//===- LLVMContextImpl.h - The LLVMContextImpl opaque class -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares LLVMContextImpl, the opaque implementation // of LLVMContext. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H #define LLVM_LIB_IR_LLVMCONTEXTIMPL_H #include "ConstantsContext.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/TrackingMDRef.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/StringSaver.h" #include #include #include #include #include #include #include #include #include namespace llvm { class AttributeImpl; class AttributeListImpl; class AttributeSetNode; class BasicBlock; class ConstantRangeAttributeImpl; class ConstantRangeListAttributeImpl; struct DiagnosticHandler; class DbgMarker; class ElementCount; class Function; class GlobalObject; class GlobalValue; class InlineAsm; class LLVMRemarkStreamer; class OptPassGate; namespace remarks { class RemarkStreamer; } template class StringMapEntry; class StringRef; class TypedPointerType; class ValueHandleBase; template <> struct DenseMapInfo { static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); } static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus(), 2); } static unsigned getHashValue(const APFloat &Key) { return static_cast(hash_value(Key)); } static bool isEqual(const APFloat &LHS, const APFloat &RHS) { return LHS.bitwiseIsEqual(RHS); } }; struct AnonStructTypeKeyInfo { struct KeyTy { ArrayRef ETypes; bool isPacked; KeyTy(const ArrayRef &E, bool P) : ETypes(E), isPacked(P) {} KeyTy(const StructType *ST) : ETypes(ST->elements()), isPacked(ST->isPacked()) {} bool operator==(const KeyTy &that) const { if (isPacked != that.isPacked) return false; if (ETypes != that.ETypes) return false; return true; } bool operator!=(const KeyTy &that) const { return !this->operator==(that); } }; static inline StructType *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline StructType *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return hash_combine( hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.isPacked); } static unsigned getHashValue(const StructType *ST) { return getHashValue(KeyTy(ST)); } static bool isEqual(const KeyTy &LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const StructType *LHS, const StructType *RHS) { return LHS == RHS; } }; struct FunctionTypeKeyInfo { struct KeyTy { const Type *ReturnType; ArrayRef Params; bool isVarArg; KeyTy(const Type *R, const ArrayRef &P, bool V) : ReturnType(R), Params(P), isVarArg(V) {} KeyTy(const FunctionType *FT) : ReturnType(FT->getReturnType()), Params(FT->params()), isVarArg(FT->isVarArg()) {} bool operator==(const KeyTy &that) const { if (ReturnType != that.ReturnType) return false; if (isVarArg != that.isVarArg) return false; if (Params != that.Params) return false; return true; } bool operator!=(const KeyTy &that) const { return !this->operator==(that); } }; static inline FunctionType *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline FunctionType *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return hash_combine( Key.ReturnType, hash_combine_range(Key.Params.begin(), Key.Params.end()), Key.isVarArg); } static unsigned getHashValue(const FunctionType *FT) { return getHashValue(KeyTy(FT)); } static bool isEqual(const KeyTy &LHS, const FunctionType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) { return LHS == RHS; } }; struct TargetExtTypeKeyInfo { struct KeyTy { StringRef Name; ArrayRef TypeParams; ArrayRef IntParams; KeyTy(StringRef N, const ArrayRef &TP, const ArrayRef &IP) : Name(N), TypeParams(TP), IntParams(IP) {} KeyTy(const TargetExtType *TT) : Name(TT->getName()), TypeParams(TT->type_params()), IntParams(TT->int_params()) {} bool operator==(const KeyTy &that) const { return Name == that.Name && TypeParams == that.TypeParams && IntParams == that.IntParams; } bool operator!=(const KeyTy &that) const { return !this->operator==(that); } }; static inline TargetExtType *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline TargetExtType *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return hash_combine( Key.Name, hash_combine_range(Key.TypeParams.begin(), Key.TypeParams.end()), hash_combine_range(Key.IntParams.begin(), Key.IntParams.end())); } static unsigned getHashValue(const TargetExtType *FT) { return getHashValue(KeyTy(FT)); } static bool isEqual(const KeyTy &LHS, const TargetExtType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const TargetExtType *LHS, const TargetExtType *RHS) { return LHS == RHS; } }; /// Structure for hashing arbitrary MDNode operands. class MDNodeOpsKey { ArrayRef RawOps; ArrayRef Ops; unsigned Hash; protected: MDNodeOpsKey(ArrayRef Ops) : RawOps(Ops), Hash(calculateHash(Ops)) {} template MDNodeOpsKey(const NodeTy *N, unsigned Offset = 0) : Ops(N->op_begin() + Offset, N->op_end()), Hash(N->getHash()) {} template bool compareOps(const NodeTy *RHS, unsigned Offset = 0) const { if (getHash() != RHS->getHash()) return false; assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?"); return RawOps.empty() ? compareOps(Ops, RHS, Offset) : compareOps(RawOps, RHS, Offset); } static unsigned calculateHash(MDNode *N, unsigned Offset = 0); private: template static bool compareOps(ArrayRef Ops, const MDNode *RHS, unsigned Offset) { if (Ops.size() != RHS->getNumOperands() - Offset) return false; return std::equal(Ops.begin(), Ops.end(), RHS->op_begin() + Offset); } static unsigned calculateHash(ArrayRef Ops); public: unsigned getHash() const { return Hash; } }; template struct MDNodeKeyImpl; /// Configuration point for MDNodeInfo::isEqual(). template struct MDNodeSubsetEqualImpl { using KeyTy = MDNodeKeyImpl; static bool isSubsetEqual(const KeyTy &LHS, const NodeTy *RHS) { return false; } static bool isSubsetEqual(const NodeTy *LHS, const NodeTy *RHS) { return false; } }; /// DenseMapInfo for MDTuple. /// /// Note that we don't need the is-function-local bit, since that's implicit in /// the operands. template <> struct MDNodeKeyImpl : MDNodeOpsKey { MDNodeKeyImpl(ArrayRef Ops) : MDNodeOpsKey(Ops) {} MDNodeKeyImpl(const MDTuple *N) : MDNodeOpsKey(N) {} bool isKeyOf(const MDTuple *RHS) const { return compareOps(RHS); } unsigned getHashValue() const { return getHash(); } static unsigned calculateHash(MDTuple *N) { return MDNodeOpsKey::calculateHash(N); } }; /// DenseMapInfo for DILocation. template <> struct MDNodeKeyImpl { unsigned Line; unsigned Column; Metadata *Scope; Metadata *InlinedAt; bool ImplicitCode; MDNodeKeyImpl(unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt, bool ImplicitCode) : Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt), ImplicitCode(ImplicitCode) {} MDNodeKeyImpl(const DILocation *L) : Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()), InlinedAt(L->getRawInlinedAt()), ImplicitCode(L->isImplicitCode()) {} bool isKeyOf(const DILocation *RHS) const { return Line == RHS->getLine() && Column == RHS->getColumn() && Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt() && ImplicitCode == RHS->isImplicitCode(); } unsigned getHashValue() const { return hash_combine(Line, Column, Scope, InlinedAt, ImplicitCode); } }; /// DenseMapInfo for GenericDINode. template <> struct MDNodeKeyImpl : MDNodeOpsKey { unsigned Tag; MDString *Header; MDNodeKeyImpl(unsigned Tag, MDString *Header, ArrayRef DwarfOps) : MDNodeOpsKey(DwarfOps), Tag(Tag), Header(Header) {} MDNodeKeyImpl(const GenericDINode *N) : MDNodeOpsKey(N, 1), Tag(N->getTag()), Header(N->getRawHeader()) {} bool isKeyOf(const GenericDINode *RHS) const { return Tag == RHS->getTag() && Header == RHS->getRawHeader() && compareOps(RHS, 1); } unsigned getHashValue() const { return hash_combine(getHash(), Tag, Header); } static unsigned calculateHash(GenericDINode *N) { return MDNodeOpsKey::calculateHash(N, 1); } }; template <> struct MDNodeKeyImpl { Metadata *CountNode; Metadata *LowerBound; Metadata *UpperBound; Metadata *Stride; MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride) : CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound), Stride(Stride) {} MDNodeKeyImpl(const DISubrange *N) : CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()), UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {} bool isKeyOf(const DISubrange *RHS) const { auto BoundsEqual = [=](Metadata *Node1, Metadata *Node2) -> bool { if (Node1 == Node2) return true; ConstantAsMetadata *MD1 = dyn_cast_or_null(Node1); ConstantAsMetadata *MD2 = dyn_cast_or_null(Node2); if (MD1 && MD2) { ConstantInt *CV1 = cast(MD1->getValue()); ConstantInt *CV2 = cast(MD2->getValue()); if (CV1->getSExtValue() == CV2->getSExtValue()) return true; } return false; }; return BoundsEqual(CountNode, RHS->getRawCountNode()) && BoundsEqual(LowerBound, RHS->getRawLowerBound()) && BoundsEqual(UpperBound, RHS->getRawUpperBound()) && BoundsEqual(Stride, RHS->getRawStride()); } unsigned getHashValue() const { if (CountNode) if (auto *MD = dyn_cast(CountNode)) return hash_combine(cast(MD->getValue())->getSExtValue(), LowerBound, UpperBound, Stride); return hash_combine(CountNode, LowerBound, UpperBound, Stride); } }; template <> struct MDNodeKeyImpl { Metadata *CountNode; Metadata *LowerBound; Metadata *UpperBound; Metadata *Stride; MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound, Metadata *Stride) : CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound), Stride(Stride) {} MDNodeKeyImpl(const DIGenericSubrange *N) : CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()), UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {} bool isKeyOf(const DIGenericSubrange *RHS) const { return (CountNode == RHS->getRawCountNode()) && (LowerBound == RHS->getRawLowerBound()) && (UpperBound == RHS->getRawUpperBound()) && (Stride == RHS->getRawStride()); } unsigned getHashValue() const { auto *MD = dyn_cast_or_null(CountNode); if (CountNode && MD) return hash_combine(cast(MD->getValue())->getSExtValue(), LowerBound, UpperBound, Stride); return hash_combine(CountNode, LowerBound, UpperBound, Stride); } }; template <> struct MDNodeKeyImpl { APInt Value; MDString *Name; bool IsUnsigned; MDNodeKeyImpl(APInt Value, bool IsUnsigned, MDString *Name) : Value(std::move(Value)), Name(Name), IsUnsigned(IsUnsigned) {} MDNodeKeyImpl(int64_t Value, bool IsUnsigned, MDString *Name) : Value(APInt(64, Value, !IsUnsigned)), Name(Name), IsUnsigned(IsUnsigned) {} MDNodeKeyImpl(const DIEnumerator *N) : Value(N->getValue()), Name(N->getRawName()), IsUnsigned(N->isUnsigned()) {} bool isKeyOf(const DIEnumerator *RHS) const { return Value.getBitWidth() == RHS->getValue().getBitWidth() && Value == RHS->getValue() && IsUnsigned == RHS->isUnsigned() && Name == RHS->getRawName(); } unsigned getHashValue() const { return hash_combine(Value, Name); } }; template <> struct MDNodeKeyImpl { unsigned Tag; MDString *Name; uint64_t SizeInBits; uint32_t AlignInBits; unsigned Encoding; unsigned Flags; MDNodeKeyImpl(unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, unsigned Flags) : Tag(Tag), Name(Name), SizeInBits(SizeInBits), AlignInBits(AlignInBits), Encoding(Encoding), Flags(Flags) {} MDNodeKeyImpl(const DIBasicType *N) : Tag(N->getTag()), Name(N->getRawName()), SizeInBits(N->getSizeInBits()), AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()), Flags(N->getFlags()) {} bool isKeyOf(const DIBasicType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && Encoding == RHS->getEncoding() && Flags == RHS->getFlags(); } unsigned getHashValue() const { return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding); } }; template <> struct MDNodeKeyImpl { unsigned Tag; MDString *Name; Metadata *StringLength; Metadata *StringLengthExp; Metadata *StringLocationExp; uint64_t SizeInBits; uint32_t AlignInBits; unsigned Encoding; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *StringLength, Metadata *StringLengthExp, Metadata *StringLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding) : Tag(Tag), Name(Name), StringLength(StringLength), StringLengthExp(StringLengthExp), StringLocationExp(StringLocationExp), SizeInBits(SizeInBits), AlignInBits(AlignInBits), Encoding(Encoding) {} MDNodeKeyImpl(const DIStringType *N) : Tag(N->getTag()), Name(N->getRawName()), StringLength(N->getRawStringLength()), StringLengthExp(N->getRawStringLengthExp()), StringLocationExp(N->getRawStringLocationExp()), SizeInBits(N->getSizeInBits()), AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()) {} bool isKeyOf(const DIStringType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && StringLength == RHS->getRawStringLength() && StringLengthExp == RHS->getRawStringLengthExp() && StringLocationExp == RHS->getRawStringLocationExp() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && Encoding == RHS->getEncoding(); } unsigned getHashValue() const { // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Tag, Name, StringLength, Encoding); } }; template <> struct MDNodeKeyImpl { unsigned Tag; MDString *Name; Metadata *File; unsigned Line; Metadata *Scope; Metadata *BaseType; uint64_t SizeInBits; uint64_t OffsetInBits; uint32_t AlignInBits; std::optional DWARFAddressSpace; std::optional PtrAuthData; unsigned Flags; Metadata *ExtraData; Metadata *Annotations; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, std::optional PtrAuthData, unsigned Flags, Metadata *ExtraData, Metadata *Annotations) : Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope), BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits), AlignInBits(AlignInBits), DWARFAddressSpace(DWARFAddressSpace), PtrAuthData(PtrAuthData), Flags(Flags), ExtraData(ExtraData), Annotations(Annotations) {} MDNodeKeyImpl(const DIDerivedType *N) : Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Scope(N->getRawScope()), BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()), OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()), DWARFAddressSpace(N->getDWARFAddressSpace()), PtrAuthData(N->getPtrAuthData()), Flags(N->getFlags()), ExtraData(N->getRawExtraData()), Annotations(N->getRawAnnotations()) {} bool isKeyOf(const DIDerivedType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && OffsetInBits == RHS->getOffsetInBits() && DWARFAddressSpace == RHS->getDWARFAddressSpace() && PtrAuthData == RHS->getPtrAuthData() && Flags == RHS->getFlags() && ExtraData == RHS->getRawExtraData() && Annotations == RHS->getRawAnnotations(); } unsigned getHashValue() const { // If this is a member inside an ODR type, only hash the type and the name. // Otherwise the hash will be stronger than // MDNodeSubsetEqualImpl::isODRMember(). if (Tag == dwarf::DW_TAG_member && Name) if (auto *CT = dyn_cast_or_null(Scope)) if (CT->getRawIdentifier()) return hash_combine(Name, Scope); // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Tag, Name, File, Line, Scope, BaseType, Flags); } }; template <> struct MDNodeSubsetEqualImpl { using KeyTy = MDNodeKeyImpl; static bool isSubsetEqual(const KeyTy &LHS, const DIDerivedType *RHS) { return isODRMember(LHS.Tag, LHS.Scope, LHS.Name, RHS); } static bool isSubsetEqual(const DIDerivedType *LHS, const DIDerivedType *RHS) { return isODRMember(LHS->getTag(), LHS->getRawScope(), LHS->getRawName(), RHS); } /// Subprograms compare equal if they declare the same function in an ODR /// type. static bool isODRMember(unsigned Tag, const Metadata *Scope, const MDString *Name, const DIDerivedType *RHS) { // Check whether the LHS is eligible. if (Tag != dwarf::DW_TAG_member || !Name) return false; auto *CT = dyn_cast_or_null(Scope); if (!CT || !CT->getRawIdentifier()) return false; // Compare to the RHS. return Tag == RHS->getTag() && Name == RHS->getRawName() && Scope == RHS->getRawScope(); } }; template <> struct MDNodeKeyImpl { unsigned Tag; MDString *Name; Metadata *File; unsigned Line; Metadata *Scope; Metadata *BaseType; uint64_t SizeInBits; uint64_t OffsetInBits; uint32_t AlignInBits; unsigned Flags; Metadata *Elements; unsigned RuntimeLang; Metadata *VTableHolder; Metadata *TemplateParams; MDString *Identifier; Metadata *Discriminator; Metadata *DataLocation; Metadata *Associated; Metadata *Allocated; Metadata *Rank; Metadata *Annotations; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, unsigned Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations) : Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope), BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits), AlignInBits(AlignInBits), Flags(Flags), Elements(Elements), RuntimeLang(RuntimeLang), VTableHolder(VTableHolder), TemplateParams(TemplateParams), Identifier(Identifier), Discriminator(Discriminator), DataLocation(DataLocation), Associated(Associated), Allocated(Allocated), Rank(Rank), Annotations(Annotations) {} MDNodeKeyImpl(const DICompositeType *N) : Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Scope(N->getRawScope()), BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()), OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()), Flags(N->getFlags()), Elements(N->getRawElements()), RuntimeLang(N->getRuntimeLang()), VTableHolder(N->getRawVTableHolder()), TemplateParams(N->getRawTemplateParams()), Identifier(N->getRawIdentifier()), Discriminator(N->getRawDiscriminator()), DataLocation(N->getRawDataLocation()), Associated(N->getRawAssociated()), Allocated(N->getRawAllocated()), Rank(N->getRawRank()), Annotations(N->getRawAnnotations()) {} bool isKeyOf(const DICompositeType *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() && SizeInBits == RHS->getSizeInBits() && AlignInBits == RHS->getAlignInBits() && OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() && Elements == RHS->getRawElements() && RuntimeLang == RHS->getRuntimeLang() && VTableHolder == RHS->getRawVTableHolder() && TemplateParams == RHS->getRawTemplateParams() && Identifier == RHS->getRawIdentifier() && Discriminator == RHS->getRawDiscriminator() && DataLocation == RHS->getRawDataLocation() && Associated == RHS->getRawAssociated() && Allocated == RHS->getRawAllocated() && Rank == RHS->getRawRank() && Annotations == RHS->getRawAnnotations(); } unsigned getHashValue() const { // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Name, File, Line, BaseType, Scope, Elements, TemplateParams, Annotations); } }; template <> struct MDNodeKeyImpl { unsigned Flags; uint8_t CC; Metadata *TypeArray; MDNodeKeyImpl(unsigned Flags, uint8_t CC, Metadata *TypeArray) : Flags(Flags), CC(CC), TypeArray(TypeArray) {} MDNodeKeyImpl(const DISubroutineType *N) : Flags(N->getFlags()), CC(N->getCC()), TypeArray(N->getRawTypeArray()) {} bool isKeyOf(const DISubroutineType *RHS) const { return Flags == RHS->getFlags() && CC == RHS->getCC() && TypeArray == RHS->getRawTypeArray(); } unsigned getHashValue() const { return hash_combine(Flags, CC, TypeArray); } }; template <> struct MDNodeKeyImpl { MDString *Filename; MDString *Directory; std::optional> Checksum; MDString *Source; MDNodeKeyImpl(MDString *Filename, MDString *Directory, std::optional> Checksum, MDString *Source) : Filename(Filename), Directory(Directory), Checksum(Checksum), Source(Source) {} MDNodeKeyImpl(const DIFile *N) : Filename(N->getRawFilename()), Directory(N->getRawDirectory()), Checksum(N->getRawChecksum()), Source(N->getRawSource()) {} bool isKeyOf(const DIFile *RHS) const { return Filename == RHS->getRawFilename() && Directory == RHS->getRawDirectory() && Checksum == RHS->getRawChecksum() && Source == RHS->getRawSource(); } unsigned getHashValue() const { return hash_combine(Filename, Directory, Checksum ? Checksum->Kind : 0, Checksum ? Checksum->Value : nullptr, Source); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; MDString *Name; MDString *LinkageName; Metadata *File; unsigned Line; Metadata *Type; unsigned ScopeLine; Metadata *ContainingType; unsigned VirtualIndex; int ThisAdjustment; unsigned Flags; unsigned SPFlags; Metadata *Unit; Metadata *TemplateParams; Metadata *Declaration; Metadata *RetainedNodes; Metadata *ThrownTypes; Metadata *Annotations; MDString *TargetFuncName; MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, int ThisAdjustment, unsigned Flags, unsigned SPFlags, Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName) : Scope(Scope), Name(Name), LinkageName(LinkageName), File(File), Line(Line), Type(Type), ScopeLine(ScopeLine), ContainingType(ContainingType), VirtualIndex(VirtualIndex), ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags), Unit(Unit), TemplateParams(TemplateParams), Declaration(Declaration), RetainedNodes(RetainedNodes), ThrownTypes(ThrownTypes), Annotations(Annotations), TargetFuncName(TargetFuncName) {} MDNodeKeyImpl(const DISubprogram *N) : Scope(N->getRawScope()), Name(N->getRawName()), LinkageName(N->getRawLinkageName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), ScopeLine(N->getScopeLine()), ContainingType(N->getRawContainingType()), VirtualIndex(N->getVirtualIndex()), ThisAdjustment(N->getThisAdjustment()), Flags(N->getFlags()), SPFlags(N->getSPFlags()), Unit(N->getRawUnit()), TemplateParams(N->getRawTemplateParams()), Declaration(N->getRawDeclaration()), RetainedNodes(N->getRawRetainedNodes()), ThrownTypes(N->getRawThrownTypes()), Annotations(N->getRawAnnotations()), TargetFuncName(N->getRawTargetFuncName()) {} bool isKeyOf(const DISubprogram *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && LinkageName == RHS->getRawLinkageName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && ScopeLine == RHS->getScopeLine() && ContainingType == RHS->getRawContainingType() && VirtualIndex == RHS->getVirtualIndex() && ThisAdjustment == RHS->getThisAdjustment() && Flags == RHS->getFlags() && SPFlags == RHS->getSPFlags() && Unit == RHS->getUnit() && TemplateParams == RHS->getRawTemplateParams() && Declaration == RHS->getRawDeclaration() && RetainedNodes == RHS->getRawRetainedNodes() && ThrownTypes == RHS->getRawThrownTypes() && Annotations == RHS->getRawAnnotations() && TargetFuncName == RHS->getRawTargetFuncName(); } bool isDefinition() const { return SPFlags & DISubprogram::SPFlagDefinition; } unsigned getHashValue() const { // Use the Scope's linkage name instead of using the scope directly, as the // scope may be a temporary one which can replaced, which would produce a // different hash for the same DISubprogram. llvm::StringRef ScopeLinkageName; if (auto *CT = dyn_cast_or_null(Scope)) if (auto *ID = CT->getRawIdentifier()) ScopeLinkageName = ID->getString(); // If this is a declaration inside an ODR type, only hash the type and the // name. Otherwise the hash will be stronger than // MDNodeSubsetEqualImpl::isDeclarationOfODRMember(). if (!isDefinition() && LinkageName && isa_and_nonnull(Scope)) return hash_combine(LinkageName, ScopeLinkageName); // Intentionally computes the hash on a subset of the operands for // performance reason. The subset has to be significant enough to avoid // collision "most of the time". There is no correctness issue in case of // collision because of the full check above. return hash_combine(Name, ScopeLinkageName, File, Type, Line); } }; template <> struct MDNodeSubsetEqualImpl { using KeyTy = MDNodeKeyImpl; static bool isSubsetEqual(const KeyTy &LHS, const DISubprogram *RHS) { return isDeclarationOfODRMember(LHS.isDefinition(), LHS.Scope, LHS.LinkageName, LHS.TemplateParams, RHS); } static bool isSubsetEqual(const DISubprogram *LHS, const DISubprogram *RHS) { return isDeclarationOfODRMember(LHS->isDefinition(), LHS->getRawScope(), LHS->getRawLinkageName(), LHS->getRawTemplateParams(), RHS); } /// Subprograms compare equal if they declare the same function in an ODR /// type. static bool isDeclarationOfODRMember(bool IsDefinition, const Metadata *Scope, const MDString *LinkageName, const Metadata *TemplateParams, const DISubprogram *RHS) { // Check whether the LHS is eligible. if (IsDefinition || !Scope || !LinkageName) return false; auto *CT = dyn_cast_or_null(Scope); if (!CT || !CT->getRawIdentifier()) return false; // Compare to the RHS. // FIXME: We need to compare template parameters here to avoid incorrect // collisions in mapMetadata when RF_ReuseAndMutateDistinctMDs and a // ODR-DISubprogram has a non-ODR template parameter (i.e., a // DICompositeType that does not have an identifier). Eventually we should // decouple ODR logic from uniquing logic. return IsDefinition == RHS->isDefinition() && Scope == RHS->getRawScope() && LinkageName == RHS->getRawLinkageName() && TemplateParams == RHS->getRawTemplateParams(); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; Metadata *File; unsigned Line; unsigned Column; MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Line, unsigned Column) : Scope(Scope), File(File), Line(Line), Column(Column) {} MDNodeKeyImpl(const DILexicalBlock *N) : Scope(N->getRawScope()), File(N->getRawFile()), Line(N->getLine()), Column(N->getColumn()) {} bool isKeyOf(const DILexicalBlock *RHS) const { return Scope == RHS->getRawScope() && File == RHS->getRawFile() && Line == RHS->getLine() && Column == RHS->getColumn(); } unsigned getHashValue() const { return hash_combine(Scope, File, Line, Column); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; Metadata *File; unsigned Discriminator; MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Discriminator) : Scope(Scope), File(File), Discriminator(Discriminator) {} MDNodeKeyImpl(const DILexicalBlockFile *N) : Scope(N->getRawScope()), File(N->getRawFile()), Discriminator(N->getDiscriminator()) {} bool isKeyOf(const DILexicalBlockFile *RHS) const { return Scope == RHS->getRawScope() && File == RHS->getRawFile() && Discriminator == RHS->getDiscriminator(); } unsigned getHashValue() const { return hash_combine(Scope, File, Discriminator); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; MDString *Name; bool ExportSymbols; MDNodeKeyImpl(Metadata *Scope, MDString *Name, bool ExportSymbols) : Scope(Scope), Name(Name), ExportSymbols(ExportSymbols) {} MDNodeKeyImpl(const DINamespace *N) : Scope(N->getRawScope()), Name(N->getRawName()), ExportSymbols(N->getExportSymbols()) {} bool isKeyOf(const DINamespace *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && ExportSymbols == RHS->getExportSymbols(); } unsigned getHashValue() const { return hash_combine(Scope, Name); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; Metadata *Decl; MDString *Name; Metadata *File; unsigned LineNo; MDNodeKeyImpl(Metadata *Scope, Metadata *Decl, MDString *Name, Metadata *File, unsigned LineNo) : Scope(Scope), Decl(Decl), Name(Name), File(File), LineNo(LineNo) {} MDNodeKeyImpl(const DICommonBlock *N) : Scope(N->getRawScope()), Decl(N->getRawDecl()), Name(N->getRawName()), File(N->getRawFile()), LineNo(N->getLineNo()) {} bool isKeyOf(const DICommonBlock *RHS) const { return Scope == RHS->getRawScope() && Decl == RHS->getRawDecl() && Name == RHS->getRawName() && File == RHS->getRawFile() && LineNo == RHS->getLineNo(); } unsigned getHashValue() const { return hash_combine(Scope, Decl, Name, File, LineNo); } }; template <> struct MDNodeKeyImpl { Metadata *File; Metadata *Scope; MDString *Name; MDString *ConfigurationMacros; MDString *IncludePath; MDString *APINotesFile; unsigned LineNo; bool IsDecl; MDNodeKeyImpl(Metadata *File, Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *APINotesFile, unsigned LineNo, bool IsDecl) : File(File), Scope(Scope), Name(Name), ConfigurationMacros(ConfigurationMacros), IncludePath(IncludePath), APINotesFile(APINotesFile), LineNo(LineNo), IsDecl(IsDecl) {} MDNodeKeyImpl(const DIModule *N) : File(N->getRawFile()), Scope(N->getRawScope()), Name(N->getRawName()), ConfigurationMacros(N->getRawConfigurationMacros()), IncludePath(N->getRawIncludePath()), APINotesFile(N->getRawAPINotesFile()), LineNo(N->getLineNo()), IsDecl(N->getIsDecl()) {} bool isKeyOf(const DIModule *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && ConfigurationMacros == RHS->getRawConfigurationMacros() && IncludePath == RHS->getRawIncludePath() && APINotesFile == RHS->getRawAPINotesFile() && File == RHS->getRawFile() && LineNo == RHS->getLineNo() && IsDecl == RHS->getIsDecl(); } unsigned getHashValue() const { return hash_combine(Scope, Name, ConfigurationMacros, IncludePath); } }; template <> struct MDNodeKeyImpl { MDString *Name; Metadata *Type; bool IsDefault; MDNodeKeyImpl(MDString *Name, Metadata *Type, bool IsDefault) : Name(Name), Type(Type), IsDefault(IsDefault) {} MDNodeKeyImpl(const DITemplateTypeParameter *N) : Name(N->getRawName()), Type(N->getRawType()), IsDefault(N->isDefault()) {} bool isKeyOf(const DITemplateTypeParameter *RHS) const { return Name == RHS->getRawName() && Type == RHS->getRawType() && IsDefault == RHS->isDefault(); } unsigned getHashValue() const { return hash_combine(Name, Type, IsDefault); } }; template <> struct MDNodeKeyImpl { unsigned Tag; MDString *Name; Metadata *Type; bool IsDefault; Metadata *Value; MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *Type, bool IsDefault, Metadata *Value) : Tag(Tag), Name(Name), Type(Type), IsDefault(IsDefault), Value(Value) {} MDNodeKeyImpl(const DITemplateValueParameter *N) : Tag(N->getTag()), Name(N->getRawName()), Type(N->getRawType()), IsDefault(N->isDefault()), Value(N->getValue()) {} bool isKeyOf(const DITemplateValueParameter *RHS) const { return Tag == RHS->getTag() && Name == RHS->getRawName() && Type == RHS->getRawType() && IsDefault == RHS->isDefault() && Value == RHS->getValue(); } unsigned getHashValue() const { return hash_combine(Tag, Name, Type, IsDefault, Value); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; MDString *Name; MDString *LinkageName; Metadata *File; unsigned Line; Metadata *Type; bool IsLocalToUnit; bool IsDefinition; Metadata *StaticDataMemberDeclaration; Metadata *TemplateParams; uint32_t AlignInBits; Metadata *Annotations; MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams, uint32_t AlignInBits, Metadata *Annotations) : Scope(Scope), Name(Name), LinkageName(LinkageName), File(File), Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit), IsDefinition(IsDefinition), StaticDataMemberDeclaration(StaticDataMemberDeclaration), TemplateParams(TemplateParams), AlignInBits(AlignInBits), Annotations(Annotations) {} MDNodeKeyImpl(const DIGlobalVariable *N) : Scope(N->getRawScope()), Name(N->getRawName()), LinkageName(N->getRawLinkageName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()), StaticDataMemberDeclaration(N->getRawStaticDataMemberDeclaration()), TemplateParams(N->getRawTemplateParams()), AlignInBits(N->getAlignInBits()), Annotations(N->getRawAnnotations()) {} bool isKeyOf(const DIGlobalVariable *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && LinkageName == RHS->getRawLinkageName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() && IsDefinition == RHS->isDefinition() && StaticDataMemberDeclaration == RHS->getRawStaticDataMemberDeclaration() && TemplateParams == RHS->getRawTemplateParams() && AlignInBits == RHS->getAlignInBits() && Annotations == RHS->getRawAnnotations(); } unsigned getHashValue() const { // We do not use AlignInBits in hashing function here on purpose: // in most cases this param for local variable is zero (for function param // it is always zero). This leads to lots of hash collisions and errors on // cases with lots of similar variables. // clang/test/CodeGen/debug-info-257-args.c is an example of this problem, // generated IR is random for each run and test fails with Align included. // TODO: make hashing work fine with such situations return hash_combine(Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, /* AlignInBits, */ StaticDataMemberDeclaration, Annotations); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; MDString *Name; Metadata *File; unsigned Line; Metadata *Type; unsigned Arg; unsigned Flags; uint32_t AlignInBits; Metadata *Annotations; MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, unsigned Flags, uint32_t AlignInBits, Metadata *Annotations) : Scope(Scope), Name(Name), File(File), Line(Line), Type(Type), Arg(Arg), Flags(Flags), AlignInBits(AlignInBits), Annotations(Annotations) {} MDNodeKeyImpl(const DILocalVariable *N) : Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), Type(N->getRawType()), Arg(N->getArg()), Flags(N->getFlags()), AlignInBits(N->getAlignInBits()), Annotations(N->getRawAnnotations()) {} bool isKeyOf(const DILocalVariable *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && Type == RHS->getRawType() && Arg == RHS->getArg() && Flags == RHS->getFlags() && AlignInBits == RHS->getAlignInBits() && Annotations == RHS->getRawAnnotations(); } unsigned getHashValue() const { // We do not use AlignInBits in hashing function here on purpose: // in most cases this param for local variable is zero (for function param // it is always zero). This leads to lots of hash collisions and errors on // cases with lots of similar variables. // clang/test/CodeGen/debug-info-257-args.c is an example of this problem, // generated IR is random for each run and test fails with Align included. // TODO: make hashing work fine with such situations return hash_combine(Scope, Name, File, Line, Type, Arg, Flags, Annotations); } }; template <> struct MDNodeKeyImpl { Metadata *Scope; MDString *Name; Metadata *File; unsigned Line; MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line) : Scope(Scope), Name(Name), File(File), Line(Line) {} MDNodeKeyImpl(const DILabel *N) : Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()) {} bool isKeyOf(const DILabel *RHS) const { return Scope == RHS->getRawScope() && Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine(); } /// Using name and line to get hash value. It should already be mostly unique. unsigned getHashValue() const { return hash_combine(Scope, Name, Line); } }; template <> struct MDNodeKeyImpl { ArrayRef Elements; MDNodeKeyImpl(ArrayRef Elements) : Elements(Elements) {} MDNodeKeyImpl(const DIExpression *N) : Elements(N->getElements()) {} bool isKeyOf(const DIExpression *RHS) const { return Elements == RHS->getElements(); } unsigned getHashValue() const { return hash_combine_range(Elements.begin(), Elements.end()); } }; template <> struct MDNodeKeyImpl { Metadata *Variable; Metadata *Expression; MDNodeKeyImpl(Metadata *Variable, Metadata *Expression) : Variable(Variable), Expression(Expression) {} MDNodeKeyImpl(const DIGlobalVariableExpression *N) : Variable(N->getRawVariable()), Expression(N->getRawExpression()) {} bool isKeyOf(const DIGlobalVariableExpression *RHS) const { return Variable == RHS->getRawVariable() && Expression == RHS->getRawExpression(); } unsigned getHashValue() const { return hash_combine(Variable, Expression); } }; template <> struct MDNodeKeyImpl { MDString *Name; Metadata *File; unsigned Line; MDString *GetterName; MDString *SetterName; unsigned Attributes; Metadata *Type; MDNodeKeyImpl(MDString *Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type) : Name(Name), File(File), Line(Line), GetterName(GetterName), SetterName(SetterName), Attributes(Attributes), Type(Type) {} MDNodeKeyImpl(const DIObjCProperty *N) : Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()), GetterName(N->getRawGetterName()), SetterName(N->getRawSetterName()), Attributes(N->getAttributes()), Type(N->getRawType()) {} bool isKeyOf(const DIObjCProperty *RHS) const { return Name == RHS->getRawName() && File == RHS->getRawFile() && Line == RHS->getLine() && GetterName == RHS->getRawGetterName() && SetterName == RHS->getRawSetterName() && Attributes == RHS->getAttributes() && Type == RHS->getRawType(); } unsigned getHashValue() const { return hash_combine(Name, File, Line, GetterName, SetterName, Attributes, Type); } }; template <> struct MDNodeKeyImpl { unsigned Tag; Metadata *Scope; Metadata *Entity; Metadata *File; unsigned Line; MDString *Name; Metadata *Elements; MDNodeKeyImpl(unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name, Metadata *Elements) : Tag(Tag), Scope(Scope), Entity(Entity), File(File), Line(Line), Name(Name), Elements(Elements) {} MDNodeKeyImpl(const DIImportedEntity *N) : Tag(N->getTag()), Scope(N->getRawScope()), Entity(N->getRawEntity()), File(N->getRawFile()), Line(N->getLine()), Name(N->getRawName()), Elements(N->getRawElements()) {} bool isKeyOf(const DIImportedEntity *RHS) const { return Tag == RHS->getTag() && Scope == RHS->getRawScope() && Entity == RHS->getRawEntity() && File == RHS->getFile() && Line == RHS->getLine() && Name == RHS->getRawName() && Elements == RHS->getRawElements(); } unsigned getHashValue() const { return hash_combine(Tag, Scope, Entity, File, Line, Name, Elements); } }; template <> struct MDNodeKeyImpl { unsigned MIType; unsigned Line; MDString *Name; MDString *Value; MDNodeKeyImpl(unsigned MIType, unsigned Line, MDString *Name, MDString *Value) : MIType(MIType), Line(Line), Name(Name), Value(Value) {} MDNodeKeyImpl(const DIMacro *N) : MIType(N->getMacinfoType()), Line(N->getLine()), Name(N->getRawName()), Value(N->getRawValue()) {} bool isKeyOf(const DIMacro *RHS) const { return MIType == RHS->getMacinfoType() && Line == RHS->getLine() && Name == RHS->getRawName() && Value == RHS->getRawValue(); } unsigned getHashValue() const { return hash_combine(MIType, Line, Name, Value); } }; template <> struct MDNodeKeyImpl { unsigned MIType; unsigned Line; Metadata *File; Metadata *Elements; MDNodeKeyImpl(unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements) : MIType(MIType), Line(Line), File(File), Elements(Elements) {} MDNodeKeyImpl(const DIMacroFile *N) : MIType(N->getMacinfoType()), Line(N->getLine()), File(N->getRawFile()), Elements(N->getRawElements()) {} bool isKeyOf(const DIMacroFile *RHS) const { return MIType == RHS->getMacinfoType() && Line == RHS->getLine() && File == RHS->getRawFile() && Elements == RHS->getRawElements(); } unsigned getHashValue() const { return hash_combine(MIType, Line, File, Elements); } }; // DIArgLists are not MDNodes, but we still want to unique them in a DenseSet // based on a hash of their arguments. struct DIArgListKeyInfo { ArrayRef Args; DIArgListKeyInfo(ArrayRef Args) : Args(Args) {} DIArgListKeyInfo(const DIArgList *N) : Args(N->getArgs()) {} bool isKeyOf(const DIArgList *RHS) const { return Args == RHS->getArgs(); } unsigned getHashValue() const { return hash_combine_range(Args.begin(), Args.end()); } }; /// DenseMapInfo for DIArgList. struct DIArgListInfo { using KeyTy = DIArgListKeyInfo; static inline DIArgList *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline DIArgList *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); } static unsigned getHashValue(const DIArgList *N) { return KeyTy(N).getHashValue(); } static bool isEqual(const KeyTy &LHS, const DIArgList *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS.isKeyOf(RHS); } static bool isEqual(const DIArgList *LHS, const DIArgList *RHS) { return LHS == RHS; } }; /// DenseMapInfo for MDNode subclasses. template struct MDNodeInfo { using KeyTy = MDNodeKeyImpl; using SubsetEqualTy = MDNodeSubsetEqualImpl; static inline NodeTy *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline NodeTy *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); } static unsigned getHashValue(const NodeTy *N) { return KeyTy(N).getHashValue(); } static bool isEqual(const KeyTy &LHS, const NodeTy *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return SubsetEqualTy::isSubsetEqual(LHS, RHS) || LHS.isKeyOf(RHS); } static bool isEqual(const NodeTy *LHS, const NodeTy *RHS) { if (LHS == RHS) return true; if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return SubsetEqualTy::isSubsetEqual(LHS, RHS); } }; #define HANDLE_MDNODE_LEAF(CLASS) using CLASS##Info = MDNodeInfo; #include "llvm/IR/Metadata.def" /// Multimap-like storage for metadata attachments. class MDAttachments { public: struct Attachment { unsigned MDKind; TrackingMDNodeRef Node; }; private: SmallVector Attachments; public: bool empty() const { return Attachments.empty(); } size_t size() const { return Attachments.size(); } /// Returns the first attachment with the given ID or nullptr if no such /// attachment exists. MDNode *lookup(unsigned ID) const; /// Appends all attachments with the given ID to \c Result in insertion order. /// If the global has no attachments with the given ID, or if ID is invalid, /// leaves Result unchanged. void get(unsigned ID, SmallVectorImpl &Result) const; /// Appends all attachments for the global to \c Result, sorting by attachment /// ID. Attachments with the same ID appear in insertion order. This function /// does \em not clear \c Result. void getAll(SmallVectorImpl> &Result) const; /// Set an attachment to a particular node. /// /// Set the \c ID attachment to \c MD, replacing the current attachments at \c /// ID (if anyway). void set(unsigned ID, MDNode *MD); /// Adds an attachment to a particular node. void insert(unsigned ID, MDNode &MD); /// Remove attachments with the given ID. /// /// Remove the attachments at \c ID, if any. bool erase(unsigned ID); /// Erase matching attachments. /// /// Erases all attachments matching the \c shouldRemove predicate. template void remove_if(PredTy shouldRemove) { llvm::erase_if(Attachments, shouldRemove); } }; class LLVMContextImpl { public: /// OwnedModules - The set of modules instantiated in this context, and which /// will be automatically deleted if this context is deleted. SmallPtrSet OwnedModules; /// MachineFunctionNums - Keep the next available unique number available for /// a MachineFunction in given module. Module must in OwnedModules. DenseMap MachineFunctionNums; /// The main remark streamer used by all the other streamers (e.g. IR, MIR, /// frontends, etc.). This should only be used by the specific streamers, and /// never directly. std::unique_ptr MainRemarkStreamer; std::unique_ptr DiagHandler; bool RespectDiagnosticFilters = false; bool DiagnosticsHotnessRequested = false; /// The minimum hotness value a diagnostic needs in order to be included in /// optimization diagnostics. /// /// The threshold is an Optional value, which maps to one of the 3 states: /// 1). 0 => threshold disabled. All emarks will be printed. /// 2). positive int => manual threshold by user. Remarks with hotness exceed /// threshold will be printed. /// 3). None => 'auto' threshold by user. The actual value is not /// available at command line, but will be synced with /// hotness threhold from profile summary during /// compilation. /// /// State 1 and 2 are considered as terminal states. State transition is /// only allowed from 3 to 2, when the threshold is first synced with profile /// summary. This ensures that the threshold is set only once and stays /// constant. /// /// If threshold option is not specified, it is disabled (0) by default. std::optional DiagnosticsHotnessThreshold = 0; /// The percentage of difference between profiling branch weights and /// llvm.expect branch weights to tolerate when emiting MisExpect diagnostics std::optional DiagnosticsMisExpectTolerance = 0; bool MisExpectWarningRequested = false; /// The specialized remark streamer used by LLVM's OptimizationRemarkEmitter. std::unique_ptr LLVMRS; LLVMContext::YieldCallbackTy YieldCallback = nullptr; void *YieldOpaqueHandle = nullptr; DenseMap ValueNames; DenseMap> IntZeroConstants; DenseMap> IntOneConstants; DenseMap> IntConstants; DenseMap, std::unique_ptr> IntSplatConstants; DenseMap> FPConstants; DenseMap, std::unique_ptr> FPSplatConstants; FoldingSet AttrsSet; FoldingSet AttrsLists; FoldingSet AttrsSetNodes; StringMap MDStringCache; DenseMap ValuesAsMetadata; DenseMap MetadataAsValues; DenseSet DIArgLists; #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ DenseSet CLASS##s; #include "llvm/IR/Metadata.def" // Optional map for looking up composite types by identifier. std::optional> DITypeMap; // MDNodes may be uniqued or not uniqued. When they're not uniqued, they // aren't in the MDNodeSet, but they're still shared between objects, so no // one object can destroy them. Keep track of them here so we can delete // them on context teardown. std::vector DistinctMDNodes; // ConstantRangeListAttributeImpl is a TrailingObjects/ArrayRef of // ConstantRange. Since this is a dynamically sized class, it's not // possible to use SpecificBumpPtrAllocator. Instead, we use normal Alloc // for allocation and record all allocated pointers in this vector. In the // LLVMContext destructor, call the destuctors of everything in the vector. std::vector ConstantRangeListAttributes; DenseMap> CAZConstants; using ArrayConstantsTy = ConstantUniqueMap; ArrayConstantsTy ArrayConstants; using StructConstantsTy = ConstantUniqueMap; StructConstantsTy StructConstants; using VectorConstantsTy = ConstantUniqueMap; VectorConstantsTy VectorConstants; DenseMap> CPNConstants; DenseMap> CTNConstants; DenseMap> UVConstants; DenseMap> PVConstants; StringMap> CDSConstants; DenseMap, BlockAddress *> BlockAddresses; DenseMap DSOLocalEquivalents; DenseMap NoCFIValues; ConstantUniqueMap ConstantPtrAuths; ConstantUniqueMap ExprConstants; ConstantUniqueMap InlineAsms; ConstantInt *TheTrueVal = nullptr; ConstantInt *TheFalseVal = nullptr; // Basic type instances. Type VoidTy, LabelTy, HalfTy, BFloatTy, FloatTy, DoubleTy, MetadataTy, TokenTy; Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy, X86_AMXTy; IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty, Int128Ty; std::unique_ptr TheNoneToken; BumpPtrAllocator Alloc; UniqueStringSaver Saver{Alloc}; SpecificBumpPtrAllocator ConstantRangeAttributeAlloc; DenseMap IntegerTypes; using FunctionTypeSet = DenseSet; FunctionTypeSet FunctionTypes; using StructTypeSet = DenseSet; StructTypeSet AnonStructTypes; StringMap NamedStructTypes; unsigned NamedStructTypesUniqueID = 0; using TargetExtTypeSet = DenseSet; TargetExtTypeSet TargetExtTypes; DenseMap, ArrayType *> ArrayTypes; DenseMap, VectorType *> VectorTypes; PointerType *AS0PointerType = nullptr; // AddrSpace = 0 DenseMap PointerTypes; DenseMap, PointerType *> LegacyPointerTypes; DenseMap, TypedPointerType *> ASTypedPointerTypes; /// ValueHandles - This map keeps track of all of the value handles that are /// watching a Value*. The Value::HasValueHandle bit is used to know /// whether or not a value has an entry in this map. using ValueHandlesTy = DenseMap; ValueHandlesTy ValueHandles; /// CustomMDKindNames - Map to hold the metadata string to ID mapping. StringMap CustomMDKindNames; /// Collection of metadata used in this context. DenseMap ValueMetadata; /// Map DIAssignID -> Instructions with that attachment. /// Managed by Instruction via Instruction::updateDIAssignIDMapping. /// Query using the at:: functions defined in DebugInfo.h. DenseMap> AssignmentIDToInstrs; /// Collection of per-GlobalObject sections used in this context. DenseMap GlobalObjectSections; /// Collection of per-GlobalValue partitions used in this context. DenseMap GlobalValuePartitions; DenseMap GlobalValueSanitizerMetadata; /// DiscriminatorTable - This table maps file:line locations to an /// integer representing the next DWARF path discriminator to assign to /// instructions in different blocks at the same location. DenseMap, unsigned> DiscriminatorTable; /// A set of interned tags for operand bundles. The StringMap maps /// bundle tags to their IDs. /// /// \see LLVMContext::getOperandBundleTagID StringMap BundleTagCache; StringMapEntry *getOrInsertBundleTag(StringRef Tag); void getOperandBundleTags(SmallVectorImpl &Tags) const; uint32_t getOperandBundleTagID(StringRef Tag) const; /// A set of interned synchronization scopes. The StringMap maps /// synchronization scope names to their respective synchronization scope IDs. StringMap SSC; /// getOrInsertSyncScopeID - Maps synchronization scope name to /// synchronization scope ID. Every synchronization scope registered with /// LLVMContext has unique ID except pre-defined ones. SyncScope::ID getOrInsertSyncScopeID(StringRef SSN); /// getSyncScopeNames - Populates client supplied SmallVector with /// synchronization scope names registered with LLVMContext. Synchronization /// scope names are ordered by increasing synchronization scope IDs. void getSyncScopeNames(SmallVectorImpl &SSNs) const; /// Maintain the GC name for each function. /// /// This saves allocating an additional word in Function for programs which /// do not use GC (i.e., most programs) at the cost of increased overhead for /// clients which do use GC. DenseMap GCNames; /// Flag to indicate if Value (other than GlobalValue) retains their name or /// not. bool DiscardValueNames = false; LLVMContextImpl(LLVMContext &C); ~LLVMContextImpl(); /// Destroy the ConstantArrays if they are not used. void dropTriviallyDeadConstantArrays(); mutable OptPassGate *OPG = nullptr; /// Access the object which can disable optional passes and individual /// optimizations at compile time. OptPassGate &getOptPassGate() const; /// Set the object which can disable optional passes and individual /// optimizations at compile time. /// /// The lifetime of the object must be guaranteed to extend as long as the /// LLVMContext is used by compilation. void setOptPassGate(OptPassGate &); /// Mapping of blocks to collections of "trailing" DbgVariableRecords. As part /// of the "RemoveDIs" project, debug-info variable location records are going /// to cease being instructions... which raises the problem of where should /// they be recorded when we remove the terminator of a blocks, such as: /// /// %foo = add i32 0, 0 /// br label %bar /// /// If the branch is removed, a legitimate transient state while editing a /// block, any debug-records between those two instructions will not have a /// location. Each block thus records any DbgVariableRecord records that /// "trail" in such a way. These are stored in LLVMContext because typically /// LLVM only edits a small number of blocks at a time, so there's no need to /// bloat BasicBlock with such a data structure. SmallDenseMap TrailingDbgRecords; // Set, get and delete operations for TrailingDbgRecords. void setTrailingDbgRecords(BasicBlock *B, DbgMarker *M) { assert(!TrailingDbgRecords.count(B)); TrailingDbgRecords[B] = M; } DbgMarker *getTrailingDbgRecords(BasicBlock *B) { return TrailingDbgRecords.lookup(B); } void deleteTrailingDbgRecords(BasicBlock *B) { TrailingDbgRecords.erase(B); } std::string DefaultTargetCPU; std::string DefaultTargetFeatures; }; } // end namespace llvm #endif // LLVM_LIB_IR_LLVMCONTEXTIMPL_H