//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the debug info Metadata classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/DebugInfoMetadata.h" #include "LLVMContextImpl.h" #include "MetadataImpl.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/DebugProgramInstruction.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include #include using namespace llvm; namespace llvm { // Use FS-AFDO discriminator. cl::opt EnableFSDiscriminator( "enable-fs-discriminator", cl::Hidden, cl::desc("Enable adding flow sensitive discriminators")); } // namespace llvm uint32_t DIType::getAlignInBits() const { return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32); } const DIExpression::FragmentInfo DebugVariable::DefaultFragment = { std::numeric_limits::max(), std::numeric_limits::min()}; DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII) : Variable(DII->getVariable()), Fragment(DII->getExpression()->getFragmentInfo()), InlinedAt(DII->getDebugLoc().getInlinedAt()) {} DebugVariable::DebugVariable(const DbgVariableRecord *DVR) : Variable(DVR->getVariable()), Fragment(DVR->getExpression()->getFragmentInfo()), InlinedAt(DVR->getDebugLoc().getInlinedAt()) {} DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI) : DebugVariable(DVI->getVariable(), std::nullopt, DVI->getDebugLoc()->getInlinedAt()) {} DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Column, ArrayRef MDs, bool ImplicitCode) : MDNode(C, DILocationKind, Storage, MDs) { assert((MDs.size() == 1 || MDs.size() == 2) && "Expected a scope and optional inlined-at"); // Set line and column. assert(Column < (1u << 16) && "Expected 16-bit column"); SubclassData32 = Line; SubclassData16 = Column; setImplicitCode(ImplicitCode); } static void adjustColumn(unsigned &Column) { // Set to unknown on overflow. We only have 16 bits to play with here. if (Column >= (1u << 16)) Column = 0; } DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt, bool ImplicitCode, StorageType Storage, bool ShouldCreate) { // Fixup column. adjustColumn(Column); if (Storage == Uniqued) { if (auto *N = getUniqued(Context.pImpl->DILocations, DILocationInfo::KeyTy(Line, Column, Scope, InlinedAt, ImplicitCode))) return N; if (!ShouldCreate) return nullptr; } else { assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); } SmallVector Ops; Ops.push_back(Scope); if (InlinedAt) Ops.push_back(InlinedAt); return storeImpl(new (Ops.size(), Storage) DILocation( Context, Storage, Line, Column, Ops, ImplicitCode), Storage, Context.pImpl->DILocations); } DILocation *DILocation::getMergedLocations(ArrayRef Locs) { if (Locs.empty()) return nullptr; if (Locs.size() == 1) return Locs[0]; auto *Merged = Locs[0]; for (DILocation *L : llvm::drop_begin(Locs)) { Merged = getMergedLocation(Merged, L); if (Merged == nullptr) break; } return Merged; } DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) { if (!LocA || !LocB) return nullptr; if (LocA == LocB) return LocA; LLVMContext &C = LocA->getContext(); using LocVec = SmallVector; LocVec ALocs; LocVec BLocs; SmallDenseMap, unsigned, 4> ALookup; // Walk through LocA and its inlined-at locations, populate them in ALocs and // save the index for the subprogram and inlined-at pair, which we use to find // a matching starting location in LocB's chain. for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) { ALocs.push_back(L); auto Res = ALookup.try_emplace( {L->getScope()->getSubprogram(), L->getInlinedAt()}, I); assert(Res.second && "Multiple pairs in a location chain?"); (void)Res; } LocVec::reverse_iterator ARIt = ALocs.rend(); LocVec::reverse_iterator BRIt = BLocs.rend(); // Populate BLocs and look for a matching starting location, the first // location with the same subprogram and inlined-at location as in LocA's // chain. Since the two locations have the same inlined-at location we do // not need to look at those parts of the chains. for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) { BLocs.push_back(L); if (ARIt != ALocs.rend()) // We have already found a matching starting location. continue; auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()}); if (IT == ALookup.end()) continue; // The + 1 is to account for the &*rev_it = &(it - 1) relationship. ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1); BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1); // If we have found a matching starting location we do not need to add more // locations to BLocs, since we will only look at location pairs preceding // the matching starting location, and adding more elements to BLocs could // invalidate the iterator that we initialized here. break; } // Merge the two locations if possible, using the supplied // inlined-at location for the created location. auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2, DILocation *InlinedAt) -> DILocation * { if (L1 == L2) return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(), InlinedAt); // If the locations originate from different subprograms we can't produce // a common location. if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram()) return nullptr; // Return the nearest common scope inside a subprogram. auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * { SmallPtrSet Scopes; for (; S1; S1 = S1->getScope()) { Scopes.insert(S1); if (isa(S1)) break; } for (; S2; S2 = S2->getScope()) { if (Scopes.count(S2)) return S2; if (isa(S2)) break; } return nullptr; }; auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope()); assert(Scope && "No common scope in the same subprogram?"); bool SameLine = L1->getLine() == L2->getLine(); bool SameCol = L1->getColumn() == L2->getColumn(); unsigned Line = SameLine ? L1->getLine() : 0; unsigned Col = SameLine && SameCol ? L1->getColumn() : 0; return DILocation::get(C, Line, Col, Scope, InlinedAt); }; DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr; // If we have found a common starting location, walk up the inlined-at chains // and try to produce common locations. for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) { DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result); if (!Tmp) // We have walked up to a point in the chains where the two locations // are irreconsilable. At this point Result contains the nearest common // location in the inlined-at chains of LocA and LocB, so we break here. break; Result = Tmp; } if (Result) return Result; // We ended up with LocA and LocB as irreconsilable locations. Produce a // location at 0:0 with one of the locations' scope. The function has // historically picked A's scope, and a nullptr inlined-at location, so that // behavior is mimicked here but I am not sure if this is always the correct // way to handle this. return DILocation::get(C, 0, 0, LocA->getScope(), nullptr); } std::optional DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) { std::array Components = {BD, DF, CI}; uint64_t RemainingWork = 0U; // We use RemainingWork to figure out if we have no remaining components to // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to // encode anything for the latter 2. // Since any of the input components is at most 32 bits, their sum will be // less than 34 bits, and thus RemainingWork won't overflow. RemainingWork = std::accumulate(Components.begin(), Components.end(), RemainingWork); int I = 0; unsigned Ret = 0; unsigned NextBitInsertionIndex = 0; while (RemainingWork > 0) { unsigned C = Components[I++]; RemainingWork -= C; unsigned EC = encodeComponent(C); Ret |= (EC << NextBitInsertionIndex); NextBitInsertionIndex += encodingBits(C); } // Encoding may be unsuccessful because of overflow. We determine success by // checking equivalence of components before & after encoding. Alternatively, // we could determine Success during encoding, but the current alternative is // simpler. unsigned TBD, TDF, TCI = 0; decodeDiscriminator(Ret, TBD, TDF, TCI); if (TBD == BD && TDF == DF && TCI == CI) return Ret; return std::nullopt; } void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, unsigned &CI) { BD = getUnsignedFromPrefixEncoding(D); DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D)); CI = getUnsignedFromPrefixEncoding( getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); } dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; } DINode::DIFlags DINode::getFlag(StringRef Flag) { return StringSwitch(Flag) #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) #include "llvm/IR/DebugInfoFlags.def" .Default(DINode::FlagZero); } StringRef DINode::getFlagString(DIFlags Flag) { switch (Flag) { #define HANDLE_DI_FLAG(ID, NAME) \ case Flag##NAME: \ return "DIFlag" #NAME; #include "llvm/IR/DebugInfoFlags.def" } return ""; } DINode::DIFlags DINode::splitFlags(DIFlags Flags, SmallVectorImpl &SplitFlags) { // Flags that are packed together need to be specially handled, so // that, for example, we emit "DIFlagPublic" and not // "DIFlagPrivate | DIFlagProtected". if (DIFlags A = Flags & FlagAccessibility) { if (A == FlagPrivate) SplitFlags.push_back(FlagPrivate); else if (A == FlagProtected) SplitFlags.push_back(FlagProtected); else SplitFlags.push_back(FlagPublic); Flags &= ~A; } if (DIFlags R = Flags & FlagPtrToMemberRep) { if (R == FlagSingleInheritance) SplitFlags.push_back(FlagSingleInheritance); else if (R == FlagMultipleInheritance) SplitFlags.push_back(FlagMultipleInheritance); else SplitFlags.push_back(FlagVirtualInheritance); Flags &= ~R; } if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { Flags &= ~FlagIndirectVirtualBase; SplitFlags.push_back(FlagIndirectVirtualBase); } #define HANDLE_DI_FLAG(ID, NAME) \ if (DIFlags Bit = Flags & Flag##NAME) { \ SplitFlags.push_back(Bit); \ Flags &= ~Bit; \ } #include "llvm/IR/DebugInfoFlags.def" return Flags; } DIScope *DIScope::getScope() const { if (auto *T = dyn_cast(this)) return T->getScope(); if (auto *SP = dyn_cast(this)) return SP->getScope(); if (auto *LB = dyn_cast(this)) return LB->getScope(); if (auto *NS = dyn_cast(this)) return NS->getScope(); if (auto *CB = dyn_cast(this)) return CB->getScope(); if (auto *M = dyn_cast(this)) return M->getScope(); assert((isa(this) || isa(this)) && "Unhandled type of scope."); return nullptr; } StringRef DIScope::getName() const { if (auto *T = dyn_cast(this)) return T->getName(); if (auto *SP = dyn_cast(this)) return SP->getName(); if (auto *NS = dyn_cast(this)) return NS->getName(); if (auto *CB = dyn_cast(this)) return CB->getName(); if (auto *M = dyn_cast(this)) return M->getName(); assert((isa(this) || isa(this) || isa(this)) && "Unhandled type of scope."); return ""; } #ifndef NDEBUG static bool isCanonical(const MDString *S) { return !S || !S->getString().empty(); } #endif dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; } GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, MDString *Header, ArrayRef DwarfOps, StorageType Storage, bool ShouldCreate) { unsigned Hash = 0; if (Storage == Uniqued) { GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) return N; if (!ShouldCreate) return nullptr; Hash = Key.getHash(); } else { assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); } // Use a nullptr for empty headers. assert(isCanonical(Header) && "Expected canonical MDString"); Metadata *PreOps[] = {Header}; return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode( Context, Storage, Hash, Tag, PreOps, DwarfOps), Storage, Context.pImpl->GenericDINodes); } void GenericDINode::recalculateHash() { setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); } #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \ do { \ if (Storage == Uniqued) { \ if (auto *N = getUniqued(Context.pImpl->CLASS##s, \ CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \ return N; \ if (!ShouldCreate) \ return nullptr; \ } else { \ assert(ShouldCreate && \ "Expected non-uniqued nodes to always be created"); \ } \ } while (false) #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \ return storeImpl(new (std::size(OPS), Storage) \ CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \ return storeImpl(new (0u, Storage) \ CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \ return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \ Storage, Context.pImpl->CLASS##s) #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \ return storeImpl(new (NUM_OPS, Storage) \ CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ Storage, Context.pImpl->CLASS##s) DISubrange::DISubrange(LLVMContext &C, StorageType Storage, ArrayRef Ops) : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {} DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, StorageType Storage, bool ShouldCreate) { auto *CountNode = ConstantAsMetadata::get( ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); auto *LB = ConstantAsMetadata::get( ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, ShouldCreate); } DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, int64_t Lo, StorageType Storage, bool ShouldCreate) { auto *LB = ConstantAsMetadata::get( ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, ShouldCreate); } DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, Metadata *LB, Metadata *UB, Metadata *Stride, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride)); Metadata *Ops[] = {CountNode, LB, UB, Stride}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops); } DISubrange::BoundType DISubrange::getCount() const { Metadata *CB = getRawCountNode(); if (!CB) return BoundType(); assert((isa(CB) || isa(CB) || isa(CB)) && "Count must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(CB)) return BoundType(cast(MD->getValue())); if (auto *MD = dyn_cast(CB)) return BoundType(MD); if (auto *MD = dyn_cast(CB)) return BoundType(MD); return BoundType(); } DISubrange::BoundType DISubrange::getLowerBound() const { Metadata *LB = getRawLowerBound(); if (!LB) return BoundType(); assert((isa(LB) || isa(LB) || isa(LB)) && "LowerBound must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(LB)) return BoundType(cast(MD->getValue())); if (auto *MD = dyn_cast(LB)) return BoundType(MD); if (auto *MD = dyn_cast(LB)) return BoundType(MD); return BoundType(); } DISubrange::BoundType DISubrange::getUpperBound() const { Metadata *UB = getRawUpperBound(); if (!UB) return BoundType(); assert((isa(UB) || isa(UB) || isa(UB)) && "UpperBound must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(UB)) return BoundType(cast(MD->getValue())); if (auto *MD = dyn_cast(UB)) return BoundType(MD); if (auto *MD = dyn_cast(UB)) return BoundType(MD); return BoundType(); } DISubrange::BoundType DISubrange::getStride() const { Metadata *ST = getRawStride(); if (!ST) return BoundType(); assert((isa(ST) || isa(ST) || isa(ST)) && "Stride must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(ST)) return BoundType(cast(MD->getValue())); if (auto *MD = dyn_cast(ST)) return BoundType(MD); if (auto *MD = dyn_cast(ST)) return BoundType(MD); return BoundType(); } DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage, ArrayRef Ops) : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange, Ops) {} DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context, Metadata *CountNode, Metadata *LB, Metadata *UB, Metadata *Stride, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride)); Metadata *Ops[] = {CountNode, LB, UB, Stride}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops); } DIGenericSubrange::BoundType DIGenericSubrange::getCount() const { Metadata *CB = getRawCountNode(); if (!CB) return BoundType(); assert((isa(CB) || isa(CB)) && "Count must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(CB)) return BoundType(MD); if (auto *MD = dyn_cast(CB)) return BoundType(MD); return BoundType(); } DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const { Metadata *LB = getRawLowerBound(); if (!LB) return BoundType(); assert((isa(LB) || isa(LB)) && "LowerBound must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(LB)) return BoundType(MD); if (auto *MD = dyn_cast(LB)) return BoundType(MD); return BoundType(); } DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const { Metadata *UB = getRawUpperBound(); if (!UB) return BoundType(); assert((isa(UB) || isa(UB)) && "UpperBound must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(UB)) return BoundType(MD); if (auto *MD = dyn_cast(UB)) return BoundType(MD); return BoundType(); } DIGenericSubrange::BoundType DIGenericSubrange::getStride() const { Metadata *ST = getRawStride(); if (!ST) return BoundType(); assert((isa(ST) || isa(ST)) && "Stride must be signed constant or DIVariable or DIExpression"); if (auto *MD = dyn_cast(ST)) return BoundType(MD); if (auto *MD = dyn_cast(ST)) return BoundType(MD); return BoundType(); } DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage, const APInt &Value, bool IsUnsigned, ArrayRef Ops) : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops), Value(Value) { SubclassData32 = IsUnsigned; } DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value, bool IsUnsigned, MDString *Name, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); Metadata *Ops[] = {Name}; DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); } DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, DIFlags Flags, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIBasicType, (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)); Metadata *Ops[] = {nullptr, nullptr, Name}; DEFINE_GETIMPL_STORE(DIBasicType, (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops); } std::optional DIBasicType::getSignedness() const { switch (getEncoding()) { case dwarf::DW_ATE_signed: case dwarf::DW_ATE_signed_char: return Signedness::Signed; case dwarf::DW_ATE_unsigned: case dwarf::DW_ATE_unsigned_char: return Signedness::Unsigned; default: return std::nullopt; } } DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *StringLength, Metadata *StringLengthExp, Metadata *StringLocationExp, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIStringType, (Tag, Name, StringLength, StringLengthExp, StringLocationExp, SizeInBits, AlignInBits, Encoding)); Metadata *Ops[] = {nullptr, nullptr, Name, StringLength, StringLengthExp, StringLocationExp}; DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding), Ops); } DIType *DIDerivedType::getClassType() const { assert(getTag() == dwarf::DW_TAG_ptr_to_member_type); return cast_or_null(getExtraData()); } uint32_t DIDerivedType::getVBPtrOffset() const { assert(getTag() == dwarf::DW_TAG_inheritance); if (auto *CM = cast_or_null(getExtraData())) if (auto *CI = dyn_cast_or_null(CM->getValue())) return static_cast(CI->getZExtValue()); return 0; } Constant *DIDerivedType::getStorageOffsetInBits() const { assert(getTag() == dwarf::DW_TAG_member && isBitField()); if (auto *C = cast_or_null(getExtraData())) return C->getValue(); return nullptr; } Constant *DIDerivedType::getConstant() const { assert((getTag() == dwarf::DW_TAG_member || getTag() == dwarf::DW_TAG_variable) && isStaticMember()); if (auto *C = cast_or_null(getExtraData())) return C->getValue(); return nullptr; } Constant *DIDerivedType::getDiscriminantValue() const { assert(getTag() == dwarf::DW_TAG_member && !isStaticMember()); if (auto *C = cast_or_null(getExtraData())) return C->getValue(); return nullptr; } DIDerivedType *DIDerivedType::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, std::optional DWARFAddressSpace, std::optional PtrAuthData, DIFlags Flags, Metadata *ExtraData, Metadata *Annotations, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIDerivedType, (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, PtrAuthData, Flags, ExtraData, Annotations)); Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations}; DEFINE_GETIMPL_STORE(DIDerivedType, (Tag, Line, SizeInBits, AlignInBits, OffsetInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops); } std::optional DIDerivedType::getPtrAuthData() const { return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? std::optional(PtrAuthData(SubclassData32)) : std::nullopt; } DICompositeType *DICompositeType::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); // Keep this in sync with buildODRType. DEFINE_GETIMPL_LOOKUP(DICompositeType, (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations)); Metadata *Ops[] = {File, Scope, Name, BaseType, Elements, VTableHolder, TemplateParams, Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations}; DEFINE_GETIMPL_STORE( DICompositeType, (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags), Ops); } DICompositeType *DICompositeType::buildODRType( LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; if (!CT) return CT = DICompositeType::getDistinct( Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, &Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations); if (CT->getTag() != Tag) return nullptr; // Only mutate CT if it's a forward declaration and the new operands aren't. assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) return CT; // Mutate CT in place. Keep this in sync with getImpl. CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags); Metadata *Ops[] = {File, Scope, Name, BaseType, Elements, VTableHolder, TemplateParams, &Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations}; assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && "Mismatched number of operands"); for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) if (Ops[I] != CT->getOperand(I)) CT->setOperand(I, Ops[I]); return CT; } DICompositeType *DICompositeType::getODRType( LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; if (!CT) { CT = DICompositeType::getDistinct( Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, &Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, Annotations); } else { if (CT->getTag() != Tag) return nullptr; } return CT; } DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, MDString &Identifier) { assert(!Identifier.getString().empty() && "Expected valid identifier"); if (!Context.isODRUniquingDebugTypes()) return nullptr; return Context.pImpl->DITypeMap->lookup(&Identifier); } DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage, DIFlags Flags, uint8_t CC, ArrayRef Ops) : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0, 0, 0, 0, Flags, Ops), CC(CC) {} DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, uint8_t CC, Metadata *TypeArray, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray}; DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); } DIFile::DIFile(LLVMContext &C, StorageType Storage, std::optional> CS, MDString *Src, ArrayRef Ops) : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops), Checksum(CS), Source(Src) {} // FIXME: Implement this string-enum correspondence with a .def file and macros, // so that the association is explicit rather than implied. static const char *ChecksumKindName[DIFile::CSK_Last] = { "CSK_MD5", "CSK_SHA1", "CSK_SHA256", }; StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); // The first space was originally the CSK_None variant, which is now // obsolete, but the space is still reserved in ChecksumKind, so we account // for it here. return ChecksumKindName[CSKind - 1]; } std::optional DIFile::getChecksumKind(StringRef CSKindStr) { return StringSwitch>(CSKindStr) .Case("CSK_MD5", DIFile::CSK_MD5) .Case("CSK_SHA1", DIFile::CSK_SHA1) .Case("CSK_SHA256", DIFile::CSK_SHA256) .Default(std::nullopt); } DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, MDString *Directory, std::optional> CS, MDString *Source, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Filename) && "Expected canonical MDString"); assert(isCanonical(Directory) && "Expected canonical MDString"); assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); // We do *NOT* expect Source to be a canonical MDString because nullptr // means none, so we need something to represent the empty file. DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source}; DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); } DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage, unsigned SourceLanguage, bool IsOptimized, unsigned RuntimeVersion, unsigned EmissionKind, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, ArrayRef Ops) : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops), SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion), DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind), IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining), DebugInfoForProfiling(DebugInfoForProfiling), RangesBaseAddress(RangesBaseAddress) { assert(Storage != Uniqued); } DICompileUnit *DICompileUnit::getImpl( LLVMContext &Context, unsigned SourceLanguage, Metadata *File, MDString *Producer, bool IsOptimized, MDString *Flags, unsigned RuntimeVersion, MDString *SplitDebugFilename, unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, MDString *SDK, StorageType Storage, bool ShouldCreate) { assert(Storage != Uniqued && "Cannot unique DICompileUnit"); assert(isCanonical(Producer) && "Expected canonical MDString"); assert(isCanonical(Flags) && "Expected canonical MDString"); assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); Metadata *Ops[] = {File, Producer, Flags, SplitDebugFilename, EnumTypes, RetainedTypes, GlobalVariables, ImportedEntities, Macros, SysRoot, SDK}; return storeImpl(new (std::size(Ops), Storage) DICompileUnit( Context, Storage, SourceLanguage, IsOptimized, RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, DebugInfoForProfiling, NameTableKind, RangesBaseAddress, Ops), Storage); } std::optional DICompileUnit::getEmissionKind(StringRef Str) { return StringSwitch>(Str) .Case("NoDebug", NoDebug) .Case("FullDebug", FullDebug) .Case("LineTablesOnly", LineTablesOnly) .Case("DebugDirectivesOnly", DebugDirectivesOnly) .Default(std::nullopt); } std::optional DICompileUnit::getNameTableKind(StringRef Str) { return StringSwitch>(Str) .Case("Default", DebugNameTableKind::Default) .Case("GNU", DebugNameTableKind::GNU) .Case("Apple", DebugNameTableKind::Apple) .Case("None", DebugNameTableKind::None) .Default(std::nullopt); } const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { switch (EK) { case NoDebug: return "NoDebug"; case FullDebug: return "FullDebug"; case LineTablesOnly: return "LineTablesOnly"; case DebugDirectivesOnly: return "DebugDirectivesOnly"; } return nullptr; } const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) { switch (NTK) { case DebugNameTableKind::Default: return nullptr; case DebugNameTableKind::GNU: return "GNU"; case DebugNameTableKind::Apple: return "Apple"; case DebugNameTableKind::None: return "None"; } return nullptr; } DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, unsigned ScopeLine, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, ArrayRef Ops) : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops), Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex), ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) { static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range"); } DISubprogram::DISPFlags DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, unsigned Virtuality, bool IsMainSubprogram) { // We're assuming virtuality is the low-order field. static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) && int(SPFlagPureVirtual) == int(dwarf::DW_VIRTUALITY_pure_virtual), "Virtuality constant mismatch"); return static_cast( (Virtuality & SPFlagVirtuality) | (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) | (IsDefinition ? SPFlagDefinition : SPFlagZero) | (IsOptimized ? SPFlagOptimized : SPFlagZero) | (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero)); } DISubprogram *DILocalScope::getSubprogram() const { if (auto *Block = dyn_cast(this)) return Block->getScope()->getSubprogram(); return const_cast(cast(this)); } DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { if (auto *File = dyn_cast(this)) return File->getScope()->getNonLexicalBlockFileScope(); return const_cast(this); } DILocalScope *DILocalScope::cloneScopeForSubprogram( DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap &Cache) { SmallVector ScopeChain; DIScope *CachedResult = nullptr; for (DIScope *Scope = &RootScope; !isa(Scope); Scope = Scope->getScope()) { if (auto It = Cache.find(Scope); It != Cache.end()) { CachedResult = cast(It->second); break; } ScopeChain.push_back(Scope); } // Recreate the scope chain, bottom-up, starting at the new subprogram (or a // cached result). DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP; for (DIScope *ScopeToUpdate : reverse(ScopeChain)) { TempMDNode ClonedScope = ScopeToUpdate->clone(); cast(*ClonedScope).replaceScope(UpdatedScope); UpdatedScope = cast(MDNode::replaceWithUniqued(std::move(ClonedScope))); Cache[ScopeToUpdate] = UpdatedScope; } return cast(UpdatedScope); } DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) { return StringSwitch(Flag) #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME) #include "llvm/IR/DebugInfoFlags.def" .Default(SPFlagZero); } StringRef DISubprogram::getFlagString(DISPFlags Flag) { switch (Flag) { // Appease a warning. case SPFlagVirtuality: return ""; #define HANDLE_DISP_FLAG(ID, NAME) \ case SPFlag##NAME: \ return "DISPFlag" #NAME; #include "llvm/IR/DebugInfoFlags.def" } return ""; } DISubprogram::DISPFlags DISubprogram::splitFlags(DISPFlags Flags, SmallVectorImpl &SplitFlags) { // Multi-bit fields can require special handling. In our case, however, the // only multi-bit field is virtuality, and all its values happen to be // single-bit values, so the right behavior just falls out. #define HANDLE_DISP_FLAG(ID, NAME) \ if (DISPFlags Bit = Flags & SPFlag##NAME) { \ SplitFlags.push_back(Bit); \ Flags &= ~Bit; \ } #include "llvm/IR/DebugInfoFlags.def" return Flags; } DISubprogram *DISubprogram::getImpl( LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(LinkageName) && "Expected canonical MDString"); assert(isCanonical(TargetFuncName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DISubprogram, (Scope, Name, LinkageName, File, Line, Type, ScopeLine, ContainingType, VirtualIndex, ThisAdjustment, Flags, SPFlags, Unit, TemplateParams, Declaration, RetainedNodes, ThrownTypes, Annotations, TargetFuncName)); SmallVector Ops = { File, Scope, Name, LinkageName, Type, Unit, Declaration, RetainedNodes, ContainingType, TemplateParams, ThrownTypes, Annotations, TargetFuncName}; if (!TargetFuncName) { Ops.pop_back(); if (!Annotations) { Ops.pop_back(); if (!ThrownTypes) { Ops.pop_back(); if (!TemplateParams) { Ops.pop_back(); if (!ContainingType) Ops.pop_back(); } } } } DEFINE_GETIMPL_STORE_N( DISubprogram, (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops, Ops.size()); } bool DISubprogram::describes(const Function *F) const { assert(F && "Invalid function"); return F->getSubprogram() == this; } DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID, StorageType Storage, ArrayRef Ops) : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {} DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Line, unsigned Column, StorageType Storage, bool ShouldCreate) { // Fixup column. adjustColumn(Column); assert(Scope && "Expected scope"); DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); Metadata *Ops[] = {File, Scope}; DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); } DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, Metadata *Scope, Metadata *File, unsigned Discriminator, StorageType Storage, bool ShouldCreate) { assert(Scope && "Expected scope"); DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); Metadata *Ops[] = {File, Scope}; DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); } DINamespace::DINamespace(LLVMContext &Context, StorageType Storage, bool ExportSymbols, ArrayRef Ops) : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) { SubclassData1 = ExportSymbols; } DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, bool ExportSymbols, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); // The nullptr is for DIScope's File operand. This should be refactored. Metadata *Ops[] = {nullptr, Scope, Name}; DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); } DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage, unsigned LineNo, ArrayRef Ops) : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block, Ops) { SubclassData32 = LineNo; } DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope, Metadata *Decl, MDString *Name, Metadata *File, unsigned LineNo, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo)); // The nullptr is for DIScope's File operand. This should be refactored. Metadata *Ops[] = {Scope, Decl, Name, File}; DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops); } DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, bool IsDecl, ArrayRef Ops) : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) { SubclassData1 = IsDecl; SubclassData32 = LineNo; } DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File, Metadata *Scope, MDString *Name, MDString *ConfigurationMacros, MDString *IncludePath, MDString *APINotesFile, unsigned LineNo, bool IsDecl, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros, IncludePath, APINotesFile, LineNo, IsDecl)); Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros, IncludePath, APINotesFile}; DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops); } DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context, StorageType Storage, bool IsDefault, ArrayRef Ops) : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage, dwarf::DW_TAG_template_type_parameter, IsDefault, Ops) {} DITemplateTypeParameter * DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, Metadata *Type, bool isDefault, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault)); Metadata *Ops[] = {Name, Type}; DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops); } DITemplateValueParameter *DITemplateValueParameter::getImpl( LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, (Tag, Name, Type, isDefault, Value)); Metadata *Ops[] = {Name, Type, Value}; DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops); } DIGlobalVariable * DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, bool IsLocalToUnit, bool IsDefinition, Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams, uint32_t AlignInBits, Metadata *Annotations, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(LinkageName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP( DIGlobalVariable, (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)); Metadata *Ops[] = {Scope, Name, File, Type, Name, LinkageName, StaticDataMemberDeclaration, TemplateParams, Annotations}; DEFINE_GETIMPL_STORE(DIGlobalVariable, (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); } DILocalVariable * DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, Metadata *Type, unsigned Arg, DIFlags Flags, uint32_t AlignInBits, Metadata *Annotations, StorageType Storage, bool ShouldCreate) { // 64K ought to be enough for any frontend. assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); assert(Scope && "Expected scope"); assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, Flags, AlignInBits, Annotations)); Metadata *Ops[] = {Scope, Name, File, Type, Annotations}; DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); } DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, signed Line, ArrayRef Ops, uint32_t AlignInBits) : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) { SubclassData32 = AlignInBits; } std::optional DIVariable::getSizeInBits() const { // This is used by the Verifier so be mindful of broken types. const Metadata *RawType = getRawType(); while (RawType) { // Try to get the size directly. if (auto *T = dyn_cast(RawType)) if (uint64_t Size = T->getSizeInBits()) return Size; if (auto *DT = dyn_cast(RawType)) { // Look at the base type. RawType = DT->getRawBaseType(); continue; } // Missing type or size. break; } // Fail gracefully. return std::nullopt; } DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line, ArrayRef Ops) : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) { SubclassData32 = Line; } DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, Metadata *File, unsigned Line, StorageType Storage, bool ShouldCreate) { assert(Scope && "Expected scope"); assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line)); Metadata *Ops[] = {Scope, Name, File}; DEFINE_GETIMPL_STORE(DILabel, (Line), Ops); } DIExpression *DIExpression::getImpl(LLVMContext &Context, ArrayRef Elements, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); } bool DIExpression::isEntryValue() const { if (auto singleLocElts = getSingleLocationExpressionElements()) { return singleLocElts->size() > 0 && (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value; } return false; } bool DIExpression::startsWithDeref() const { if (auto singleLocElts = getSingleLocationExpressionElements()) return singleLocElts->size() > 0 && (*singleLocElts)[0] == dwarf::DW_OP_deref; return false; } bool DIExpression::isDeref() const { if (auto singleLocElts = getSingleLocationExpressionElements()) return singleLocElts->size() == 1 && (*singleLocElts)[0] == dwarf::DW_OP_deref; return false; } DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage, bool ShouldCreate) { // Uniqued DIAssignID are not supported as the instance address *is* the ID. assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported"); return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage); } unsigned DIExpression::ExprOperand::getSize() const { uint64_t Op = getOp(); if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31) return 2; switch (Op) { case dwarf::DW_OP_LLVM_convert: case dwarf::DW_OP_LLVM_fragment: case dwarf::DW_OP_LLVM_extract_bits_sext: case dwarf::DW_OP_LLVM_extract_bits_zext: case dwarf::DW_OP_bregx: return 3; case dwarf::DW_OP_constu: case dwarf::DW_OP_consts: case dwarf::DW_OP_deref_size: case dwarf::DW_OP_plus_uconst: case dwarf::DW_OP_LLVM_tag_offset: case dwarf::DW_OP_LLVM_entry_value: case dwarf::DW_OP_LLVM_arg: case dwarf::DW_OP_regx: return 2; default: return 1; } } bool DIExpression::isValid() const { for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { // Check that there's space for the operand. if (I->get() + I->getSize() > E->get()) return false; uint64_t Op = I->getOp(); if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) || (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)) return true; // Check that the operand is valid. switch (Op) { default: return false; case dwarf::DW_OP_LLVM_fragment: // A fragment operator must appear at the end. return I->get() + I->getSize() == E->get(); case dwarf::DW_OP_stack_value: { // Must be the last one or followed by a DW_OP_LLVM_fragment. if (I->get() + I->getSize() == E->get()) break; auto J = I; if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) return false; break; } case dwarf::DW_OP_swap: { // Must be more than one implicit element on the stack. // FIXME: A better way to implement this would be to add a local variable // that keeps track of the stack depth and introduce something like a // DW_LLVM_OP_implicit_location as a placeholder for the location this // DIExpression is attached to, or else pass the number of implicit stack // elements into isValid. if (getNumElements() == 1) return false; break; } case dwarf::DW_OP_LLVM_entry_value: { // An entry value operator must appear at the beginning or immediately // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can // currently only be 1, because we support only entry values of a simple // register location. One reason for this is that we currently can't // calculate the size of the resulting DWARF block for other expressions. auto FirstOp = expr_op_begin(); if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0) ++FirstOp; return I->get() == FirstOp->get() && I->getArg(0) == 1; } case dwarf::DW_OP_LLVM_implicit_pointer: case dwarf::DW_OP_LLVM_convert: case dwarf::DW_OP_LLVM_arg: case dwarf::DW_OP_LLVM_tag_offset: case dwarf::DW_OP_LLVM_extract_bits_sext: case dwarf::DW_OP_LLVM_extract_bits_zext: case dwarf::DW_OP_constu: case dwarf::DW_OP_plus_uconst: case dwarf::DW_OP_plus: case dwarf::DW_OP_minus: case dwarf::DW_OP_mul: case dwarf::DW_OP_div: case dwarf::DW_OP_mod: case dwarf::DW_OP_or: case dwarf::DW_OP_and: case dwarf::DW_OP_xor: case dwarf::DW_OP_shl: case dwarf::DW_OP_shr: case dwarf::DW_OP_shra: case dwarf::DW_OP_deref: case dwarf::DW_OP_deref_size: case dwarf::DW_OP_xderef: case dwarf::DW_OP_lit0: case dwarf::DW_OP_not: case dwarf::DW_OP_dup: case dwarf::DW_OP_regx: case dwarf::DW_OP_bregx: case dwarf::DW_OP_push_object_address: case dwarf::DW_OP_over: case dwarf::DW_OP_consts: case dwarf::DW_OP_eq: case dwarf::DW_OP_ne: case dwarf::DW_OP_gt: case dwarf::DW_OP_ge: case dwarf::DW_OP_lt: case dwarf::DW_OP_le: break; } } return true; } bool DIExpression::isImplicit() const { if (!isValid()) return false; if (getNumElements() == 0) return false; for (const auto &It : expr_ops()) { switch (It.getOp()) { default: break; case dwarf::DW_OP_stack_value: return true; } } return false; } bool DIExpression::isComplex() const { if (!isValid()) return false; if (getNumElements() == 0) return false; // If there are any elements other than fragment or tag_offset, then some // kind of complex computation occurs. for (const auto &It : expr_ops()) { switch (It.getOp()) { case dwarf::DW_OP_LLVM_tag_offset: case dwarf::DW_OP_LLVM_fragment: case dwarf::DW_OP_LLVM_arg: continue; default: return true; } } return false; } bool DIExpression::isSingleLocationExpression() const { if (!isValid()) return false; if (getNumElements() == 0) return true; auto ExprOpBegin = expr_ops().begin(); auto ExprOpEnd = expr_ops().end(); if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) { if (ExprOpBegin->getArg(0) != 0) return false; ++ExprOpBegin; } return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; }); } std::optional> DIExpression::getSingleLocationExpressionElements() const { // Check for `isValid` covered by `isSingleLocationExpression`. if (!isSingleLocationExpression()) return std::nullopt; // An empty expression is already non-variadic. if (!getNumElements()) return ArrayRef(); // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do // anything. if (getElements()[0] == dwarf::DW_OP_LLVM_arg) return getElements().drop_front(2); return getElements(); } const DIExpression * DIExpression::convertToUndefExpression(const DIExpression *Expr) { SmallVector UndefOps; if (auto FragmentInfo = Expr->getFragmentInfo()) { UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits, FragmentInfo->SizeInBits}); } return DIExpression::get(Expr->getContext(), UndefOps); } const DIExpression * DIExpression::convertToVariadicExpression(const DIExpression *Expr) { if (any_of(Expr->expr_ops(), [](auto ExprOp) { return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; })) return Expr; SmallVector NewOps; NewOps.reserve(Expr->getNumElements() + 2); NewOps.append({dwarf::DW_OP_LLVM_arg, 0}); NewOps.append(Expr->elements_begin(), Expr->elements_end()); return DIExpression::get(Expr->getContext(), NewOps); } std::optional DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) { if (!Expr) return std::nullopt; if (auto Elts = Expr->getSingleLocationExpressionElements()) return DIExpression::get(Expr->getContext(), *Elts); return std::nullopt; } void DIExpression::canonicalizeExpressionOps(SmallVectorImpl &Ops, const DIExpression *Expr, bool IsIndirect) { // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0` // to the existing expression ops. if (none_of(Expr->expr_ops(), [](auto ExprOp) { return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; })) Ops.append({dwarf::DW_OP_LLVM_arg, 0}); // If Expr is not indirect, we only need to insert the expression elements and // we're done. if (!IsIndirect) { Ops.append(Expr->elements_begin(), Expr->elements_end()); return; } // If Expr is indirect, insert the implied DW_OP_deref at the end of the // expression but before DW_OP_{stack_value, LLVM_fragment} if they are // present. for (auto Op : Expr->expr_ops()) { if (Op.getOp() == dwarf::DW_OP_stack_value || Op.getOp() == dwarf::DW_OP_LLVM_fragment) { Ops.push_back(dwarf::DW_OP_deref); IsIndirect = false; } Op.appendToVector(Ops); } if (IsIndirect) Ops.push_back(dwarf::DW_OP_deref); } bool DIExpression::isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect) { SmallVector FirstOps; DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect); SmallVector SecondOps; DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr, SecondIndirect); return FirstOps == SecondOps; } std::optional DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { for (auto I = Start; I != End; ++I) if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; return Info; } return std::nullopt; } std::optional DIExpression::getActiveBits(DIVariable *Var) { std::optional InitialActiveBits = Var->getSizeInBits(); std::optional ActiveBits = InitialActiveBits; for (auto Op : expr_ops()) { switch (Op.getOp()) { default: // We assume the worst case for anything we don't currently handle and // revert to the initial active bits. ActiveBits = InitialActiveBits; break; case dwarf::DW_OP_LLVM_extract_bits_zext: case dwarf::DW_OP_LLVM_extract_bits_sext: { // We can't handle an extract whose sign doesn't match that of the // variable. std::optional VarSign = Var->getSignedness(); bool VarSigned = (VarSign == DIBasicType::Signedness::Signed); bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext); if (!VarSign || VarSigned != OpSigned) { ActiveBits = InitialActiveBits; break; } [[fallthrough]]; } case dwarf::DW_OP_LLVM_fragment: // Extract or fragment narrows the active bits if (ActiveBits) ActiveBits = std::min(*ActiveBits, Op.getArg(1)); else ActiveBits = Op.getArg(1); break; } } return ActiveBits; } void DIExpression::appendOffset(SmallVectorImpl &Ops, int64_t Offset) { if (Offset > 0) { Ops.push_back(dwarf::DW_OP_plus_uconst); Ops.push_back(Offset); } else if (Offset < 0) { Ops.push_back(dwarf::DW_OP_constu); // Avoid UB when encountering LLONG_MIN, because in 2's complement // abs(LLONG_MIN) is LLONG_MAX+1. uint64_t AbsMinusOne = -(Offset+1); Ops.push_back(AbsMinusOne + 1); Ops.push_back(dwarf::DW_OP_minus); } } bool DIExpression::extractIfOffset(int64_t &Offset) const { auto SingleLocEltsOpt = getSingleLocationExpressionElements(); if (!SingleLocEltsOpt) return false; auto SingleLocElts = *SingleLocEltsOpt; if (SingleLocElts.size() == 0) { Offset = 0; return true; } if (SingleLocElts.size() == 2 && SingleLocElts[0] == dwarf::DW_OP_plus_uconst) { Offset = SingleLocElts[1]; return true; } if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) { if (SingleLocElts[2] == dwarf::DW_OP_plus) { Offset = SingleLocElts[1]; return true; } if (SingleLocElts[2] == dwarf::DW_OP_minus) { Offset = -SingleLocElts[1]; return true; } } return false; } bool DIExpression::extractLeadingOffset( int64_t &OffsetInBytes, SmallVectorImpl &RemainingOps) const { OffsetInBytes = 0; RemainingOps.clear(); auto SingleLocEltsOpt = getSingleLocationExpressionElements(); if (!SingleLocEltsOpt) return false; auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end()); auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin()); while (ExprOpIt != ExprOpEnd) { uint64_t Op = ExprOpIt->getOp(); if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size || Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment || Op == dwarf::DW_OP_LLVM_extract_bits_zext || Op == dwarf::DW_OP_LLVM_extract_bits_sext) { break; } else if (Op == dwarf::DW_OP_plus_uconst) { OffsetInBytes += ExprOpIt->getArg(0); } else if (Op == dwarf::DW_OP_constu) { uint64_t Value = ExprOpIt->getArg(0); ++ExprOpIt; if (ExprOpIt->getOp() == dwarf::DW_OP_plus) OffsetInBytes += Value; else if (ExprOpIt->getOp() == dwarf::DW_OP_minus) OffsetInBytes -= Value; else return false; } else { // Not a const plus/minus operation or deref. return false; } ++ExprOpIt; } RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase()); return true; } bool DIExpression::hasAllLocationOps(unsigned N) const { SmallDenseSet SeenOps; for (auto ExprOp : expr_ops()) if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) SeenOps.insert(ExprOp.getArg(0)); for (uint64_t Idx = 0; Idx < N; ++Idx) if (!SeenOps.contains(Idx)) return false; return true; } const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr, unsigned &AddrClass) { // FIXME: This seems fragile. Nothing that verifies that these elements // actually map to ops and not operands. auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements(); if (!SingleLocEltsOpt) return nullptr; auto SingleLocElts = *SingleLocEltsOpt; const unsigned PatternSize = 4; if (SingleLocElts.size() >= PatternSize && SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu && SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap && SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) { AddrClass = SingleLocElts[PatternSize - 3]; if (SingleLocElts.size() == PatternSize) return nullptr; return DIExpression::get( Expr->getContext(), ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize)); } return Expr; } DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset) { SmallVector Ops; if (Flags & DIExpression::DerefBefore) Ops.push_back(dwarf::DW_OP_deref); appendOffset(Ops, Offset); if (Flags & DIExpression::DerefAfter) Ops.push_back(dwarf::DW_OP_deref); bool StackValue = Flags & DIExpression::StackValue; bool EntryValue = Flags & DIExpression::EntryValue; return prependOpcodes(Expr, Ops, StackValue, EntryValue); } DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr, ArrayRef Ops, unsigned ArgNo, bool StackValue) { assert(Expr && "Can't add ops to this expression"); // Handle non-variadic intrinsics by prepending the opcodes. if (!any_of(Expr->expr_ops(), [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) { assert(ArgNo == 0 && "Location Index must be 0 for a non-variadic expression."); SmallVector NewOps(Ops.begin(), Ops.end()); return DIExpression::prependOpcodes(Expr, NewOps, StackValue); } SmallVector NewOps; for (auto Op : Expr->expr_ops()) { // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. if (StackValue) { if (Op.getOp() == dwarf::DW_OP_stack_value) StackValue = false; else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { NewOps.push_back(dwarf::DW_OP_stack_value); StackValue = false; } } Op.appendToVector(NewOps); if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo) NewOps.insert(NewOps.end(), Ops.begin(), Ops.end()); } if (StackValue) NewOps.push_back(dwarf::DW_OP_stack_value); return DIExpression::get(Expr->getContext(), NewOps); } DIExpression *DIExpression::replaceArg(const DIExpression *Expr, uint64_t OldArg, uint64_t NewArg) { assert(Expr && "Can't replace args in this expression"); SmallVector NewOps; for (auto Op : Expr->expr_ops()) { if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) { Op.appendToVector(NewOps); continue; } NewOps.push_back(dwarf::DW_OP_LLVM_arg); uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0); // OldArg has been deleted from the Op list, so decrement all indices // greater than it. if (Arg > OldArg) --Arg; NewOps.push_back(Arg); } return DIExpression::get(Expr->getContext(), NewOps); } DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, SmallVectorImpl &Ops, bool StackValue, bool EntryValue) { assert(Expr && "Can't prepend ops to this expression"); if (EntryValue) { Ops.push_back(dwarf::DW_OP_LLVM_entry_value); // Use a block size of 1 for the target register operand. The // DWARF backend currently cannot emit entry values with a block // size > 1. Ops.push_back(1); } // If there are no ops to prepend, do not even add the DW_OP_stack_value. if (Ops.empty()) StackValue = false; for (auto Op : Expr->expr_ops()) { // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. if (StackValue) { if (Op.getOp() == dwarf::DW_OP_stack_value) StackValue = false; else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { Ops.push_back(dwarf::DW_OP_stack_value); StackValue = false; } } Op.appendToVector(Ops); } if (StackValue) Ops.push_back(dwarf::DW_OP_stack_value); return DIExpression::get(Expr->getContext(), Ops); } DIExpression *DIExpression::append(const DIExpression *Expr, ArrayRef Ops) { assert(Expr && !Ops.empty() && "Can't append ops to this expression"); // Copy Expr's current op list. SmallVector NewOps; for (auto Op : Expr->expr_ops()) { // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. if (Op.getOp() == dwarf::DW_OP_stack_value || Op.getOp() == dwarf::DW_OP_LLVM_fragment) { NewOps.append(Ops.begin(), Ops.end()); // Ensure that the new opcodes are only appended once. Ops = std::nullopt; } Op.appendToVector(NewOps); } NewOps.append(Ops.begin(), Ops.end()); auto *result = DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath(); assert(result->isValid() && "concatenated expression is not valid"); return result; } DIExpression *DIExpression::appendToStack(const DIExpression *Expr, ArrayRef Ops) { assert(Expr && !Ops.empty() && "Can't append ops to this expression"); assert(std::none_of(expr_op_iterator(Ops.begin()), expr_op_iterator(Ops.end()), [](auto Op) { return Op.getOp() == dwarf::DW_OP_stack_value || Op.getOp() == dwarf::DW_OP_LLVM_fragment; }) && "Can't append this op"); // Append a DW_OP_deref after Expr's current op list if it's non-empty and // has no DW_OP_stack_value. // // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. std::optional FI = Expr->getFragmentInfo(); unsigned DropUntilStackValue = FI ? 3 : 0; ArrayRef ExprOpsBeforeFragment = Expr->getElements().drop_back(DropUntilStackValue); bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); // Append a DW_OP_deref after Expr's current op list if needed, then append // the new ops, and finally ensure that a single DW_OP_stack_value is present. SmallVector NewOps; if (NeedsDeref) NewOps.push_back(dwarf::DW_OP_deref); NewOps.append(Ops.begin(), Ops.end()); if (NeedsStackValue) NewOps.push_back(dwarf::DW_OP_stack_value); return DIExpression::append(Expr, NewOps); } std::optional DIExpression::createFragmentExpression( const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { SmallVector Ops; // Track whether it's safe to split the value at the top of the DWARF stack, // assuming that it'll be used as an implicit location value. bool CanSplitValue = true; // Track whether we need to add a fragment expression to the end of Expr. bool EmitFragment = true; // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. if (Expr) { for (auto Op : Expr->expr_ops()) { switch (Op.getOp()) { default: break; case dwarf::DW_OP_shr: case dwarf::DW_OP_shra: case dwarf::DW_OP_shl: case dwarf::DW_OP_plus: case dwarf::DW_OP_plus_uconst: case dwarf::DW_OP_minus: // We can't safely split arithmetic or shift operations into multiple // fragments because we can't express carry-over between fragments. // // FIXME: We *could* preserve the lowest fragment of a constant offset // operation if the offset fits into SizeInBits. CanSplitValue = false; break; case dwarf::DW_OP_deref: case dwarf::DW_OP_deref_size: case dwarf::DW_OP_deref_type: case dwarf::DW_OP_xderef: case dwarf::DW_OP_xderef_size: case dwarf::DW_OP_xderef_type: // Preceeding arithmetic operations have been applied to compute an // address. It's okay to split the value loaded from that address. CanSplitValue = true; break; case dwarf::DW_OP_stack_value: // Bail if this expression computes a value that cannot be split. if (!CanSplitValue) return std::nullopt; break; case dwarf::DW_OP_LLVM_fragment: { // If we've decided we don't need a fragment then give up if we see that // there's already a fragment expression. // FIXME: We could probably do better here if (!EmitFragment) return std::nullopt; // Make the new offset point into the existing fragment. uint64_t FragmentOffsetInBits = Op.getArg(0); uint64_t FragmentSizeInBits = Op.getArg(1); (void)FragmentSizeInBits; assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && "new fragment outside of original fragment"); OffsetInBits += FragmentOffsetInBits; continue; } case dwarf::DW_OP_LLVM_extract_bits_zext: case dwarf::DW_OP_LLVM_extract_bits_sext: { // If we're extracting bits from inside of the fragment that we're // creating then we don't have a fragment after all, and just need to // adjust the offset that we're extracting from. uint64_t ExtractOffsetInBits = Op.getArg(0); uint64_t ExtractSizeInBits = Op.getArg(1); if (ExtractOffsetInBits >= OffsetInBits && ExtractOffsetInBits + ExtractSizeInBits <= OffsetInBits + SizeInBits) { Ops.push_back(Op.getOp()); Ops.push_back(ExtractOffsetInBits - OffsetInBits); Ops.push_back(ExtractSizeInBits); EmitFragment = false; continue; } // If the extracted bits aren't fully contained within the fragment then // give up. // FIXME: We could probably do better here return std::nullopt; } } Op.appendToVector(Ops); } } assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split"); assert(Expr && "Unknown DIExpression"); if (EmitFragment) { Ops.push_back(dwarf::DW_OP_LLVM_fragment); Ops.push_back(OffsetInBits); Ops.push_back(SizeInBits); } return DIExpression::get(Expr->getContext(), Ops); } /// See declaration for more info. bool DIExpression::calculateFragmentIntersect( const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, std::optional &Result, int64_t &OffsetFromLocationInBits) { if (VarFrag.SizeInBits == 0) return false; // Variable size is unknown. // Difference between mem slice start and the dbg location start. // 0 4 8 12 16 ... // | | // dbg location start // | // mem slice start // Here MemStartRelToDbgStartInBits is 8. Note this can be negative. int64_t MemStartRelToDbgStartInBits; { auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL); if (!MemOffsetFromDbgInBytes) return false; // Can't calculate difference in addresses. // Difference between the pointers. MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8; // Add the difference of the offsets. MemStartRelToDbgStartInBits += SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits); } // Out-param. Invert offset to get offset from debug location. OffsetFromLocationInBits = -MemStartRelToDbgStartInBits; // Check if the variable fragment sits outside (before) this memory slice. int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits; if (MemEndRelToDbgStart < 0) { Result = {0, 0}; // Out-param. return true; } // Work towards creating SliceOfVariable which is the bits of the variable // that the memory region covers. // 0 4 8 12 16 ... // | | // dbg location start with VarFrag offset=32 // | // mem slice start: SliceOfVariable offset=40 int64_t MemStartRelToVarInBits = MemStartRelToDbgStartInBits + VarFrag.OffsetInBits; int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits; // If the memory region starts before the debug location the fragment // offset would be negative, which we can't encode. Limit those to 0. This // is fine because those bits necessarily don't overlap with the existing // variable fragment. int64_t MemFragStart = std::max(0, MemStartRelToVarInBits); int64_t MemFragSize = std::max(0, MemEndRelToVarInBits - MemFragStart); DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart); // Intersect the memory region fragment with the variable location fragment. DIExpression::FragmentInfo TrimmedSliceOfVariable = DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag); if (TrimmedSliceOfVariable == VarFrag) Result = std::nullopt; // Out-param. else Result = TrimmedSliceOfVariable; // Out-param. return true; } std::pair DIExpression::constantFold(const ConstantInt *CI) { // Copy the APInt so we can modify it. APInt NewInt = CI->getValue(); SmallVector Ops; // Fold operators only at the beginning of the expression. bool First = true; bool Changed = false; for (auto Op : expr_ops()) { switch (Op.getOp()) { default: // We fold only the leading part of the expression; if we get to a part // that we're going to copy unchanged, and haven't done any folding, // then the entire expression is unchanged and we can return early. if (!Changed) return {this, CI}; First = false; break; case dwarf::DW_OP_LLVM_convert: if (!First) break; Changed = true; if (Op.getArg(1) == dwarf::DW_ATE_signed) NewInt = NewInt.sextOrTrunc(Op.getArg(0)); else { assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand"); NewInt = NewInt.zextOrTrunc(Op.getArg(0)); } continue; } Op.appendToVector(Ops); } if (!Changed) return {this, CI}; return {DIExpression::get(getContext(), Ops), ConstantInt::get(getContext(), NewInt)}; } uint64_t DIExpression::getNumLocationOperands() const { uint64_t Result = 0; for (auto ExprOp : expr_ops()) if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) Result = std::max(Result, ExprOp.getArg(0) + 1); assert(hasAllLocationOps(Result) && "Expression is missing one or more location operands."); return Result; } std::optional DIExpression::isConstant() const { // Recognize signed and unsigned constants. // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value // (DW_OP_LLVM_fragment of Len). // An unsigned constant can be represented as // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len). if ((getNumElements() != 2 && getNumElements() != 3 && getNumElements() != 6) || (getElement(0) != dwarf::DW_OP_consts && getElement(0) != dwarf::DW_OP_constu)) return std::nullopt; if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts) return SignedOrUnsignedConstant::SignedConstant; if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) || (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value || getElement(3) != dwarf::DW_OP_LLVM_fragment))) return std::nullopt; return getElement(0) == dwarf::DW_OP_constu ? SignedOrUnsignedConstant::UnsignedConstant : SignedOrUnsignedConstant::SignedConstant; } DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize, bool Signed) { dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK, dwarf::DW_OP_LLVM_convert, ToSize, TK}}; return Ops; } DIExpression *DIExpression::appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed) { return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed)); } DIGlobalVariableExpression * DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, Metadata *Expression, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); Metadata *Ops[] = {Variable, Expression}; DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); } DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage, unsigned Line, unsigned Attributes, ArrayRef Ops) : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops), Line(Line), Attributes(Attributes) {} DIObjCProperty *DIObjCProperty::getImpl( LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, MDString *GetterName, MDString *SetterName, unsigned Attributes, Metadata *Type, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); assert(isCanonical(GetterName) && "Expected canonical MDString"); assert(isCanonical(SetterName) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, SetterName, Attributes, Type)); Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); } DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File, unsigned Line, MDString *Name, Metadata *Elements, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIImportedEntity, (Tag, Scope, Entity, File, Line, Name, Elements)); Metadata *Ops[] = {Scope, Entity, Name, File, Elements}; DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); } DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, MDString *Name, MDString *Value, StorageType Storage, bool ShouldCreate) { assert(isCanonical(Name) && "Expected canonical MDString"); DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); Metadata *Ops[] = {Name, Value}; DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); } DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, Metadata *File, Metadata *Elements, StorageType Storage, bool ShouldCreate) { DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); Metadata *Ops[] = {File, Elements}; DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); } DIArgList *DIArgList::get(LLVMContext &Context, ArrayRef Args) { auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args)); if (ExistingIt != Context.pImpl->DIArgLists.end()) return *ExistingIt; DIArgList *NewArgList = new DIArgList(Context, Args); Context.pImpl->DIArgLists.insert(NewArgList); return NewArgList; } void DIArgList::handleChangedOperand(void *Ref, Metadata *New) { ValueAsMetadata **OldVMPtr = static_cast(Ref); assert((!New || isa(New)) && "DIArgList must be passed a ValueAsMetadata"); untrack(); // We need to update the set storage once the Args are updated since they // form the key to the DIArgLists store. getContext().pImpl->DIArgLists.erase(this); ValueAsMetadata *NewVM = cast_or_null(New); for (ValueAsMetadata *&VM : Args) { if (&VM == OldVMPtr) { if (NewVM) VM = NewVM; else VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType())); } } // We've changed the contents of this DIArgList, and the set storage may // already contain a DIArgList with our new set of args; if it does, then we // must RAUW this with the existing DIArgList, otherwise we simply insert this // back into the set storage. DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this); if (ExistingArgList) { replaceAllUsesWith(ExistingArgList); // Clear this here so we don't try to untrack in the destructor. Args.clear(); delete this; return; } getContext().pImpl->DIArgLists.insert(this); track(); } void DIArgList::track() { for (ValueAsMetadata *&VAM : Args) if (VAM) MetadataTracking::track(&VAM, *VAM, *this); } void DIArgList::untrack() { for (ValueAsMetadata *&VAM : Args) if (VAM) MetadataTracking::untrack(&VAM, *VAM); } void DIArgList::dropAllReferences(bool Untrack) { if (Untrack) untrack(); Args.clear(); ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false); }