); }; if (NewFunc) { // We've never seen a function with this name and hash, add it. Dest = std::move(I); if (Weight > 1) Dest.scale(Weight, 1, MapWarn); } else { // We're updating a function we've seen before. Dest.merge(I, Weight, MapWarn); } Dest.sortValueData(); } void InstrProfWriter::addMemProfRecord( const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) { auto [Iter, Inserted] = MemProfData.Records.insert({Id, Record}); // If we inserted a new record then we are done. if (Inserted) { return; } memprof::IndexedMemProfRecord &Existing = Iter->second; Existing.merge(Record); } bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id, const memprof::Frame &Frame, function_ref Warn) { auto [Iter, Inserted] = MemProfData.Frames.insert({Id, Frame}); // If a mapping already exists for the current frame id and it does not // match the new mapping provided then reset the existing contents and bail // out. We don't support the merging of memprof data whose Frame -> Id // mapping across profiles is inconsistent. if (!Inserted && Iter->second != Frame) { Warn(make_error(instrprof_error::malformed, "frame to id mapping mismatch")); return false; } return true; } bool InstrProfWriter::addMemProfCallStack( const memprof::CallStackId CSId, const llvm::SmallVector &CallStack, function_ref Warn) { auto [Iter, Inserted] = MemProfData.CallStacks.insert({CSId, CallStack}); // If a mapping already exists for the current call stack id and it does not // match the new mapping provided then reset the existing contents and bail // out. We don't support the merging of memprof data whose CallStack -> Id // mapping across profiles is inconsistent. if (!Inserted && Iter->second != CallStack) { Warn(make_error(instrprof_error::malformed, "call stack to id mapping mismatch")); return false; } return true; } void InstrProfWriter::addBinaryIds(ArrayRef BIs) { llvm::append_range(BinaryIds, BIs); } void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) { assert(Trace.FunctionNameRefs.size() <= MaxTemporalProfTraceLength); assert(!Trace.FunctionNameRefs.empty()); if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) { // Simply append the trace if we have not yet hit our reservoir size limit. TemporalProfTraces.push_back(std::move(Trace)); } else { // Otherwise, replace a random trace in the stream. std::uniform_int_distribution Distribution( 0, TemporalProfTraceStreamSize); uint64_t RandomIndex = Distribution(RNG); if (RandomIndex < TemporalProfTraces.size()) TemporalProfTraces[RandomIndex] = std::move(Trace); } ++TemporalProfTraceStreamSize; } void InstrProfWriter::addTemporalProfileTraces( SmallVectorImpl &SrcTraces, uint64_t SrcStreamSize) { for (auto &Trace : SrcTraces) if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength) Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength); llvm::erase_if(SrcTraces, [](auto &T) { return T.FunctionNameRefs.empty(); }); // Assume that the source has the same reservoir size as the destination to // avoid needing to record it in the indexed profile format. bool IsDestSampled = (TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize); bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize); if (!IsDestSampled && IsSrcSampled) { // If one of the traces are sampled, ensure that it belongs to Dest. std::swap(TemporalProfTraces, SrcTraces); std::swap(TemporalProfTraceStreamSize, SrcStreamSize); std::swap(IsDestSampled, IsSrcSampled); } if (!IsSrcSampled) { // If the source stream is not sampled, we add each source trace normally. for (auto &Trace : SrcTraces) addTemporalProfileTrace(std::move(Trace)); return; } // Otherwise, we find the traces that would have been removed if we added // the whole source stream. SmallSetVector IndicesToReplace; for (uint64_t I = 0; I < SrcStreamSize; I++) { std::uniform_int_distribution Distribution( 0, TemporalProfTraceStreamSize); uint64_t RandomIndex = Distribution(RNG); if (RandomIndex < TemporalProfTraces.size()) IndicesToReplace.insert(RandomIndex); ++TemporalProfTraceStreamSize; } // Then we insert a random sample of the source traces. llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG); for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces)) TemporalProfTraces[Index] = std::move(Trace); } void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW, function_ref Warn) { for (auto &I : IPW.FunctionData) for (auto &Func : I.getValue()) addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn); BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size()); for (auto &I : IPW.BinaryIds) addBinaryIds(I); addTemporalProfileTraces(IPW.TemporalProfTraces, IPW.TemporalProfTraceStreamSize); MemProfData.Frames.reserve(IPW.MemProfData.Frames.size()); for (auto &[FrameId, Frame] : IPW.MemProfData.Frames) { // If we weren't able to add the frame mappings then it doesn't make sense // to try to merge the records from this profile. if (!addMemProfFrame(FrameId, Frame, Warn)) return; } MemProfData.CallStacks.reserve(IPW.MemProfData.CallStacks.size()); for (auto &[CSId, CallStack] : IPW.MemProfData.CallStacks) { if (!addMemProfCallStack(CSId, CallStack, Warn)) return; } MemProfData.Records.reserve(IPW.MemProfData.Records.size()); for (auto &[GUID, Record] : IPW.MemProfData.Records) { addMemProfRecord(GUID, Record); } } bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) { if (!Sparse) return true; for (const auto &Func : PD) { const InstrProfRecord &IPR = Func.second; if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; })) return true; if (llvm::any_of(IPR.BitmapBytes, [](uint8_t Byte) { return Byte > 0; })) return true; } return false; } static void setSummary(IndexedInstrProf::Summary *TheSummary, ProfileSummary &PS) { using namespace IndexedInstrProf; const std::vector &Res = PS.getDetailedSummary(); TheSummary->NumSummaryFields = Summary::NumKinds; TheSummary->NumCutoffEntries = Res.size(); TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount()); TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount()); TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount()); TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount()); TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts()); TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions()); for (unsigned I = 0; I < Res.size(); I++) TheSummary->setEntry(I, Res[I]); } // Serialize Schema. static void writeMemProfSchema(ProfOStream &OS, const memprof::MemProfSchema &Schema) { OS.write(static_cast(Schema.size())); for (const auto Id : Schema) OS.write(static_cast(Id)); } // Serialize MemProfRecordData. Return RecordTableOffset. static uint64_t writeMemProfRecords( ProfOStream &OS, llvm::MapVector &MemProfRecordData, memprof::MemProfSchema *Schema, memprof::IndexedVersion Version, llvm::DenseMap *MemProfCallStackIndexes = nullptr) { memprof::RecordWriterTrait RecordWriter(Schema, Version, MemProfCallStackIndexes); OnDiskChainedHashTableGenerator RecordTableGenerator; for (auto &[GUID, Record] : MemProfRecordData) { // Insert the key (func hash) and value (memprof record). RecordTableGenerator.insert(GUID, Record, RecordWriter); } // Release the memory of this MapVector as it is no longer needed. MemProfRecordData.clear(); // The call to Emit invokes RecordWriterTrait::EmitData which destructs // the memprof record copies owned by the RecordTableGenerator. This works // because the RecordTableGenerator is not used after this point. return RecordTableGenerator.Emit(OS.OS, RecordWriter); } // Serialize MemProfFrameData. Return FrameTableOffset. static uint64_t writeMemProfFrames( ProfOStream &OS, llvm::MapVector &MemProfFrameData) { OnDiskChainedHashTableGenerator FrameTableGenerator; for (auto &[FrameId, Frame] : MemProfFrameData) { // Insert the key (frame id) and value (frame contents). FrameTableGenerator.insert(FrameId, Frame); } // Release the memory of this MapVector as it is no longer needed. MemProfFrameData.clear(); return FrameTableGenerator.Emit(OS.OS); } // Serialize MemProfFrameData. Return the mapping from FrameIds to their // indexes within the frame array. static llvm::DenseMap writeMemProfFrameArray( ProfOStream &OS, llvm::MapVector &MemProfFrameData, llvm::DenseMap &FrameHistogram) { // Mappings from FrameIds to array indexes. llvm::DenseMap MemProfFrameIndexes; // Compute the order in which we serialize Frames. The order does not matter // in terms of correctness, but we still compute it for deserialization // performance. Specifically, if we serialize frequently used Frames one // after another, we have better cache utilization. For two Frames that // appear equally frequently, we break a tie by serializing the one that tends // to appear earlier in call stacks. We implement the tie-breaking mechanism // by computing the sum of indexes within call stacks for each Frame. If we // still have a tie, then we just resort to compare two FrameIds, which is // just for stability of output. std::vector> FrameIdOrder; FrameIdOrder.reserve(MemProfFrameData.size()); for (const auto &[Id, Frame] : MemProfFrameData) FrameIdOrder.emplace_back(Id, &Frame); assert(MemProfFrameData.size() == FrameIdOrder.size()); llvm::sort(FrameIdOrder, [&](const std::pair &L, const std::pair &R) { const auto &SL = FrameHistogram[L.first]; const auto &SR = FrameHistogram[R.first]; // Popular FrameIds should come first. if (SL.Count != SR.Count) return SL.Count > SR.Count; // If they are equally popular, then the one that tends to appear // earlier in call stacks should come first. if (SL.PositionSum != SR.PositionSum) return SL.PositionSum < SR.PositionSum; // Compare their FrameIds for sort stability. return L.first < R.first; }); // Serialize all frames while creating mappings from linear IDs to FrameIds. uint64_t Index = 0; MemProfFrameIndexes.reserve(FrameIdOrder.size()); for (const auto &[Id, F] : FrameIdOrder) { F->serialize(OS.OS); MemProfFrameIndexes.insert({Id, Index}); ++Index; } assert(MemProfFrameData.size() == Index); assert(MemProfFrameData.size() == MemProfFrameIndexes.size()); // Release the memory of this MapVector as it is no longer needed. MemProfFrameData.clear(); return MemProfFrameIndexes; } static uint64_t writeMemProfCallStacks( ProfOStream &OS, llvm::MapVector> &MemProfCallStackData) { OnDiskChainedHashTableGenerator CallStackTableGenerator; for (auto &[CSId, CallStack] : MemProfCallStackData) CallStackTableGenerator.insert(CSId, CallStack); // Release the memory of this vector as it is no longer needed. MemProfCallStackData.clear(); return CallStackTableGenerator.Emit(OS.OS); } static llvm::DenseMap writeMemProfCallStackArray( ProfOStream &OS, llvm::MapVector> &MemProfCallStackData, llvm::DenseMap &MemProfFrameIndexes, llvm::DenseMap &FrameHistogram) { llvm::DenseMap MemProfCallStackIndexes; memprof::CallStackRadixTreeBuilder Builder; Builder.build(std::move(MemProfCallStackData), MemProfFrameIndexes, FrameHistogram); for (auto I : Builder.getRadixArray()) OS.write32(I); MemProfCallStackIndexes = Builder.takeCallStackPos(); // Release the memory of this vector as it is no longer needed. MemProfCallStackData.clear(); return MemProfCallStackIndexes; } // Write out MemProf Version0 as follows: // uint64_t RecordTableOffset = RecordTableGenerator.Emit // uint64_t FramePayloadOffset = Offset for the frame payload // uint64_t FrameTableOffset = FrameTableGenerator.Emit // uint64_t Num schema entries // uint64_t Schema entry 0 // uint64_t Schema entry 1 // .... // uint64_t Schema entry N - 1 // OnDiskChainedHashTable MemProfRecordData // OnDiskChainedHashTable MemProfFrameData static Error writeMemProfV0(ProfOStream &OS, memprof::IndexedMemProfData &MemProfData) { uint64_t HeaderUpdatePos = OS.tell(); OS.write(0ULL); // Reserve space for the memprof record table offset. OS.write(0ULL); // Reserve space for the memprof frame payload offset. OS.write(0ULL); // Reserve space for the memprof frame table offset. auto Schema = memprof::getFullSchema(); writeMemProfSchema(OS, Schema); uint64_t RecordTableOffset = writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version0); uint64_t FramePayloadOffset = OS.tell(); uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames); uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset}; OS.patch({{HeaderUpdatePos, Header}}); return Error::success(); } // Write out MemProf Version1 as follows: // uint64_t Version (NEW in V1) // uint64_t RecordTableOffset = RecordTableGenerator.Emit // uint64_t FramePayloadOffset = Offset for the frame payload // uint64_t FrameTableOffset = FrameTableGenerator.Emit // uint64_t Num schema entries // uint64_t Schema entry 0 // uint64_t Schema entry 1 // .... // uint64_t Schema entry N - 1 // OnDiskChainedHashTable MemProfRecordData // OnDiskChainedHashTable MemProfFrameData static Error writeMemProfV1(ProfOStream &OS, memprof::IndexedMemProfData &MemProfData) { OS.write(memprof::Version1); uint64_t HeaderUpdatePos = OS.tell(); OS.write(0ULL); // Reserve space for the memprof record table offset. OS.write(0ULL); // Reserve space for the memprof frame payload offset. OS.write(0ULL); // Reserve space for the memprof frame table offset. auto Schema = memprof::getFullSchema(); writeMemProfSchema(OS, Schema); uint64_t RecordTableOffset = writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version1); uint64_t FramePayloadOffset = OS.tell(); uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames); uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset}; OS.patch({{HeaderUpdatePos, Header}}); return Error::success(); } // Write out MemProf Version2 as follows: // uint64_t Version // uint64_t RecordTableOffset = RecordTableGenerator.Emit // uint64_t FramePayloadOffset = Offset for the frame payload // uint64_t FrameTableOffset = FrameTableGenerator.Emit // uint64_t CallStackPayloadOffset = Offset for the call stack payload (NEW V2) // uint64_t CallStackTableOffset = CallStackTableGenerator.Emit (NEW in V2) // uint64_t Num schema entries // uint64_t Schema entry 0 // uint64_t Schema entry 1 // .... // uint64_t Schema entry N - 1 // OnDiskChainedHashTable MemProfRecordData // OnDiskChainedHashTable MemProfFrameData // OnDiskChainedHashTable MemProfCallStackData (NEW in V2) static Error writeMemProfV2(ProfOStream &OS, memprof::IndexedMemProfData &MemProfData, bool MemProfFullSchema) { OS.write(memprof::Version2); uint64_t HeaderUpdatePos = OS.tell(); OS.write(0ULL); // Reserve space for the memprof record table offset. OS.write(0ULL); // Reserve space for the memprof frame payload offset. OS.write(0ULL); // Reserve space for the memprof frame table offset. OS.write(0ULL); // Reserve space for the memprof call stack payload offset. OS.write(0ULL); // Reserve space for the memprof call stack table offset. auto Schema = memprof::getHotColdSchema(); if (MemProfFullSchema) Schema = memprof::getFullSchema(); writeMemProfSchema(OS, Schema); uint64_t RecordTableOffset = writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version2); uint64_t FramePayloadOffset = OS.tell(); uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames); uint64_t CallStackPayloadOffset = OS.tell(); uint64_t CallStackTableOffset = writeMemProfCallStacks(OS, MemProfData.CallStacks); uint64_t Header[] = { RecordTableOffset, FramePayloadOffset, FrameTableOffset, CallStackPayloadOffset, CallStackTableOffset, }; OS.patch({{HeaderUpdatePos, Header}}); return Error::success(); } // Write out MemProf Version3 as follows: // uint64_t Version // uint64_t CallStackPayloadOffset = Offset for the call stack payload // uint64_t RecordPayloadOffset = Offset for the record payload // uint64_t RecordTableOffset = RecordTableGenerator.Emit // uint64_t Num schema entries // uint64_t Schema entry 0 // uint64_t Schema entry 1 // .... // uint64_t Schema entry N - 1 // Frames serialized one after another // Call stacks encoded as a radix tree // OnDiskChainedHashTable MemProfRecordData static Error writeMemProfV3(ProfOStream &OS, memprof::IndexedMemProfData &MemProfData, bool MemProfFullSchema) { OS.write(memprof::Version3); uint64_t HeaderUpdatePos = OS.tell(); OS.write(0ULL); // Reserve space for the memprof call stack payload offset. OS.write(0ULL); // Reserve space for the memprof record payload offset. OS.write(0ULL); // Reserve space for the memprof record table offset. auto Schema = memprof::getHotColdSchema(); if (MemProfFullSchema) Schema = memprof::getFullSchema(); writeMemProfSchema(OS, Schema); llvm::DenseMap FrameHistogram = memprof::computeFrameHistogram(MemProfData.CallStacks); assert(MemProfData.Frames.size() == FrameHistogram.size()); llvm::DenseMap MemProfFrameIndexes = writeMemProfFrameArray(OS, MemProfData.Frames, FrameHistogram); uint64_t CallStackPayloadOffset = OS.tell(); llvm::DenseMap MemProfCallStackIndexes = writeMemProfCallStackArray( OS, MemProfData.CallStacks, MemProfFrameIndexes, FrameHistogram); uint64_t RecordPayloadOffset = OS.tell(); uint64_t RecordTableOffset = writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version3, &MemProfCallStackIndexes); uint64_t Header[] = { CallStackPayloadOffset, RecordPayloadOffset, RecordTableOffset, }; OS.patch({{HeaderUpdatePos, Header}}); return Error::success(); } // Write out the MemProf data in a requested version. static Error writeMemProf(ProfOStream &OS, memprof::IndexedMemProfData &MemProfData, memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema) { switch (MemProfVersionRequested) { case memprof::Version0: return writeMemProfV0(OS, MemProfData); case memprof::Version1: return writeMemProfV1(OS, MemProfData); case memprof::Version2: return writeMemProfV2(OS, MemProfData, MemProfFullSchema); case memprof::Version3: return writeMemProfV3(OS, MemProfData, MemProfFullSchema); } return make_error( instrprof_error::unsupported_version, formatv("MemProf version {} not supported; " "requires version between {} and {}, inclusive", MemProfVersionRequested, memprof::MinimumSupportedVersion, memprof::MaximumSupportedVersion)); } uint64_t InstrProfWriter::writeHeader(const IndexedInstrProf::Header &Header, const bool WritePrevVersion, ProfOStream &OS) { // Only write out the first four fields. for (int I = 0; I < 4; I++) OS.write(reinterpret_cast(&Header)[I]); // Remember the offset of the remaining fields to allow back patching later. auto BackPatchStartOffset = OS.tell(); // Reserve the space for back patching later. OS.write(0); // HashOffset OS.write(0); // MemProfOffset OS.write(0); // BinaryIdOffset OS.write(0); // TemporalProfTracesOffset if (!WritePrevVersion) OS.write(0); // VTableNamesOffset return BackPatchStartOffset; } Error InstrProfWriter::writeVTableNames(ProfOStream &OS) { std::vector VTableNameStrs; for (StringRef VTableName : VTableNames.keys()) VTableNameStrs.push_back(VTableName.str()); std::string CompressedVTableNames; if (!VTableNameStrs.empty()) if (Error E = collectGlobalObjectNameStrings( VTableNameStrs, compression::zlib::isAvailable(), CompressedVTableNames)) return E; const uint64_t CompressedStringLen = CompressedVTableNames.length(); // Record the length of compressed string. OS.write(CompressedStringLen); // Write the chars in compressed strings. for (auto &c : CompressedVTableNames) OS.writeByte(static_cast(c)); // Pad up to a multiple of 8. // InstrProfReader could read bytes according to 'CompressedStringLen'. const uint64_t PaddedLength = alignTo(CompressedStringLen, 8); for (uint64_t K = CompressedStringLen; K < PaddedLength; K++) OS.writeByte(0); return Error::success(); } Error InstrProfWriter::writeImpl(ProfOStream &OS) { using namespace IndexedInstrProf; using namespace support; OnDiskChainedHashTableGenerator Generator; InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs); InfoObj->SummaryBuilder = &ISB; InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs); InfoObj->CSSummaryBuilder = &CSISB; // Populate the hash table generator. SmallVector> OrderedData; for (const auto &I : FunctionData) if (shouldEncodeData(I.getValue())) OrderedData.emplace_back((I.getKey()), &I.getValue()); llvm::sort(OrderedData, less_first()); for (const auto &I : OrderedData) Generator.insert(I.first, I.second); // Write the header. IndexedInstrProf::Header Header; Header.Version = WritePrevVersion ? IndexedInstrProf::ProfVersion::Version11 : IndexedInstrProf::ProfVersion::CurrentVersion; // The WritePrevVersion handling will either need to be removed or updated // if the version is advanced beyond 12. static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == IndexedInstrProf::ProfVersion::Version12); if (static_cast(ProfileKind & InstrProfKind::IRInstrumentation)) Header.Version |= VARIANT_MASK_IR_PROF; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) Header.Version |= VARIANT_MASK_CSIR_PROF; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryInstrumentation)) Header.Version |= VARIANT_MASK_INSTR_ENTRY; if (static_cast(ProfileKind & InstrProfKind::SingleByteCoverage)) Header.Version |= VARIANT_MASK_BYTE_COVERAGE; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryOnly)) Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY; if (static_cast(ProfileKind & InstrProfKind::MemProf)) Header.Version |= VARIANT_MASK_MEMPROF; if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) Header.Version |= VARIANT_MASK_TEMPORAL_PROF; const uint64_t BackPatchStartOffset = writeHeader(Header, WritePrevVersion, OS); // Reserve space to write profile summary data. uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size(); uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries); // Remember the summary offset. uint64_t SummaryOffset = OS.tell(); for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) OS.write(0); uint64_t CSSummaryOffset = 0; uint64_t CSSummarySize = 0; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) { CSSummaryOffset = OS.tell(); CSSummarySize = SummarySize / sizeof(uint64_t); for (unsigned I = 0; I < CSSummarySize; I++) OS.write(0); } // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj); // Write the MemProf profile data if we have it. uint64_t MemProfSectionStart = 0; if (static_cast(ProfileKind & InstrProfKind::MemProf)) { MemProfSectionStart = OS.tell(); if (auto E = writeMemProf(OS, MemProfData, MemProfVersionRequested, MemProfFullSchema)) return E; } // BinaryIdSection has two parts: // 1. uint64_t BinaryIdsSectionSize // 2. list of binary ids that consist of: // a. uint64_t BinaryIdLength // b. uint8_t BinaryIdData // c. uint8_t Padding (if necessary) uint64_t BinaryIdSectionStart = OS.tell(); // Calculate size of binary section. uint64_t BinaryIdsSectionSize = 0; // Remove duplicate binary ids. llvm::sort(BinaryIds); BinaryIds.erase(llvm::unique(BinaryIds), BinaryIds.end()); for (const auto &BI : BinaryIds) { // Increment by binary id length data type size. BinaryIdsSectionSize += sizeof(uint64_t); // Increment by binary id data length, aligned to 8 bytes. BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t)); } // Write binary ids section size. OS.write(BinaryIdsSectionSize); for (const auto &BI : BinaryIds) { uint64_t BILen = BI.size(); // Write binary id length. OS.write(BILen); // Write binary id data. for (unsigned K = 0; K < BILen; K++) OS.writeByte(BI[K]); // Write padding if necessary. uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen; for (unsigned K = 0; K < PaddingSize; K++) OS.writeByte(0); } uint64_t VTableNamesSectionStart = OS.tell(); if (!WritePrevVersion) if (Error E = writeVTableNames(OS)) return E; uint64_t TemporalProfTracesSectionStart = 0; if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) { TemporalProfTracesSectionStart = OS.tell(); OS.write(TemporalProfTraces.size()); OS.write(TemporalProfTraceStreamSize); for (auto &Trace : TemporalProfTraces) { OS.write(Trace.Weight); OS.write(Trace.FunctionNameRefs.size()); for (auto &NameRef : Trace.FunctionNameRefs) OS.write(NameRef); } } // Allocate space for data to be serialized out. std::unique_ptr TheSummary = IndexedInstrProf::allocSummary(SummarySize); // Compute the Summary and copy the data to the data // structure to be serialized out (to disk or buffer). std::unique_ptr PS = ISB.getSummary(); setSummary(TheSummary.get(), *PS); InfoObj->SummaryBuilder = nullptr; // For Context Sensitive summary. std::unique_ptr TheCSSummary = nullptr; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) { TheCSSummary = IndexedInstrProf::allocSummary(SummarySize); std::unique_ptr CSPS = CSISB.getSummary(); setSummary(TheCSSummary.get(), *CSPS); } InfoObj->CSSummaryBuilder = nullptr; SmallVector HeaderOffsets = {HashTableStart, MemProfSectionStart, BinaryIdSectionStart, TemporalProfTracesSectionStart}; if (!WritePrevVersion) HeaderOffsets.push_back(VTableNamesSectionStart); PatchItem PatchItems[] = { // Patch the Header fields {BackPatchStartOffset, HeaderOffsets}, // Patch the summary data. {SummaryOffset, ArrayRef(reinterpret_cast(TheSummary.get()), SummarySize / sizeof(uint64_t))}, {CSSummaryOffset, ArrayRef(reinterpret_cast(TheCSSummary.get()), CSSummarySize)}}; OS.patch(PatchItems); for (const auto &I : FunctionData) for (const auto &F : I.getValue()) if (Error E = validateRecord(F.second)) return E; return Error::success(); } Error InstrProfWriter::write(raw_fd_ostream &OS) { // Write the hash table. ProfOStream POS(OS); return writeImpl(POS); } Error InstrProfWriter::write(raw_string_ostream &OS) { ProfOStream POS(OS); return writeImpl(POS); } std::unique_ptr InstrProfWriter::writeBuffer() { std::string Data; raw_string_ostream OS(Data); // Write the hash table. if (Error E = write(OS)) return nullptr; // Return this in an aligned memory buffer. return MemoryBuffer::getMemBufferCopy(Data); } static const char *ValueProfKindStr[] = { #define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator, #include "llvm/ProfileData/InstrProfData.inc" }; Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) { for (uint32_t VK = 0; VK <= IPVK_Last; VK++) { if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget) continue; uint32_t NS = Func.getNumValueSites(VK); for (uint32_t S = 0; S < NS; S++) { DenseSet SeenValues; for (const auto &V : Func.getValueArrayForSite(VK, S)) if (!SeenValues.insert(V.Value).second) return make_error(instrprof_error::invalid_prof); } } return Error::success(); } void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash, const InstrProfRecord &Func, InstrProfSymtab &Symtab, raw_fd_ostream &OS) { OS << Name << "\n"; OS << "# Func Hash:\n" << Hash << "\n"; OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; OS << "# Counter Values:\n"; for (uint64_t Count : Func.Counts) OS << Count << "\n"; if (Func.BitmapBytes.size() > 0) { OS << "# Num Bitmap Bytes:\n$" << Func.BitmapBytes.size() << "\n"; OS << "# Bitmap Byte Values:\n"; for (uint8_t Byte : Func.BitmapBytes) { OS << "0x"; OS.write_hex(Byte); OS << "\n"; } OS << "\n"; } uint32_t NumValueKinds = Func.getNumValueKinds(); if (!NumValueKinds) { OS << "\n"; return; } OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { uint32_t NS = Func.getNumValueSites(VK); if (!NS) continue; OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; OS << "# NumValueSites:\n" << NS << "\n"; for (uint32_t S = 0; S < NS; S++) { auto VD = Func.getValueArrayForSite(VK, S); OS << VD.size() << "\n"; for (const auto &V : VD) { if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget) OS << Symtab.getFuncOrVarNameIfDefined(V.Value) << ":" << V.Count << "\n"; else OS << V.Value << ":" << V.Count << "\n"; } } } OS << "\n"; } Error InstrProfWriter::writeText(raw_fd_ostream &OS) { // Check CS first since it implies an IR level profile. if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) OS << "# CSIR level Instrumentation Flag\n:csir\n"; else if (static_cast(ProfileKind & InstrProfKind::IRInstrumentation)) OS << "# IR level Instrumentation Flag\n:ir\n"; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryInstrumentation)) OS << "# Always instrument the function entry block\n:entry_first\n"; if (static_cast(ProfileKind & InstrProfKind::SingleByteCoverage)) OS << "# Instrument block coverage\n:single_byte_coverage\n"; InstrProfSymtab Symtab; using FuncPair = detail::DenseMapPair; using RecordType = std::pair; SmallVector OrderedFuncData; for (const auto &I : FunctionData) { if (shouldEncodeData(I.getValue())) { if (Error E = Symtab.addFuncName(I.getKey())) return E; for (const auto &Func : I.getValue()) OrderedFuncData.push_back(std::make_pair(I.getKey(), Func)); } } for (const auto &VTableName : VTableNames) if (Error E = Symtab.addVTableName(VTableName.getKey())) return E; if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) writeTextTemporalProfTraceData(OS, Symtab); llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) { return std::tie(A.first, A.second.first) < std::tie(B.first, B.second.first); }); for (const auto &record : OrderedFuncData) { const StringRef &Name = record.first; const FuncPair &Func = record.second; writeRecordInText(Name, Func.first, Func.second, Symtab, OS); } for (const auto &record : OrderedFuncData) { const FuncPair &Func = record.second; if (Error E = validateRecord(Func.second)) return E; } return Error::success(); } void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS, InstrProfSymtab &Symtab) { OS << ":temporal_prof_traces\n"; OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n"; OS << "# Temporal Profile Trace Stream Size:\n" << TemporalProfTraceStreamSize << "\n"; for (auto &Trace : TemporalProfTraces) { OS << "# Weight:\n" << Trace.Weight << "\n"; for (auto &NameRef : Trace.FunctionNameRefs) OS << Symtab.getFuncOrVarName(NameRef) << ","; OS << "\n"; } OS << "\n"; }