//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the SplitAnalysis class as well as mutator functions for // live range splitting. // //===----------------------------------------------------------------------===// #include "SplitKit.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugLoc.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" static cl::opt EnableLoopIVHeuristic("enable-split-loopiv-heuristic", cl::desc("Enable loop iv regalloc heuristic"), cl::init(true)); STATISTIC(NumFinished, "Number of splits finished"); STATISTIC(NumSimple, "Number of splits that were simple"); STATISTIC(NumCopies, "Number of copies inserted for splitting"); STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); //===----------------------------------------------------------------------===// // Last Insert Point Analysis //===----------------------------------------------------------------------===// InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, unsigned BBNum) : LIS(lis), LastInsertPoint(BBNum) {} SlotIndex InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, const MachineBasicBlock &MBB) { unsigned Num = MBB.getNumber(); std::pair &LIP = LastInsertPoint[Num]; SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); SmallVector ExceptionalSuccessors; bool EHPadSuccessor = false; for (const MachineBasicBlock *SMBB : MBB.successors()) { if (SMBB->isEHPad()) { ExceptionalSuccessors.push_back(SMBB); EHPadSuccessor = true; } else if (SMBB->isInlineAsmBrIndirectTarget()) ExceptionalSuccessors.push_back(SMBB); } // Compute insert points on the first call. The pair is independent of the // current live interval. if (!LIP.first.isValid()) { MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); if (FirstTerm == MBB.end()) LIP.first = MBBEnd; else LIP.first = LIS.getInstructionIndex(*FirstTerm); // If there is a landing pad or inlineasm_br successor, also find the // instruction. If there is no such instruction, we don't need to do // anything special. We assume there cannot be multiple instructions that // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we // assume that if there are any, they will be after any other call // instructions in the block. if (ExceptionalSuccessors.empty()) return LIP.first; for (const MachineInstr &MI : llvm::reverse(MBB)) { if ((EHPadSuccessor && MI.isCall()) || MI.getOpcode() == TargetOpcode::INLINEASM_BR) { LIP.second = LIS.getInstructionIndex(MI); break; } } } // If CurLI is live into a landing pad successor, move the last insert point // back to the call that may throw. if (!LIP.second) return LIP.first; if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { return LIS.isLiveInToMBB(CurLI, EHPad); })) return LIP.first; // Find the value leaving MBB. const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); if (!VNI) return LIP.first; // The def of statepoint instruction is a gc relocation and it should be alive // in landing pad. So we cannot split interval after statepoint instruction. if (SlotIndex::isSameInstr(VNI->def, LIP.second)) if (auto *I = LIS.getInstructionFromIndex(LIP.second)) if (I->getOpcode() == TargetOpcode::STATEPOINT) return LIP.second; // If the value leaving MBB was defined after the call in MBB, it can't // really be live-in to the landing pad. This can happen if the landing pad // has a PHI, and this register is undef on the exceptional edge. if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) return LIP.first; // Value is properly live-in to the landing pad. // Only allow inserts before the call. return LIP.second; } MachineBasicBlock::iterator InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, MachineBasicBlock &MBB) { SlotIndex LIP = getLastInsertPoint(CurLI, MBB); if (LIP == LIS.getMBBEndIdx(&MBB)) return MBB.end(); return LIS.getInstructionFromIndex(LIP); } //===----------------------------------------------------------------------===// // Split Analysis //===----------------------------------------------------------------------===// SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, const MachineLoopInfo &mli) : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} void SplitAnalysis::clear() { UseSlots.clear(); UseBlocks.clear(); ThroughBlocks.clear(); CurLI = nullptr; } /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. void SplitAnalysis::analyzeUses() { assert(UseSlots.empty() && "Call clear first"); // First get all the defs from the interval values. This provides the correct // slots for early clobbers. for (const VNInfo *VNI : CurLI->valnos) if (!VNI->isPHIDef() && !VNI->isUnused()) UseSlots.push_back(VNI->def); // Get use slots form the use-def chain. const MachineRegisterInfo &MRI = MF.getRegInfo(); for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) if (!MO.isUndef()) UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); array_pod_sort(UseSlots.begin(), UseSlots.end()); // Remove duplicates, keeping the smaller slot for each instruction. // That is what we want for early clobbers. UseSlots.erase(llvm::unique(UseSlots, SlotIndex::isSameInstr), UseSlots.end()); // Compute per-live block info. calcLiveBlockInfo(); LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " << UseBlocks.size() << " blocks, through " << NumThroughBlocks << " blocks.\n"); } /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks /// where CurLI is live. void SplitAnalysis::calcLiveBlockInfo() { ThroughBlocks.resize(MF.getNumBlockIDs()); NumThroughBlocks = NumGapBlocks = 0; if (CurLI->empty()) return; LiveInterval::const_iterator LVI = CurLI->begin(); LiveInterval::const_iterator LVE = CurLI->end(); SmallVectorImpl::const_iterator UseI, UseE; UseI = UseSlots.begin(); UseE = UseSlots.end(); // Loop over basic blocks where CurLI is live. MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); while (true) { BlockInfo BI; BI.MBB = &*MFI; SlotIndex Start, Stop; std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); // If the block contains no uses, the range must be live through. At one // point, RegisterCoalescer could create dangling ranges that ended // mid-block. if (UseI == UseE || *UseI >= Stop) { ++NumThroughBlocks; ThroughBlocks.set(BI.MBB->getNumber()); // The range shouldn't end mid-block if there are no uses. This shouldn't // happen. assert(LVI->end >= Stop && "range ends mid block with no uses"); } else { // This block has uses. Find the first and last uses in the block. BI.FirstInstr = *UseI; assert(BI.FirstInstr >= Start); do ++UseI; while (UseI != UseE && *UseI < Stop); BI.LastInstr = UseI[-1]; assert(BI.LastInstr < Stop); // LVI is the first live segment overlapping MBB. BI.LiveIn = LVI->start <= Start; // When not live in, the first use should be a def. if (!BI.LiveIn) { assert(LVI->start == LVI->valno->def && "Dangling Segment start"); assert(LVI->start == BI.FirstInstr && "First instr should be a def"); BI.FirstDef = BI.FirstInstr; } // Look for gaps in the live range. BI.LiveOut = true; while (LVI->end < Stop) { SlotIndex LastStop = LVI->end; if (++LVI == LVE || LVI->start >= Stop) { BI.LiveOut = false; BI.LastInstr = LastStop; break; } if (LastStop < LVI->start) { // There is a gap in the live range. Create duplicate entries for the // live-in snippet and the live-out snippet. ++NumGapBlocks; // Push the Live-in part. BI.LiveOut = false; UseBlocks.push_back(BI); UseBlocks.back().LastInstr = LastStop; // Set up BI for the live-out part. BI.LiveIn = false; BI.LiveOut = true; BI.FirstInstr = BI.FirstDef = LVI->start; } // A Segment that starts in the middle of the block must be a def. assert(LVI->start == LVI->valno->def && "Dangling Segment start"); if (!BI.FirstDef) BI.FirstDef = LVI->start; } UseBlocks.push_back(BI); // LVI is now at LVE or LVI->end >= Stop. if (LVI == LVE) break; } // Live segment ends exactly at Stop. Move to the next segment. if (LVI->end == Stop && ++LVI == LVE) break; // Pick the next basic block. if (LVI->start < Stop) ++MFI; else MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); } LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 && any_of(UseBlocks, [this](BlockInfo &BI) { MachineLoop *L = Loops.getLoopFor(BI.MBB); return BI.LiveIn && BI.LiveOut && BI.FirstDef && L && L->isLoopLatch(BI.MBB); }); assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); } unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { if (cli->empty()) return 0; LiveInterval *li = const_cast(cli); LiveInterval::iterator LVI = li->begin(); LiveInterval::iterator LVE = li->end(); unsigned Count = 0; // Loop over basic blocks where li is live. MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); while (true) { ++Count; LVI = li->advanceTo(LVI, Stop); if (LVI == LVE) return Count; do { ++MFI; Stop = LIS.getMBBEndIdx(&*MFI); } while (Stop <= LVI->start); } } bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { Register OrigReg = VRM.getOriginal(CurLI->reg()); const LiveInterval &Orig = LIS.getInterval(OrigReg); assert(!Orig.empty() && "Splitting empty interval?"); LiveInterval::const_iterator I = Orig.find(Idx); // Range containing Idx should begin at Idx. if (I != Orig.end() && I->start <= Idx) return I->start == Idx; // Range does not contain Idx, previous must end at Idx. return I != Orig.begin() && (--I)->end == Idx; } void SplitAnalysis::analyze(const LiveInterval *li) { clear(); CurLI = li; analyzeUses(); } //===----------------------------------------------------------------------===// // Split Editor //===----------------------------------------------------------------------===// /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, MachineDominatorTree &MDT, MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { Edit = &LRE; SpillMode = SM; OpenIdx = 0; RegAssign.clear(); Values.clear(); // Reset the LiveIntervalCalc instances needed for this spill mode. LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); if (SpillMode) LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); Edit->anyRematerializable(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void SplitEditor::dump() const { if (RegAssign.empty()) { dbgs() << " empty\n"; return; } for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); dbgs() << '\n'; } #endif /// Find a subrange corresponding to the exact lane mask @p LM in the live /// interval @p LI. The interval @p LI is assumed to contain such a subrange. /// This function is used to find corresponding subranges between the /// original interval and the new intervals. template auto &getSubrangeImpl(LaneBitmask LM, T &LI) { for (auto &S : LI.subranges()) if (S.LaneMask == LM) return S; llvm_unreachable("SubRange for this mask not found"); } LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, LiveInterval &LI) { return getSubrangeImpl(LM, LI); } const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, const LiveInterval &LI) { return getSubrangeImpl(LM, LI); } /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, /// in the live interval @p LI. The interval @p LI is assumed to contain such /// a subrange. This function is used to find corresponding subranges between /// the original interval and the new intervals. const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, const LiveInterval &LI) { for (const LiveInterval::SubRange &S : LI.subranges()) if ((S.LaneMask & LM) == LM) return S; llvm_unreachable("SubRange for this mask not found"); } void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { if (!LI.hasSubRanges()) { LI.createDeadDef(VNI); return; } SlotIndex Def = VNI->def; if (Original) { // If we are transferring a def from the original interval, make sure // to only update the subranges for which the original subranges had // a def at this location. for (LiveInterval::SubRange &S : LI.subranges()) { auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); VNInfo *PV = PS.getVNInfoAt(Def); if (PV != nullptr && PV->def == Def) S.createDeadDef(Def, LIS.getVNInfoAllocator()); } } else { // This is a new def: either from rematerialization, or from an inserted // copy. Since rematerialization can regenerate a definition of a sub- // register, we need to check which subranges need to be updated. const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); assert(DefMI != nullptr); LaneBitmask LM; for (const MachineOperand &DefOp : DefMI->defs()) { Register R = DefOp.getReg(); if (R != LI.reg()) continue; if (unsigned SR = DefOp.getSubReg()) LM |= TRI.getSubRegIndexLaneMask(SR); else { LM = MRI.getMaxLaneMaskForVReg(R); break; } } for (LiveInterval::SubRange &S : LI.subranges()) if ((S.LaneMask & LM).any()) S.createDeadDef(Def, LIS.getVNInfoAllocator()); } } VNInfo *SplitEditor::defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx, bool Original) { assert(ParentVNI && "Mapping NULL value"); assert(Idx.isValid() && "Invalid SlotIndex"); assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); // Create a new value. VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); bool Force = LI->hasSubRanges(); ValueForcePair FP(Force ? nullptr : VNI, Force); // Use insert for lookup, so we can add missing values with a second lookup. std::pair InsP = Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); // This was the first time (RegIdx, ParentVNI) was mapped, and it is not // forced. Keep it as a simple def without any liveness. if (!Force && InsP.second) return VNI; // If the previous value was a simple mapping, add liveness for it now. if (VNInfo *OldVNI = InsP.first->second.getPointer()) { addDeadDef(*LI, OldVNI, Original); // No longer a simple mapping. Switch to a complex mapping. If the // interval has subranges, make it a forced mapping. InsP.first->second = ValueForcePair(nullptr, Force); } // This is a complex mapping, add liveness for VNI addDeadDef(*LI, VNI, Original); return VNI; } void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; VNInfo *VNI = VFP.getPointer(); // ParentVNI was either unmapped or already complex mapped. Either way, just // set the force bit. if (!VNI) { VFP.setInt(true); return; } // This was previously a single mapping. Make sure the old def is represented // by a trivial live range. addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); // Mark as complex mapped, forced. VFP = ValueForcePair(nullptr, true); } SlotIndex SplitEditor::buildSingleSubRegCopy( Register FromReg, Register ToReg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) { bool FirstCopy = !Def.isValid(); MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) | getInternalReadRegState(!FirstCopy), SubIdx) .addReg(FromReg, 0, SubIdx); SlotIndexes &Indexes = *LIS.getSlotIndexes(); if (FirstCopy) { Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); } else { CopyMI->bundleWithPred(); } return Def; } SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, LaneBitmask LaneMask, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { const MCInstrDesc &Desc = TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent())); SlotIndexes &Indexes = *LIS.getSlotIndexes(); if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { // The full vreg is copied. MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); } // Only a subset of lanes needs to be copied. The following is a simple // heuristic to construct a sequence of COPYs. We could add a target // specific callback if this turns out to be suboptimal. LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); // First pass: Try to find a perfectly matching subregister index. If none // exists find the one covering the most lanemask bits. const TargetRegisterClass *RC = MRI.getRegClass(FromReg); assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); SmallVector SubIndexes; // Abort if we cannot possibly implement the COPY with the given indexes. if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes)) report_fatal_error("Impossible to implement partial COPY"); SlotIndex Def; for (unsigned BestIdx : SubIndexes) { Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, DestLI, Late, Def, Desc); } BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); DestLI.refineSubRanges( Allocator, LaneMask, [Def, &Allocator](LiveInterval::SubRange &SR) { SR.createDeadDef(Def, Allocator); }, Indexes, TRI); return Def; } VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex UseIdx, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { SlotIndex Def; LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); // We may be trying to avoid interference that ends at a deleted instruction, // so always begin RegIdx 0 early and all others late. bool Late = RegIdx != 0; // Attempt cheap-as-a-copy rematerialization. Register Original = VRM.getOriginal(Edit->get(RegIdx)); LiveInterval &OrigLI = LIS.getInterval(Original); VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); Register Reg = LI->reg(); bool DidRemat = false; if (OrigVNI) { LiveRangeEdit::Remat RM(ParentVNI); RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); ++NumRemats; DidRemat = true; } } if (!DidRemat) { LaneBitmask LaneMask; if (OrigLI.hasSubRanges()) { LaneMask = LaneBitmask::getNone(); for (LiveInterval::SubRange &S : OrigLI.subranges()) { if (S.liveAt(UseIdx)) LaneMask |= S.LaneMask; } } else { LaneMask = LaneBitmask::getAll(); } if (LaneMask.none()) { const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); SlotIndexes &Indexes = *LIS.getSlotIndexes(); Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); } else { ++NumCopies; Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); } } // Define the value in Reg. return defValue(RegIdx, ParentVNI, Def, false); } /// Create a new virtual register and live interval. unsigned SplitEditor::openIntv() { // Create the complement as index 0. if (Edit->empty()) Edit->createEmptyInterval(); // Create the open interval. OpenIdx = Edit->size(); Edit->createEmptyInterval(); return OpenIdx; } void SplitEditor::selectIntv(unsigned Idx) { assert(Idx != 0 && "Cannot select the complement interval"); assert(Idx < Edit->size() && "Can only select previously opened interval"); LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); OpenIdx = Idx; } SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { assert(OpenIdx && "openIntv not called before enterIntvBefore"); LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); Idx = Idx.getBaseIndex(); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return Idx; } LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); MachineInstr *MI = LIS.getInstructionFromIndex(Idx); assert(MI && "enterIntvBefore called with invalid index"); VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); return VNI->def; } SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { assert(OpenIdx && "openIntv not called before enterIntvAfter"); LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); Idx = Idx.getBoundaryIndex(); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return Idx; } LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); MachineInstr *MI = LIS.getInstructionFromIndex(Idx); assert(MI && "enterIntvAfter called with invalid index"); VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), std::next(MachineBasicBlock::iterator(MI))); return VNI->def; } SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); SlotIndex End = LIS.getMBBEndIdx(&MBB); SlotIndex Last = End.getPrevSlot(); LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " << Last); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return End; } SlotIndex LSP = SA.getLastSplitPoint(&MBB); if (LSP < Last) { // It could be that the use after LSP is a def, and thus the ParentVNI // just selected starts at that def. For this case to exist, the def // must be part of a tied def/use pair (as otherwise we'd have split // distinct live ranges into individual live intervals), and thus we // can insert the def into the VNI of the use and the tied def/use // pair can live in the resulting interval. Last = LSP; ParentVNI = Edit->getParent().getVNInfoAt(Last); if (!ParentVNI) { // undef use --> undef tied def LLVM_DEBUG(dbgs() << ": tied use not live\n"); return End; } } LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, SA.getLastSplitPointIter(&MBB)); RegAssign.insert(VNI->def, End, OpenIdx); LLVM_DEBUG(dump()); return VNI->def; } /// useIntv - indicate that all instructions in MBB should use OpenLI. void SplitEditor::useIntv(const MachineBasicBlock &MBB) { useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); } void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { assert(OpenIdx && "openIntv not called before useIntv"); LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); RegAssign.insert(Start, End, OpenIdx); LLVM_DEBUG(dump()); } SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { assert(OpenIdx && "openIntv not called before leaveIntvAfter"); LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); // The interval must be live beyond the instruction at Idx. SlotIndex Boundary = Idx.getBoundaryIndex(); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return Boundary.getNextSlot(); } LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); assert(MI && "No instruction at index"); // In spill mode, make live ranges as short as possible by inserting the copy // before MI. This is only possible if that instruction doesn't redefine the // value. The inserted COPY is not a kill, and we don't need to recompute // the source live range. The spiller also won't try to hoist this copy. if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && MI->readsVirtualRegister(Edit->getReg())) { forceRecompute(0, *ParentVNI); defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); return Idx; } VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), std::next(MachineBasicBlock::iterator(MI))); return VNI->def; } SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { assert(OpenIdx && "openIntv not called before leaveIntvBefore"); LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); // The interval must be live into the instruction at Idx. Idx = Idx.getBaseIndex(); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return Idx.getNextSlot(); } LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); MachineInstr *MI = LIS.getInstructionFromIndex(Idx); assert(MI && "No instruction at index"); VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); return VNI->def; } SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); SlotIndex Start = LIS.getMBBStartIdx(&MBB); LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " << Start); VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); if (!ParentVNI) { LLVM_DEBUG(dbgs() << ": not live\n"); return Start; } unsigned RegIdx = 0; Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg(); VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB, MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg)); RegAssign.insert(Start, VNI->def, OpenIdx); LLVM_DEBUG(dump()); return VNI->def; } static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { return any_of(MI.defs(), [Reg](const MachineOperand &MO) { return MO.isReg() && MO.isTied() && MO.getReg() == Reg; }); } void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { assert(OpenIdx && "openIntv not called before overlapIntv"); const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && "Parent changes value in extended range"); assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && "Range cannot span basic blocks"); // The complement interval will be extended as needed by LICalc.extend(). if (ParentVNI) forceRecompute(0, *ParentVNI); // If the last use is tied to a def, we can't mark it as live for the // interval which includes only the use. That would cause the tied pair // to end up in two different intervals. if (auto *MI = LIS.getInstructionFromIndex(End)) if (hasTiedUseOf(*MI, Edit->getReg())) { LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); return; } LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); RegAssign.insert(Start, End, OpenIdx); LLVM_DEBUG(dump()); } //===----------------------------------------------------------------------===// // Spill modes //===----------------------------------------------------------------------===// void SplitEditor::removeBackCopies(SmallVectorImpl &Copies) { LiveInterval *LI = &LIS.getInterval(Edit->get(0)); LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); RegAssignMap::iterator AssignI; AssignI.setMap(RegAssign); for (const VNInfo *C : Copies) { SlotIndex Def = C->def; MachineInstr *MI = LIS.getInstructionFromIndex(Def); assert(MI && "No instruction for back-copy"); MachineBasicBlock *MBB = MI->getParent(); MachineBasicBlock::iterator MBBI(MI); bool AtBegin; do AtBegin = MBBI == MBB->begin(); while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); LIS.removeVRegDefAt(*LI, Def); LIS.RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); // Adjust RegAssign if a register assignment is killed at Def. We want to // avoid calculating the live range of the source register if possible. AssignI.find(Def.getPrevSlot()); if (!AssignI.valid() || AssignI.start() >= Def) continue; // If MI doesn't kill the assigned register, just leave it. if (AssignI.stop() != Def) continue; unsigned RegIdx = AssignI.value(); // We could hoist back-copy right after another back-copy. As a result // MMBI points to copy instruction which is actually dead now. // We cannot set its stop to MBBI which will be the same as start and // interval does not support that. SlotIndex Kill = AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || Kill <= AssignI.start()) { LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); } else { LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); AssignI.setStop(Kill); } } } MachineBasicBlock* SplitEditor::findShallowDominator(MachineBasicBlock *MBB, MachineBasicBlock *DefMBB) { if (MBB == DefMBB) return MBB; assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); const MachineLoopInfo &Loops = SA.Loops; const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); MachineDomTreeNode *DefDomNode = MDT[DefMBB]; // Best candidate so far. MachineBasicBlock *BestMBB = MBB; unsigned BestDepth = std::numeric_limits::max(); while (true) { const MachineLoop *Loop = Loops.getLoopFor(MBB); // MBB isn't in a loop, it doesn't get any better. All dominators have a // higher frequency by definition. if (!Loop) { LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " << printMBBReference(*MBB) << " at depth 0\n"); return MBB; } // We'll never be able to exit the DefLoop. if (Loop == DefLoop) { LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " << printMBBReference(*MBB) << " in the same loop\n"); return MBB; } // Least busy dominator seen so far. unsigned Depth = Loop->getLoopDepth(); if (Depth < BestDepth) { BestMBB = MBB; BestDepth = Depth; LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " << printMBBReference(*MBB) << " at depth " << Depth << '\n'); } // Leave loop by going to the immediate dominator of the loop header. // This is a bigger stride than simply walking up the dominator tree. MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); // Too far up the dominator tree? if (!IDom || !MDT.dominates(DefDomNode, IDom)) return BestMBB; MBB = IDom->getBlock(); } } void SplitEditor::computeRedundantBackCopies( DenseSet &NotToHoistSet, SmallVectorImpl &BackCopies) { LiveInterval *LI = &LIS.getInterval(Edit->get(0)); const LiveInterval *Parent = &Edit->getParent(); SmallVector, 8> EqualVNs(Parent->getNumValNums()); SmallPtrSet DominatedVNIs; // Aggregate VNIs having the same value as ParentVNI. for (VNInfo *VNI : LI->valnos) { if (VNI->isUnused()) continue; VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); EqualVNs[ParentVNI->id].insert(VNI); } // For VNI aggregation of each ParentVNI, collect dominated, i.e., // redundant VNIs to BackCopies. for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { const VNInfo *ParentVNI = Parent->getValNumInfo(i); if (!NotToHoistSet.count(ParentVNI->id)) continue; SmallPtrSetIterator It1 = EqualVNs[ParentVNI->id].begin(); SmallPtrSetIterator It2 = It1; for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { It2 = It1; for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) continue; MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); if (MBB1 == MBB2) { DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); } else if (MDT.dominates(MBB1, MBB2)) { DominatedVNIs.insert(*It2); } else if (MDT.dominates(MBB2, MBB1)) { DominatedVNIs.insert(*It1); } } } if (!DominatedVNIs.empty()) { forceRecompute(0, *ParentVNI); append_range(BackCopies, DominatedVNIs); DominatedVNIs.clear(); } } } /// For SM_Size mode, find a common dominator for all the back-copies for /// the same ParentVNI and hoist the backcopies to the dominator BB. /// For SM_Speed mode, if the common dominator is hot and it is not beneficial /// to do the hoisting, simply remove the dominated backcopies for the same /// ParentVNI. void SplitEditor::hoistCopies() { // Get the complement interval, always RegIdx 0. LiveInterval *LI = &LIS.getInterval(Edit->get(0)); const LiveInterval *Parent = &Edit->getParent(); // Track the nearest common dominator for all back-copies for each ParentVNI, // indexed by ParentVNI->id. using DomPair = std::pair; SmallVector NearestDom(Parent->getNumValNums()); // The total cost of all the back-copies for each ParentVNI. SmallVector Costs(Parent->getNumValNums()); // The ParentVNI->id set for which hoisting back-copies are not beneficial // for Speed. DenseSet NotToHoistSet; // Find the nearest common dominator for parent values with multiple // back-copies. If a single back-copy dominates, put it in DomPair.second. for (VNInfo *VNI : LI->valnos) { if (VNI->isUnused()) continue; VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); assert(ParentVNI && "Parent not live at complement def"); // Don't hoist remats. The complement is probably going to disappear // completely anyway. if (Edit->didRematerialize(ParentVNI)) continue; MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); DomPair &Dom = NearestDom[ParentVNI->id]; // Keep directly defined parent values. This is either a PHI or an // instruction in the complement range. All other copies of ParentVNI // should be eliminated. if (VNI->def == ParentVNI->def) { LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); Dom = DomPair(ValMBB, VNI->def); continue; } // Skip the singly mapped values. There is nothing to gain from hoisting a // single back-copy. if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); continue; } if (!Dom.first) { // First time we see ParentVNI. VNI dominates itself. Dom = DomPair(ValMBB, VNI->def); } else if (Dom.first == ValMBB) { // Two defs in the same block. Pick the earlier def. if (!Dom.second.isValid() || VNI->def < Dom.second) Dom.second = VNI->def; } else { // Different basic blocks. Check if one dominates. MachineBasicBlock *Near = MDT.findNearestCommonDominator(Dom.first, ValMBB); if (Near == ValMBB) // Def ValMBB dominates. Dom = DomPair(ValMBB, VNI->def); else if (Near != Dom.first) // None dominate. Hoist to common dominator, need new def. Dom = DomPair(Near, SlotIndex()); Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); } LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def << " for parent " << ParentVNI->id << '@' << ParentVNI->def << " hoist to " << printMBBReference(*Dom.first) << ' ' << Dom.second << '\n'); } // Insert the hoisted copies. for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { DomPair &Dom = NearestDom[i]; if (!Dom.first || Dom.second.isValid()) continue; // This value needs a hoisted copy inserted at the end of Dom.first. const VNInfo *ParentVNI = Parent->getValNumInfo(i); MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); // Get a less loopy dominator than Dom.first. Dom.first = findShallowDominator(Dom.first, DefMBB); if (SpillMode == SM_Speed && MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { NotToHoistSet.insert(ParentVNI->id); continue; } SlotIndex LSP = SA.getLastSplitPoint(Dom.first); if (LSP <= ParentVNI->def) { NotToHoistSet.insert(ParentVNI->id); continue; } Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, SA.getLastSplitPointIter(Dom.first))->def; } // Remove redundant back-copies that are now known to be dominated by another // def with the same value. SmallVector BackCopies; for (VNInfo *VNI : LI->valnos) { if (VNI->isUnused()) continue; VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); const DomPair &Dom = NearestDom[ParentVNI->id]; if (!Dom.first || Dom.second == VNI->def || NotToHoistSet.count(ParentVNI->id)) continue; BackCopies.push_back(VNI); forceRecompute(0, *ParentVNI); } // If it is not beneficial to hoist all the BackCopies, simply remove // redundant BackCopies in speed mode. if (SpillMode == SM_Speed && !NotToHoistSet.empty()) computeRedundantBackCopies(NotToHoistSet, BackCopies); removeBackCopies(BackCopies); } /// transferValues - Transfer all possible values to the new live ranges. /// Values that were rematerialized are left alone, they need LICalc.extend(). bool SplitEditor::transferValues() { bool Skipped = false; RegAssignMap::const_iterator AssignI = RegAssign.begin(); for (const LiveRange::Segment &S : Edit->getParent()) { LLVM_DEBUG(dbgs() << " blit " << S << ':'); VNInfo *ParentVNI = S.valno; // RegAssign has holes where RegIdx 0 should be used. SlotIndex Start = S.start; AssignI.advanceTo(Start); do { unsigned RegIdx; SlotIndex End = S.end; if (!AssignI.valid()) { RegIdx = 0; } else if (AssignI.start() <= Start) { RegIdx = AssignI.value(); if (AssignI.stop() < End) { End = AssignI.stop(); ++AssignI; } } else { RegIdx = 0; End = std::min(End, AssignI.start()); } // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' << printReg(Edit->get(RegIdx)) << ')'); LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); // Check for a simply defined value that can be blitted directly. ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); if (VNInfo *VNI = VFP.getPointer()) { LLVM_DEBUG(dbgs() << ':' << VNI->id); LI.addSegment(LiveInterval::Segment(Start, End, VNI)); Start = End; continue; } // Skip values with forced recomputation. if (VFP.getInt()) { LLVM_DEBUG(dbgs() << "(recalc)"); Skipped = true; Start = End; continue; } LiveIntervalCalc &LIC = getLICalc(RegIdx); // This value has multiple defs in RegIdx, but it wasn't rematerialized, // so the live range is accurate. Add live-in blocks in [Start;End) to the // LiveInBlocks. MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); SlotIndex BlockStart, BlockEnd; std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); // The first block may be live-in, or it may have its own def. if (Start != BlockStart) { VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); assert(VNI && "Missing def for complex mapped value"); LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); // MBB has its own def. Is it also live-out? if (BlockEnd <= End) LIC.setLiveOutValue(&*MBB, VNI); // Skip to the next block for live-in. ++MBB; BlockStart = BlockEnd; } // Handle the live-in blocks covered by [Start;End). assert(Start <= BlockStart && "Expected live-in block"); while (BlockStart < End) { LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); BlockEnd = LIS.getMBBEndIdx(&*MBB); if (BlockStart == ParentVNI->def) { // This block has the def of a parent PHI, so it isn't live-in. assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); assert(VNI && "Missing def for complex mapped parent PHI"); if (End >= BlockEnd) LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. } else { // This block needs a live-in value. The last block covered may not // be live-out. if (End < BlockEnd) LIC.addLiveInBlock(LI, MDT[&*MBB], End); else { // Live-through, and we don't know the value. LIC.addLiveInBlock(LI, MDT[&*MBB]); LIC.setLiveOutValue(&*MBB, nullptr); } } BlockStart = BlockEnd; ++MBB; } Start = End; } while (Start != S.end); LLVM_DEBUG(dbgs() << '\n'); } LICalc[0].calculateValues(); if (SpillMode) LICalc[1].calculateValues(); return Skipped; } static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); if (Seg == nullptr) return true; if (Seg->end != Def.getDeadSlot()) return false; // This is a dead PHI. Remove it. LR.removeSegment(*Seg, true); return true; } void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, LiveRange &LR, LaneBitmask LM, ArrayRef Undefs) { for (MachineBasicBlock *P : B.predecessors()) { SlotIndex End = LIS.getMBBEndIdx(P); SlotIndex LastUse = End.getPrevSlot(); // The predecessor may not have a live-out value. That is OK, like an // undef PHI operand. const LiveInterval &PLI = Edit->getParent(); // Need the cast because the inputs to ?: would otherwise be deemed // "incompatible": SubRange vs LiveInterval. const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) : static_cast(PLI); if (PSR.liveAt(LastUse)) LIC.extend(LR, End, /*PhysReg=*/0, Undefs); } } void SplitEditor::extendPHIKillRanges() { // Extend live ranges to be live-out for successor PHI values. // Visit each PHI def slot in the parent live interval. If the def is dead, // remove it. Otherwise, extend the live interval to reach the end indexes // of all predecessor blocks. const LiveInterval &ParentLI = Edit->getParent(); for (const VNInfo *V : ParentLI.valnos) { if (V->isUnused() || !V->isPHIDef()) continue; unsigned RegIdx = RegAssign.lookup(V->def); LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); LiveIntervalCalc &LIC = getLICalc(RegIdx); MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); if (!removeDeadSegment(V->def, LI)) extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); } SmallVector Undefs; LiveIntervalCalc SubLIC; for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { for (const VNInfo *V : PS.valnos) { if (V->isUnused() || !V->isPHIDef()) continue; unsigned RegIdx = RegAssign.lookup(V->def); LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); if (removeDeadSegment(V->def, S)) continue; MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); Undefs.clear(); LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); } } } /// rewriteAssigned - Rewrite all uses of Edit->getReg(). void SplitEditor::rewriteAssigned(bool ExtendRanges) { struct ExtPoint { ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) : MO(O), RegIdx(R), Next(N) {} MachineOperand MO; unsigned RegIdx; SlotIndex Next; }; SmallVector ExtPoints; for (MachineOperand &MO : llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { MachineInstr *MI = MO.getParent(); // LiveDebugVariables should have handled all DBG_VALUE instructions. if (MI->isDebugValue()) { LLVM_DEBUG(dbgs() << "Zapping " << *MI); MO.setReg(0); continue; } // operands don't really read the register, so it doesn't matter // which register we choose. When the use operand is tied to a def, we must // use the same register as the def, so just do that always. SlotIndex Idx = LIS.getInstructionIndex(*MI); if (MO.isDef() || MO.isUndef()) Idx = Idx.getRegSlot(MO.isEarlyClobber()); // Rewrite to the mapped register at Idx. unsigned RegIdx = RegAssign.lookup(Idx); LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); MO.setReg(LI.reg()); LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) << '\t' << Idx << ':' << RegIdx << '\t' << *MI); // Extend liveness to Idx if the instruction reads reg. if (!ExtendRanges || MO.isUndef()) continue; // Skip instructions that don't read Reg. if (MO.isDef()) { if (!MO.getSubReg() && !MO.isEarlyClobber()) continue; // We may want to extend a live range for a partial redef, or for a use // tied to an early clobber. if (!Edit->getParent().liveAt(Idx.getPrevSlot())) continue; } else { assert(MO.isUse()); bool IsEarlyClobber = false; if (MO.isTied()) { // We want to extend a live range into `e` slot rather than `r` slot if // tied-def is early clobber, because the `e` slot already contained // in the live range of early-clobber tied-def operand, give an example // here: // 0 %0 = ... // 16 early-clobber %0 = Op %0 (tied-def 0), ... // 32 ... = Op %0 // Before extend: // %0 = [0r, 0d) [16e, 32d) // The point we want to extend is 0d to 16e not 16r in this case, but if // we use 16r here we will extend nothing because that already contained // in [16e, 32d). unsigned OpIdx = MO.getOperandNo(); unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); const MachineOperand &DefOp = MI->getOperand(DefOpIdx); IsEarlyClobber = DefOp.isEarlyClobber(); } Idx = Idx.getRegSlot(IsEarlyClobber); } SlotIndex Next = Idx; if (LI.hasSubRanges()) { // We have to delay extending subranges until we have seen all operands // defining the register. This is because a operand // will create an "undef" point, and we cannot extend any subranges // until all of them have been accounted for. if (MO.isUse()) ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); } else { LiveIntervalCalc &LIC = getLICalc(RegIdx); LIC.extend(LI, Next, 0, ArrayRef()); } } for (ExtPoint &EP : ExtPoints) { LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); assert(LI.hasSubRanges()); LiveIntervalCalc SubLIC; Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) : MRI.getMaxLaneMaskForVReg(Reg); for (LiveInterval::SubRange &S : LI.subranges()) { if ((S.LaneMask & LM).none()) continue; // The problem here can be that the new register may have been created // for a partially defined original register. For example: // %0:subreg_hireg = ... // ... // %1 = COPY %0 if (S.empty()) continue; SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); SmallVector Undefs; LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); SubLIC.extend(S, EP.Next, 0, Undefs); } } for (Register R : *Edit) { LiveInterval &LI = LIS.getInterval(R); if (!LI.hasSubRanges()) continue; LI.clear(); LI.removeEmptySubRanges(); LIS.constructMainRangeFromSubranges(LI); } } void SplitEditor::deleteRematVictims() { SmallVector Dead; for (const Register &R : *Edit) { LiveInterval *LI = &LIS.getInterval(R); for (const LiveRange::Segment &S : LI->segments) { // Dead defs end at the dead slot. if (S.end != S.valno->def.getDeadSlot()) continue; if (S.valno->isPHIDef()) continue; MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); assert(MI && "Missing instruction for dead def"); MI->addRegisterDead(LI->reg(), &TRI); if (!MI->allDefsAreDead()) continue; LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); Dead.push_back(MI); } } if (Dead.empty()) return; Edit->eliminateDeadDefs(Dead, std::nullopt); } void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { // Fast-path for common case. if (!ParentVNI.isPHIDef()) { for (unsigned I = 0, E = Edit->size(); I != E; ++I) forceRecompute(I, ParentVNI); return; } // Trace value through phis. SmallPtrSet Visited; ///< whether VNI was/is in worklist. SmallVector WorkList; Visited.insert(&ParentVNI); WorkList.push_back(&ParentVNI); const LiveInterval &ParentLI = Edit->getParent(); const SlotIndexes &Indexes = *LIS.getSlotIndexes(); do { const VNInfo &VNI = *WorkList.back(); WorkList.pop_back(); for (unsigned I = 0, E = Edit->size(); I != E; ++I) forceRecompute(I, VNI); if (!VNI.isPHIDef()) continue; MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); for (const MachineBasicBlock *Pred : MBB.predecessors()) { SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); assert(PredVNI && "Value available in PhiVNI predecessor"); if (Visited.insert(PredVNI).second) WorkList.push_back(PredVNI); } } while(!WorkList.empty()); } void SplitEditor::finish(SmallVectorImpl *LRMap) { ++NumFinished; // At this point, the live intervals in Edit contain VNInfos corresponding to // the inserted copies. // Add the original defs from the parent interval. for (const VNInfo *ParentVNI : Edit->getParent().valnos) { if (ParentVNI->isUnused()) continue; unsigned RegIdx = RegAssign.lookup(ParentVNI->def); defValue(RegIdx, ParentVNI, ParentVNI->def, true); // Force rematted values to be recomputed everywhere. // The new live ranges may be truncated. if (Edit->didRematerialize(ParentVNI)) forceRecomputeVNI(*ParentVNI); } // Hoist back-copies to the complement interval when in spill mode. switch (SpillMode) { case SM_Partition: // Leave all back-copies as is. break; case SM_Size: case SM_Speed: // hoistCopies will behave differently between size and speed. hoistCopies(); } // Transfer the simply mapped values, check if any are skipped. bool Skipped = transferValues(); // Rewrite virtual registers, possibly extending ranges. rewriteAssigned(Skipped); if (Skipped) extendPHIKillRanges(); else ++NumSimple; // Delete defs that were rematted everywhere. if (Skipped) deleteRematVictims(); // Get rid of unused values and set phi-kill flags. for (Register Reg : *Edit) { LiveInterval &LI = LIS.getInterval(Reg); LI.removeEmptySubRanges(); LI.RenumberValues(); } // Provide a reverse mapping from original indices to Edit ranges. if (LRMap) { auto Seq = llvm::seq(0, Edit->size()); LRMap->assign(Seq.begin(), Seq.end()); } // Now check if any registers were separated into multiple components. ConnectedVNInfoEqClasses ConEQ(LIS); for (unsigned i = 0, e = Edit->size(); i != e; ++i) { // Don't use iterators, they are invalidated by create() below. Register VReg = Edit->get(i); LiveInterval &LI = LIS.getInterval(VReg); SmallVector SplitLIs; LIS.splitSeparateComponents(LI, SplitLIs); Register Original = VRM.getOriginal(VReg); for (LiveInterval *SplitLI : SplitLIs) VRM.setIsSplitFromReg(SplitLI->reg(), Original); // The new intervals all map back to i. if (LRMap) LRMap->resize(Edit->size(), i); } // Calculate spill weight and allocation hints for new intervals. Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); assert(!LRMap || LRMap->size() == Edit->size()); } //===----------------------------------------------------------------------===// // Single Block Splitting //===----------------------------------------------------------------------===// bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, bool SingleInstrs) const { // Always split for multiple instructions. if (!BI.isOneInstr()) return true; // Don't split for single instructions unless explicitly requested. if (!SingleInstrs) return false; // Splitting a live-through range always makes progress. if (BI.LiveIn && BI.LiveOut) return true; // No point in isolating a copy. It has no register class constraints. MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr); bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg(); if (copyLike) return false; // Finally, don't isolate an end point that was created by earlier splits. return isOriginalEndpoint(BI.FirstInstr); } void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { openIntv(); SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, LastSplitPoint)); if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); } else { // The last use is after the last valid split point. SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); useIntv(SegStart, SegStop); overlapIntv(SegStop, BI.LastInstr); } } //===----------------------------------------------------------------------===// // Global Live Range Splitting Support //===----------------------------------------------------------------------===// // These methods support a method of global live range splitting that uses a // global algorithm to decide intervals for CFG edges. They will insert split // points and color intervals in basic blocks while avoiding interference. // // Note that splitSingleBlock is also useful for blocks where both CFG edges // are on the stack. void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, unsigned IntvIn, SlotIndex LeaveBefore, unsigned IntvOut, SlotIndex EnterAfter){ SlotIndex Start, Stop; std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop << ") intf " << LeaveBefore << '-' << EnterAfter << ", live-through " << IntvIn << " -> " << IntvOut); assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); if (!IntvOut) { LLVM_DEBUG(dbgs() << ", spill on entry.\n"); // // <<<<<<<<< Possible LeaveBefore interference. // |-----------| Live through. // -____________ Spill on entry. // selectIntv(IntvIn); SlotIndex Idx = leaveIntvAtTop(*MBB); assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); (void)Idx; return; } if (!IntvIn) { LLVM_DEBUG(dbgs() << ", reload on exit.\n"); // // >>>>>>> Possible EnterAfter interference. // |-----------| Live through. // ___________-- Reload on exit. // selectIntv(IntvOut); SlotIndex Idx = enterIntvAtEnd(*MBB); assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); (void)Idx; return; } if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { LLVM_DEBUG(dbgs() << ", straight through.\n"); // // |-----------| Live through. // ------------- Straight through, same intv, no interference. // selectIntv(IntvOut); useIntv(Start, Stop); return; } // We cannot legally insert splits after LSP. SlotIndex LSP = SA.getLastSplitPoint(MBBNum); assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); // // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. // |-----------| Live through. // ------======= Switch intervals between interference. // selectIntv(IntvOut); SlotIndex Idx; if (LeaveBefore && LeaveBefore < LSP) { Idx = enterIntvBefore(LeaveBefore); useIntv(Idx, Stop); } else { Idx = enterIntvAtEnd(*MBB); } selectIntv(IntvIn); useIntv(Start, Idx); assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); return; } LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); // // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. // |-----------| Live through. // ==---------== Switch intervals before/after interference. // assert(LeaveBefore <= EnterAfter && "Missed case"); selectIntv(IntvOut); SlotIndex Idx = enterIntvAfter(EnterAfter); useIntv(Idx, Stop); assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); selectIntv(IntvIn); Idx = leaveIntvBefore(LeaveBefore); useIntv(Start, Idx); assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); } void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, unsigned IntvIn, SlotIndex LeaveBefore) { SlotIndex Start, Stop; std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' << Stop << "), uses " << BI.FirstInstr << '-' << BI.LastInstr << ", reg-in " << IntvIn << ", leave before " << LeaveBefore << (BI.LiveOut ? ", stack-out" : ", killed in block")); assert(IntvIn && "Must have register in"); assert(BI.LiveIn && "Must be live-in"); assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { LLVM_DEBUG(dbgs() << " before interference.\n"); // // <<< Interference after kill. // |---o---x | Killed in block. // ========= Use IntvIn everywhere. // selectIntv(IntvIn); useIntv(Start, BI.LastInstr); return; } SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { // // <<< Possible interference after last use. // |---o---o---| Live-out on stack. // =========____ Leave IntvIn after last use. // // < Interference after last use. // |---o---o--o| Live-out on stack, late last use. // ============ Copy to stack after LSP, overlap IntvIn. // \_____ Stack interval is live-out. // if (BI.LastInstr < LSP) { LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); selectIntv(IntvIn); SlotIndex Idx = leaveIntvAfter(BI.LastInstr); useIntv(Start, Idx); assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); } else { LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); selectIntv(IntvIn); SlotIndex Idx = leaveIntvBefore(LSP); overlapIntv(Idx, BI.LastInstr); useIntv(Start, Idx); assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); } return; } // The interference is overlapping somewhere we wanted to use IntvIn. That // means we need to create a local interval that can be allocated a // different register. unsigned LocalIntv = openIntv(); (void)LocalIntv; LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); if (!BI.LiveOut || BI.LastInstr < LSP) { // // <<<<<<< Interference overlapping uses. // |---o---o---| Live-out on stack. // =====----____ Leave IntvIn before interference, then spill. // SlotIndex To = leaveIntvAfter(BI.LastInstr); SlotIndex From = enterIntvBefore(LeaveBefore); useIntv(From, To); selectIntv(IntvIn); useIntv(Start, From); assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); return; } // <<<<<<< Interference overlapping uses. // |---o---o--o| Live-out on stack, late last use. // =====------- Copy to stack before LSP, overlap LocalIntv. // \_____ Stack interval is live-out. // SlotIndex To = leaveIntvBefore(LSP); overlapIntv(To, BI.LastInstr); SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); useIntv(From, To); selectIntv(IntvIn); useIntv(Start, From); assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); } void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, unsigned IntvOut, SlotIndex EnterAfter) { SlotIndex Start, Stop; std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' << Stop << "), uses " << BI.FirstInstr << '-' << BI.LastInstr << ", reg-out " << IntvOut << ", enter after " << EnterAfter << (BI.LiveIn ? ", stack-in" : ", defined in block")); SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); assert(IntvOut && "Must have register out"); assert(BI.LiveOut && "Must be live-out"); assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { LLVM_DEBUG(dbgs() << " after interference.\n"); // // >>>> Interference before def. // | o---o---| Defined in block. // ========= Use IntvOut everywhere. // selectIntv(IntvOut); useIntv(BI.FirstInstr, Stop); return; } if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { LLVM_DEBUG(dbgs() << ", reload after interference.\n"); // // >>>> Interference before def. // |---o---o---| Live-through, stack-in. // ____========= Enter IntvOut before first use. // selectIntv(IntvOut); SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); useIntv(Idx, Stop); assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); return; } // The interference is overlapping somewhere we wanted to use IntvOut. That // means we need to create a local interval that can be allocated a // different register. LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); // // >>>>>>> Interference overlapping uses. // |---o---o---| Live-through, stack-in. // ____---====== Create local interval for interference range. // selectIntv(IntvOut); SlotIndex Idx = enterIntvAfter(EnterAfter); useIntv(Idx, Stop); assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); openIntv(); SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); useIntv(From, Idx); } void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { OS << "{" << printMBBReference(*MBB) << ", " << "uses " << FirstInstr << " to " << LastInstr << ", " << "1st def " << FirstDef << ", " << (LiveIn ? "live in" : "dead in") << ", " << (LiveOut ? "live out" : "dead out") << "}"; } void SplitAnalysis::BlockInfo::dump() const { print(dbgs()); dbgs() << "\n"; }