//===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This utility class duplicates basic blocks ending in unconditional branches // into the tails of their predecessors. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TailDuplicator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSSAUpdater.h" #include "llvm/CodeGen/MachineSizeOpts.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "tailduplication" STATISTIC(NumTails, "Number of tails duplicated"); STATISTIC(NumTailDups, "Number of tail duplicated blocks"); STATISTIC(NumTailDupAdded, "Number of instructions added due to tail duplication"); STATISTIC(NumTailDupRemoved, "Number of instructions removed due to tail duplication"); STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); STATISTIC(NumAddedPHIs, "Number of phis added"); // Heuristic for tail duplication. static cl::opt TailDuplicateSize( "tail-dup-size", cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2), cl::Hidden); static cl::opt TailDupIndirectBranchSize( "tail-dup-indirect-size", cl::desc("Maximum instructions to consider tail duplicating blocks that " "end with indirect branches."), cl::init(20), cl::Hidden); static cl::opt TailDupPredSize("tail-dup-pred-size", cl::desc("Maximum predecessors (maximum successors at the " "same time) to consider tail duplicating blocks."), cl::init(16), cl::Hidden); static cl::opt TailDupSuccSize("tail-dup-succ-size", cl::desc("Maximum successors (maximum predecessors at the " "same time) to consider tail duplicating blocks."), cl::init(16), cl::Hidden); static cl::opt TailDupVerify("tail-dup-verify", cl::desc("Verify sanity of PHI instructions during taildup"), cl::init(false), cl::Hidden); static cl::opt TailDupLimit("tail-dup-limit", cl::init(~0U), cl::Hidden); void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc, const MachineBranchProbabilityInfo *MBPIin, MBFIWrapper *MBFIin, ProfileSummaryInfo *PSIin, bool LayoutModeIn, unsigned TailDupSizeIn) { MF = &MFin; TII = MF->getSubtarget().getInstrInfo(); TRI = MF->getSubtarget().getRegisterInfo(); MRI = &MF->getRegInfo(); MBPI = MBPIin; MBFI = MBFIin; PSI = PSIin; TailDupSize = TailDupSizeIn; assert(MBPI != nullptr && "Machine Branch Probability Info required"); LayoutMode = LayoutModeIn; this->PreRegAlloc = PreRegAlloc; } static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) { for (MachineBasicBlock &MBB : llvm::drop_begin(MF)) { SmallSetVector Preds(MBB.pred_begin(), MBB.pred_end()); MachineBasicBlock::iterator MI = MBB.begin(); while (MI != MBB.end()) { if (!MI->isPHI()) break; for (MachineBasicBlock *PredBB : Preds) { bool Found = false; for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); if (PHIBB == PredBB) { Found = true; break; } } if (!Found) { dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": " << *MI; dbgs() << " missing input from predecessor " << printMBBReference(*PredBB) << '\n'; llvm_unreachable(nullptr); } } for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); if (CheckExtra && !Preds.count(PHIBB)) { dbgs() << "Warning: malformed PHI in " << printMBBReference(MBB) << ": " << *MI; dbgs() << " extra input from predecessor " << printMBBReference(*PHIBB) << '\n'; llvm_unreachable(nullptr); } if (PHIBB->getNumber() < 0) { dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": " << *MI; dbgs() << " non-existing " << printMBBReference(*PHIBB) << '\n'; llvm_unreachable(nullptr); } } ++MI; } } } /// Tail duplicate the block and cleanup. /// \p IsSimple - return value of isSimpleBB /// \p MBB - block to be duplicated /// \p ForcedLayoutPred - If non-null, treat this block as the layout /// predecessor, instead of using the ordering in MF /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of /// all Preds that received a copy of \p MBB. /// \p RemovalCallback - if non-null, called just before MBB is deleted. bool TailDuplicator::tailDuplicateAndUpdate( bool IsSimple, MachineBasicBlock *MBB, MachineBasicBlock *ForcedLayoutPred, SmallVectorImpl *DuplicatedPreds, function_ref *RemovalCallback, SmallVectorImpl *CandidatePtr) { // Save the successors list. SmallSetVector Succs(MBB->succ_begin(), MBB->succ_end()); SmallVector TDBBs; SmallVector Copies; if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, TDBBs, Copies, CandidatePtr)) return false; ++NumTails; SmallVector NewPHIs; MachineSSAUpdater SSAUpdate(*MF, &NewPHIs); // TailBB's immediate successors are now successors of those predecessors // which duplicated TailBB. Add the predecessors as sources to the PHI // instructions. bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken(); if (PreRegAlloc) updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs); // If it is dead, remove it. if (isDead) { NumTailDupRemoved += MBB->size(); removeDeadBlock(MBB, RemovalCallback); ++NumDeadBlocks; } // Update SSA form. if (!SSAUpdateVRs.empty()) { for (unsigned VReg : SSAUpdateVRs) { SSAUpdate.Initialize(VReg); // If the original definition is still around, add it as an available // value. MachineInstr *DefMI = MRI->getVRegDef(VReg); MachineBasicBlock *DefBB = nullptr; if (DefMI) { DefBB = DefMI->getParent(); SSAUpdate.AddAvailableValue(DefBB, VReg); } // Add the new vregs as available values. DenseMap::iterator LI = SSAUpdateVals.find(VReg); for (std::pair &J : LI->second) { MachineBasicBlock *SrcBB = J.first; Register SrcReg = J.second; SSAUpdate.AddAvailableValue(SrcBB, SrcReg); } SmallVector DebugUses; // Rewrite uses that are outside of the original def's block. for (MachineOperand &UseMO : llvm::make_early_inc_range(MRI->use_operands(VReg))) { MachineInstr *UseMI = UseMO.getParent(); // Rewrite debug uses last so that they can take advantage of any // register mappings introduced by other users in its BB, since we // cannot create new register definitions specifically for the debug // instruction (as debug instructions should not affect CodeGen). if (UseMI->isDebugValue()) { DebugUses.push_back(&UseMO); continue; } if (UseMI->getParent() == DefBB && !UseMI->isPHI()) continue; SSAUpdate.RewriteUse(UseMO); } for (auto *UseMO : DebugUses) { MachineInstr *UseMI = UseMO->getParent(); UseMO->setReg( SSAUpdate.GetValueInMiddleOfBlock(UseMI->getParent(), true)); } } SSAUpdateVRs.clear(); SSAUpdateVals.clear(); } // Eliminate some of the copies inserted by tail duplication to maintain // SSA form. for (MachineInstr *Copy : Copies) { if (!Copy->isCopy()) continue; Register Dst = Copy->getOperand(0).getReg(); Register Src = Copy->getOperand(1).getReg(); if (MRI->hasOneNonDBGUse(Src) && MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) { // Copy is the only use. Do trivial copy propagation here. MRI->replaceRegWith(Dst, Src); Copy->eraseFromParent(); } } if (NewPHIs.size()) NumAddedPHIs += NewPHIs.size(); if (DuplicatedPreds) *DuplicatedPreds = std::move(TDBBs); return true; } /// Look for small blocks that are unconditionally branched to and do not fall /// through. Tail-duplicate their instructions into their predecessors to /// eliminate (dynamic) branches. bool TailDuplicator::tailDuplicateBlocks() { bool MadeChange = false; if (PreRegAlloc && TailDupVerify) { LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n"); VerifyPHIs(*MF, true); } for (MachineBasicBlock &MBB : llvm::make_early_inc_range(llvm::drop_begin(*MF))) { if (NumTails == TailDupLimit) break; bool IsSimple = isSimpleBB(&MBB); if (!shouldTailDuplicate(IsSimple, MBB)) continue; MadeChange |= tailDuplicateAndUpdate(IsSimple, &MBB, nullptr); } if (PreRegAlloc && TailDupVerify) VerifyPHIs(*MF, false); return MadeChange; } static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB, const MachineRegisterInfo *MRI) { for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { if (UseMI.isDebugValue()) continue; if (UseMI.getParent() != BB) return true; } return false; } static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) { for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) if (MI->getOperand(i + 1).getMBB() == SrcBB) return i; return 0; } // Remember which registers are used by phis in this block. This is // used to determine which registers are liveout while modifying the // block (which is why we need to copy the information). static void getRegsUsedByPHIs(const MachineBasicBlock &BB, DenseSet *UsedByPhi) { for (const auto &MI : BB) { if (!MI.isPHI()) break; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { Register SrcReg = MI.getOperand(i).getReg(); UsedByPhi->insert(SrcReg); } } } /// Add a definition and source virtual registers pair for SSA update. void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg, MachineBasicBlock *BB) { DenseMap::iterator LI = SSAUpdateVals.find(OrigReg); if (LI != SSAUpdateVals.end()) LI->second.push_back(std::make_pair(BB, NewReg)); else { AvailableValsTy Vals; Vals.push_back(std::make_pair(BB, NewReg)); SSAUpdateVals.insert(std::make_pair(OrigReg, Vals)); SSAUpdateVRs.push_back(OrigReg); } } /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the /// source register that's contributed by PredBB and update SSA update map. void TailDuplicator::processPHI( MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, DenseMap &LocalVRMap, SmallVectorImpl> &Copies, const DenseSet &RegsUsedByPhi, bool Remove) { Register DefReg = MI->getOperand(0).getReg(); unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB); assert(SrcOpIdx && "Unable to find matching PHI source?"); Register SrcReg = MI->getOperand(SrcOpIdx).getReg(); unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg(); const TargetRegisterClass *RC = MRI->getRegClass(DefReg); LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg))); // Insert a copy from source to the end of the block. The def register is the // available value liveout of the block. Register NewDef = MRI->createVirtualRegister(RC); Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg))); if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg)) addSSAUpdateEntry(DefReg, NewDef, PredBB); if (!Remove) return; // Remove PredBB from the PHI node. MI->removeOperand(SrcOpIdx + 1); MI->removeOperand(SrcOpIdx); if (MI->getNumOperands() == 1 && !TailBB->hasAddressTaken()) MI->eraseFromParent(); else if (MI->getNumOperands() == 1) MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); } /// Duplicate a TailBB instruction to PredBB and update /// the source operands due to earlier PHI translation. void TailDuplicator::duplicateInstruction( MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, DenseMap &LocalVRMap, const DenseSet &UsedByPhi) { // Allow duplication of CFI instructions. if (MI->isCFIInstruction()) { BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()), TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(MI->getOperand(0).getCFIIndex()) .setMIFlags(MI->getFlags()); return; } MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI); if (PreRegAlloc) { for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) { MachineOperand &MO = NewMI.getOperand(i); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg.isVirtual()) continue; if (MO.isDef()) { const TargetRegisterClass *RC = MRI->getRegClass(Reg); Register NewReg = MRI->createVirtualRegister(RC); MO.setReg(NewReg); LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg)) addSSAUpdateEntry(Reg, NewReg, PredBB); } else { auto VI = LocalVRMap.find(Reg); if (VI != LocalVRMap.end()) { // Need to make sure that the register class of the mapped register // will satisfy the constraints of the class of the register being // replaced. auto *OrigRC = MRI->getRegClass(Reg); auto *MappedRC = MRI->getRegClass(VI->second.Reg); const TargetRegisterClass *ConstrRC; if (VI->second.SubReg != 0) { ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC, VI->second.SubReg); if (ConstrRC) { // The actual constraining (as in "find appropriate new class") // is done by getMatchingSuperRegClass, so now we only need to // change the class of the mapped register. MRI->setRegClass(VI->second.Reg, ConstrRC); } } else { // For mapped registers that do not have sub-registers, simply // restrict their class to match the original one. // We don't want debug instructions affecting the resulting code so // if we're cloning a debug instruction then just use MappedRC // rather than constraining the register class further. ConstrRC = NewMI.isDebugInstr() ? MappedRC : MRI->constrainRegClass(VI->second.Reg, OrigRC); } if (ConstrRC) { // If the class constraining succeeded, we can simply replace // the old register with the mapped one. MO.setReg(VI->second.Reg); // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a // sub-register, we need to compose the sub-register indices. MO.setSubReg( TRI->composeSubRegIndices(VI->second.SubReg, MO.getSubReg())); } else { // The direct replacement is not possible, due to failing register // class constraints. An explicit COPY is necessary. Create one // that can be reused. Register NewReg = MRI->createVirtualRegister(OrigRC); BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(), TII->get(TargetOpcode::COPY), NewReg) .addReg(VI->second.Reg, 0, VI->second.SubReg); LocalVRMap.erase(VI); LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); MO.setReg(NewReg); // The composed VI.Reg:VI.SubReg is replaced with NewReg, which // is equivalent to the whole register Reg. Hence, Reg:subreg // is same as NewReg:subreg, so keep the sub-register index // unchanged. } // Clear any kill flags from this operand. The new register could // have uses after this one, so kills are not valid here. MO.setIsKill(false); } } } } } /// After FromBB is tail duplicated into its predecessor blocks, the successors /// have gained new predecessors. Update the PHI instructions in them /// accordingly. void TailDuplicator::updateSuccessorsPHIs( MachineBasicBlock *FromBB, bool isDead, SmallVectorImpl &TDBBs, SmallSetVector &Succs) { for (MachineBasicBlock *SuccBB : Succs) { for (MachineInstr &MI : *SuccBB) { if (!MI.isPHI()) break; MachineInstrBuilder MIB(*FromBB->getParent(), MI); unsigned Idx = 0; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { MachineOperand &MO = MI.getOperand(i + 1); if (MO.getMBB() == FromBB) { Idx = i; break; } } assert(Idx != 0); MachineOperand &MO0 = MI.getOperand(Idx); Register Reg = MO0.getReg(); if (isDead) { // Folded into the previous BB. // There could be duplicate phi source entries. FIXME: Should sdisel // or earlier pass fixed this? for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) { MachineOperand &MO = MI.getOperand(i + 1); if (MO.getMBB() == FromBB) { MI.removeOperand(i + 1); MI.removeOperand(i); } } } else Idx = 0; // If Idx is set, the operands at Idx and Idx+1 must be removed. // We reuse the location to avoid expensive removeOperand calls. DenseMap::iterator LI = SSAUpdateVals.find(Reg); if (LI != SSAUpdateVals.end()) { // This register is defined in the tail block. for (const std::pair &J : LI->second) { MachineBasicBlock *SrcBB = J.first; // If we didn't duplicate a bb into a particular predecessor, we // might still have added an entry to SSAUpdateVals to correcly // recompute SSA. If that case, avoid adding a dummy extra argument // this PHI. if (!SrcBB->isSuccessor(SuccBB)) continue; Register SrcReg = J.second; if (Idx != 0) { MI.getOperand(Idx).setReg(SrcReg); MI.getOperand(Idx + 1).setMBB(SrcBB); Idx = 0; } else { MIB.addReg(SrcReg).addMBB(SrcBB); } } } else { // Live in tail block, must also be live in predecessors. for (MachineBasicBlock *SrcBB : TDBBs) { if (Idx != 0) { MI.getOperand(Idx).setReg(Reg); MI.getOperand(Idx + 1).setMBB(SrcBB); Idx = 0; } else { MIB.addReg(Reg).addMBB(SrcBB); } } } if (Idx != 0) { MI.removeOperand(Idx + 1); MI.removeOperand(Idx); } } } } /// Determine if it is profitable to duplicate this block. bool TailDuplicator::shouldTailDuplicate(bool IsSimple, MachineBasicBlock &TailBB) { // When doing tail-duplication during layout, the block ordering is in flux, // so canFallThrough returns a result based on incorrect information and // should just be ignored. if (!LayoutMode && TailBB.canFallThrough()) return false; // Don't try to tail-duplicate single-block loops. if (TailBB.isSuccessor(&TailBB)) return false; // Duplicating a BB which has both multiple predecessors and successors will // result in a complex CFG and also may cause huge amount of PHI nodes. If we // want to remove this limitation, we have to address // https://github.com/llvm/llvm-project/issues/78578. if (TailBB.pred_size() > TailDupPredSize && TailBB.succ_size() > TailDupSuccSize) return false; // Set the limit on the cost to duplicate. When optimizing for size, // duplicate only one, because one branch instruction can be eliminated to // compensate for the duplication. unsigned MaxDuplicateCount; bool OptForSize = MF->getFunction().hasOptSize() || llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI); if (TailDupSize == 0) MaxDuplicateCount = TailDuplicateSize; else MaxDuplicateCount = TailDupSize; if (OptForSize) MaxDuplicateCount = 1; // If the block to be duplicated ends in an unanalyzable fallthrough, don't // duplicate it. // A similar check is necessary in MachineBlockPlacement to make sure pairs of // blocks with unanalyzable fallthrough get layed out contiguously. MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) && TailBB.canFallThrough()) return false; // If the target has hardware branch prediction that can handle indirect // branches, duplicating them can often make them predictable when there // are common paths through the code. The limit needs to be high enough // to allow undoing the effects of tail merging and other optimizations // that rearrange the predecessors of the indirect branch. bool HasIndirectbr = false; if (!TailBB.empty()) HasIndirectbr = TailBB.back().isIndirectBranch(); if (HasIndirectbr && PreRegAlloc) MaxDuplicateCount = TailDupIndirectBranchSize; // Check the instructions in the block to determine whether tail-duplication // is invalid or unlikely to be profitable. unsigned InstrCount = 0; for (MachineInstr &MI : TailBB) { // Non-duplicable things shouldn't be tail-duplicated. // CFI instructions are marked as non-duplicable, because Darwin compact // unwind info emission can't handle multiple prologue setups. In case of // DWARF, allow them be duplicated, so that their existence doesn't prevent // tail duplication of some basic blocks, that would be duplicated otherwise. if (MI.isNotDuplicable() && (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() || !MI.isCFIInstruction())) return false; // Convergent instructions can be duplicated only if doing so doesn't add // new control dependencies, which is what we're going to do here. if (MI.isConvergent()) return false; // Do not duplicate 'return' instructions if this is a pre-regalloc run. // A return may expand into a lot more instructions (e.g. reload of callee // saved registers) after PEI. if (PreRegAlloc && MI.isReturn()) return false; // Avoid duplicating calls before register allocation. Calls presents a // barrier to register allocation so duplicating them may end up increasing // spills. if (PreRegAlloc && MI.isCall()) return false; // TailDuplicator::appendCopies will erroneously place COPYs after // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same // bug that was fixed in f7a53d82c090. // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point // for the COPY when replacing PHIs. if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) return false; if (MI.isBundle()) InstrCount += MI.getBundleSize(); else if (!MI.isPHI() && !MI.isMetaInstruction()) InstrCount += 1; if (InstrCount > MaxDuplicateCount) return false; } // Check if any of the successors of TailBB has a PHI node in which the // value corresponding to TailBB uses a subregister. // If a phi node uses a register paired with a subregister, the actual // "value type" of the phi may differ from the type of the register without // any subregisters. Due to a bug, tail duplication may add a new operand // without a necessary subregister, producing an invalid code. This is // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll. // Disable tail duplication for this case for now, until the problem is // fixed. for (auto *SB : TailBB.successors()) { for (auto &I : *SB) { if (!I.isPHI()) break; unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB); assert(Idx != 0); MachineOperand &PU = I.getOperand(Idx); if (PU.getSubReg() != 0) return false; } } if (HasIndirectbr && PreRegAlloc) return true; if (IsSimple) return true; if (!PreRegAlloc) return true; return canCompletelyDuplicateBB(TailBB); } /// True if this BB has only one unconditional jump. bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) { if (TailBB->succ_size() != 1) return false; if (TailBB->pred_empty()) return false; MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(true); if (I == TailBB->end()) return true; return I->isUnconditionalBranch(); } static bool bothUsedInPHI(const MachineBasicBlock &A, const SmallPtrSet &SuccsB) { for (MachineBasicBlock *BB : A.successors()) if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI()) return true; return false; } bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) { for (MachineBasicBlock *PredBB : BB.predecessors()) { if (PredBB->succ_size() > 1) return false; MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) return false; if (!PredCond.empty()) return false; } return true; } bool TailDuplicator::duplicateSimpleBB( MachineBasicBlock *TailBB, SmallVectorImpl &TDBBs, const DenseSet &UsedByPhi) { SmallPtrSet Succs(TailBB->succ_begin(), TailBB->succ_end()); SmallVector Preds(TailBB->predecessors()); bool Changed = false; for (MachineBasicBlock *PredBB : Preds) { if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr()) continue; if (bothUsedInPHI(*PredBB, Succs)) continue; MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) continue; Changed = true; LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB << "From simple Succ: " << *TailBB); MachineBasicBlock *NewTarget = *TailBB->succ_begin(); MachineBasicBlock *NextBB = PredBB->getNextNode(); // Make PredFBB explicit. if (PredCond.empty()) PredFBB = PredTBB; // Make fall through explicit. if (!PredTBB) PredTBB = NextBB; if (!PredFBB) PredFBB = NextBB; // Redirect if (PredFBB == TailBB) PredFBB = NewTarget; if (PredTBB == TailBB) PredTBB = NewTarget; // Make the branch unconditional if possible if (PredTBB == PredFBB) { PredCond.clear(); PredFBB = nullptr; } // Avoid adding fall through branches. if (PredFBB == NextBB) PredFBB = nullptr; if (PredTBB == NextBB && PredFBB == nullptr) PredTBB = nullptr; auto DL = PredBB->findBranchDebugLoc(); TII->removeBranch(*PredBB); if (!PredBB->isSuccessor(NewTarget)) PredBB->replaceSuccessor(TailBB, NewTarget); else { PredBB->removeSuccessor(TailBB, true); assert(PredBB->succ_size() <= 1); } if (PredTBB) TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL); TDBBs.push_back(PredBB); } return Changed; } bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB, MachineBasicBlock *PredBB) { // EH edges are ignored by analyzeBranch. if (PredBB->succ_size() > 1) return false; MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) return false; if (!PredCond.empty()) return false; // FIXME: This is overly conservative; it may be ok to relax this in the // future under more specific conditions. If TailBB is an INLINEASM_BR // indirect target, we need to see if the edge from PredBB to TailBB is from // an INLINEASM_BR in PredBB, and then also if that edge was from the // indirect target list, fallthrough/default target, or potentially both. If // it's both, TailDuplicator::tailDuplicate will remove the edge, corrupting // the successor list in PredBB and predecessor list in TailBB. if (TailBB->isInlineAsmBrIndirectTarget()) return false; return true; } /// If it is profitable, duplicate TailBB's contents in each /// of its predecessors. /// \p IsSimple result of isSimpleBB /// \p TailBB Block to be duplicated. /// \p ForcedLayoutPred When non-null, use this block as the layout predecessor /// instead of the previous block in MF's order. /// \p TDBBs A vector to keep track of all blocks tail-duplicated /// into. /// \p Copies A vector of copy instructions inserted. Used later to /// walk all the inserted copies and remove redundant ones. bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB, MachineBasicBlock *ForcedLayoutPred, SmallVectorImpl &TDBBs, SmallVectorImpl &Copies, SmallVectorImpl *CandidatePtr) { LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB) << '\n'); bool ShouldUpdateTerminators = TailBB->canFallThrough(); DenseSet UsedByPhi; getRegsUsedByPHIs(*TailBB, &UsedByPhi); if (IsSimple) return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi); // Iterate through all the unique predecessors and tail-duplicate this // block into them, if possible. Copying the list ahead of time also // avoids trouble with the predecessor list reallocating. bool Changed = false; SmallSetVector Preds; if (CandidatePtr) Preds.insert(CandidatePtr->begin(), CandidatePtr->end()); else Preds.insert(TailBB->pred_begin(), TailBB->pred_end()); for (MachineBasicBlock *PredBB : Preds) { assert(TailBB != PredBB && "Single-block loop should have been rejected earlier!"); if (!canTailDuplicate(TailBB, PredBB)) continue; // Don't duplicate into a fall-through predecessor (at least for now). // If profile is available, findDuplicateCandidates can choose better // fall-through predecessor. if (!(MF->getFunction().hasProfileData() && LayoutMode)) { bool IsLayoutSuccessor = false; if (ForcedLayoutPred) IsLayoutSuccessor = (ForcedLayoutPred == PredBB); else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough()) IsLayoutSuccessor = true; if (IsLayoutSuccessor) continue; } LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB << "From Succ: " << *TailBB); TDBBs.push_back(PredBB); // Remove PredBB's unconditional branch. TII->removeBranch(*PredBB); // Clone the contents of TailBB into PredBB. DenseMap LocalVRMap; SmallVector, 4> CopyInfos; for (MachineInstr &MI : llvm::make_early_inc_range(*TailBB)) { if (MI.isPHI()) { // Replace the uses of the def of the PHI with the register coming // from PredBB. processPHI(&MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true); } else { // Replace def of virtual registers with new registers, and update // uses with PHI source register or the new registers. duplicateInstruction(&MI, TailBB, PredBB, LocalVRMap, UsedByPhi); } } appendCopies(PredBB, CopyInfos, Copies); NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch // Update the CFG. PredBB->removeSuccessor(PredBB->succ_begin()); assert(PredBB->succ_empty() && "TailDuplicate called on block with multiple successors!"); for (MachineBasicBlock *Succ : TailBB->successors()) PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ)); // Update branches in pred to jump to tail's layout successor if needed. if (ShouldUpdateTerminators) PredBB->updateTerminator(TailBB->getNextNode()); Changed = true; ++NumTailDups; } // If TailBB was duplicated into all its predecessors except for the prior // block, which falls through unconditionally, move the contents of this // block into the prior block. MachineBasicBlock *PrevBB = ForcedLayoutPred; if (!PrevBB) PrevBB = &*std::prev(TailBB->getIterator()); MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; SmallVector PriorCond; // This has to check PrevBB->succ_size() because EH edges are ignored by // analyzeBranch. if (PrevBB->succ_size() == 1 && // Layout preds are not always CFG preds. Check. *PrevBB->succ_begin() == TailBB && !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) && PriorCond.empty() && (!PriorTBB || PriorTBB == TailBB) && TailBB->pred_size() == 1 && !TailBB->hasAddressTaken()) { LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB << "From MBB: " << *TailBB); // There may be a branch to the layout successor. This is unlikely but it // happens. The correct thing to do is to remove the branch before // duplicating the instructions in all cases. bool RemovedBranches = TII->removeBranch(*PrevBB) != 0; // If there are still tail instructions, abort the merge if (PrevBB->getFirstTerminator() == PrevBB->end()) { if (PreRegAlloc) { DenseMap LocalVRMap; SmallVector, 4> CopyInfos; MachineBasicBlock::iterator I = TailBB->begin(); // Process PHI instructions first. while (I != TailBB->end() && I->isPHI()) { // Replace the uses of the def of the PHI with the register coming // from PredBB. MachineInstr *MI = &*I++; processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true); } // Now copy the non-PHI instructions. while (I != TailBB->end()) { // Replace def of virtual registers with new registers, and update // uses with PHI source register or the new registers. MachineInstr *MI = &*I++; assert(!MI->isBundle() && "Not expecting bundles before regalloc!"); duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi); MI->eraseFromParent(); } appendCopies(PrevBB, CopyInfos, Copies); } else { TII->removeBranch(*PrevBB); // No PHIs to worry about, just splice the instructions over. PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end()); } PrevBB->removeSuccessor(PrevBB->succ_begin()); assert(PrevBB->succ_empty()); PrevBB->transferSuccessors(TailBB); // Update branches in PrevBB based on Tail's layout successor. if (ShouldUpdateTerminators) PrevBB->updateTerminator(TailBB->getNextNode()); TDBBs.push_back(PrevBB); Changed = true; } else { LLVM_DEBUG(dbgs() << "Abort merging blocks, the predecessor still " "contains terminator instructions"); // Return early if no changes were made if (!Changed) return RemovedBranches; } Changed |= RemovedBranches; } // If this is after register allocation, there are no phis to fix. if (!PreRegAlloc) return Changed; // If we made no changes so far, we are safe. if (!Changed) return Changed; // Handle the nasty case in that we duplicated a block that is part of a loop // into some but not all of its predecessors. For example: // 1 -> 2 <-> 3 | // \ | // \---> rest | // if we duplicate 2 into 1 but not into 3, we end up with // 12 -> 3 <-> 2 -> rest | // \ / | // \----->-----/ | // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced // with a phi in 3 (which now dominates 2). // What we do here is introduce a copy in 3 of the register defined by the // phi, just like when we are duplicating 2 into 3, but we don't copy any // real instructions or remove the 3 -> 2 edge from the phi in 2. for (MachineBasicBlock *PredBB : Preds) { if (is_contained(TDBBs, PredBB)) continue; // EH edges if (PredBB->succ_size() != 1) continue; DenseMap LocalVRMap; SmallVector, 4> CopyInfos; // Process PHI instructions first. for (MachineInstr &MI : make_early_inc_range(TailBB->phis())) { // Replace the uses of the def of the PHI with the register coming // from PredBB. processPHI(&MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false); } appendCopies(PredBB, CopyInfos, Copies); } return Changed; } /// At the end of the block \p MBB generate COPY instructions between registers /// described by \p CopyInfos. Append resulting instructions to \p Copies. void TailDuplicator::appendCopies(MachineBasicBlock *MBB, SmallVectorImpl> &CopyInfos, SmallVectorImpl &Copies) { MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY); for (auto &CI : CopyInfos) { auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first) .addReg(CI.second.Reg, 0, CI.second.SubReg); Copies.push_back(C); } } /// Remove the specified dead machine basic block from the function, updating /// the CFG. void TailDuplicator::removeDeadBlock( MachineBasicBlock *MBB, function_ref *RemovalCallback) { assert(MBB->pred_empty() && "MBB must be dead!"); LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); MachineFunction *MF = MBB->getParent(); // Update the call site info. for (const MachineInstr &MI : *MBB) if (MI.shouldUpdateCallSiteInfo()) MF->eraseCallSiteInfo(&MI); if (RemovalCallback) (*RemovalCallback)(MBB); // Remove all successors. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_end() - 1); // Remove the block. MBB->eraseFromParent(); }