//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::Legalize method. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FloatingPointMode.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/RuntimeLibcallUtil.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "legalizedag" namespace { /// Keeps track of state when getting the sign of a floating-point value as an /// integer. struct FloatSignAsInt { EVT FloatVT; SDValue Chain; SDValue FloatPtr; SDValue IntPtr; MachinePointerInfo IntPointerInfo; MachinePointerInfo FloatPointerInfo; SDValue IntValue; APInt SignMask; uint8_t SignBit; }; //===----------------------------------------------------------------------===// /// This takes an arbitrary SelectionDAG as input and /// hacks on it until the target machine can handle it. This involves /// eliminating value sizes the machine cannot handle (promoting small sizes to /// large sizes or splitting up large values into small values) as well as /// eliminating operations the machine cannot handle. /// /// This code also does a small amount of optimization and recognition of idioms /// as part of its processing. For example, if a target does not support a /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this /// will attempt merge setcc and brc instructions into brcc's. class SelectionDAGLegalize { const TargetMachine &TM; const TargetLowering &TLI; SelectionDAG &DAG; /// The set of nodes which have already been legalized. We hold a /// reference to it in order to update as necessary on node deletion. SmallPtrSetImpl &LegalizedNodes; /// A set of all the nodes updated during legalization. SmallSetVector *UpdatedNodes; EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); } // Libcall insertion helpers. public: SelectionDAGLegalize(SelectionDAG &DAG, SmallPtrSetImpl &LegalizedNodes, SmallSetVector *UpdatedNodes = nullptr) : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} /// Legalizes the given operation. void LegalizeOp(SDNode *Node); private: SDValue OptimizeFloatStore(StoreSDNode *ST); void LegalizeLoadOps(SDNode *Node); void LegalizeStoreOps(SDNode *Node); SDValue ExpandINSERT_VECTOR_ELT(SDValue Op); /// Return a vector shuffle operation which /// performs the same shuffe in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef Mask) const; std::pair ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, TargetLowering::ArgListTy &&Args, bool isSigned); std::pair ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); void ExpandFrexpLibCall(SDNode *Node, SmallVectorImpl &Results); void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, SmallVectorImpl &Results); void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128, SmallVectorImpl &Results); SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128); void ExpandArgFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128, SmallVectorImpl &Results); void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl &Results); void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl &Results); SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, const SDLoc &dl); SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, const SDLoc &dl, SDValue ChainIn); SDValue ExpandBUILD_VECTOR(SDNode *Node); SDValue ExpandSPLAT_VECTOR(SDNode *Node); SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); void ExpandDYNAMIC_STACKALLOC(SDNode *Node, SmallVectorImpl &Results); void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, SDValue Value) const; SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, SDValue NewIntValue) const; SDValue ExpandFCOPYSIGN(SDNode *Node) const; SDValue ExpandFABS(SDNode *Node) const; SDValue ExpandFNEG(SDNode *Node) const; SDValue expandLdexp(SDNode *Node) const; SDValue expandFrexp(SDNode *Node) const; SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, SmallVectorImpl &Results); void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, SmallVectorImpl &Results); SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); /// Implements vector reduce operation promotion. /// /// All vector operands are promoted to a vector type with larger element /// type, and the start value is promoted to a larger scalar type. Then the /// result is truncated back to the original scalar type. SDValue PromoteReduction(SDNode *Node); SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); SDValue ExpandExtractFromVectorThroughStack(SDValue Op); SDValue ExpandInsertToVectorThroughStack(SDValue Op); SDValue ExpandVectorBuildThroughStack(SDNode* Node); SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); SDValue ExpandConstant(ConstantSDNode *CP); // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall bool ExpandNode(SDNode *Node); void ConvertNodeToLibcall(SDNode *Node); void PromoteNode(SDNode *Node); public: // Node replacement helpers void ReplacedNode(SDNode *N) { LegalizedNodes.erase(N); if (UpdatedNodes) UpdatedNodes->insert(N); } void ReplaceNode(SDNode *Old, SDNode *New) { LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); dbgs() << " with: "; New->dump(&DAG)); assert(Old->getNumValues() == New->getNumValues() && "Replacing one node with another that produces a different number " "of values!"); DAG.ReplaceAllUsesWith(Old, New); if (UpdatedNodes) UpdatedNodes->insert(New); ReplacedNode(Old); } void ReplaceNode(SDValue Old, SDValue New) { LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); dbgs() << " with: "; New->dump(&DAG)); DAG.ReplaceAllUsesWith(Old, New); if (UpdatedNodes) UpdatedNodes->insert(New.getNode()); ReplacedNode(Old.getNode()); } void ReplaceNode(SDNode *Old, const SDValue *New) { LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); DAG.ReplaceAllUsesWith(Old, New); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); New[i]->dump(&DAG)); if (UpdatedNodes) UpdatedNodes->insert(New[i].getNode()); } ReplacedNode(Old); } void ReplaceNodeWithValue(SDValue Old, SDValue New) { LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); dbgs() << " with: "; New->dump(&DAG)); DAG.ReplaceAllUsesOfValueWith(Old, New); if (UpdatedNodes) UpdatedNodes->insert(New.getNode()); ReplacedNode(Old.getNode()); } }; } // end anonymous namespace // Helper function that generates an MMO that considers the alignment of the // stack, and the size of the stack object static MachineMemOperand *getStackAlignedMMO(SDValue StackPtr, MachineFunction &MF, bool isObjectScalable) { auto &MFI = MF.getFrameInfo(); int FI = cast(StackPtr)->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); LocationSize ObjectSize = isObjectScalable ? LocationSize::beforeOrAfterPointer() : LocationSize::precise(MFI.getObjectSize(FI)); return MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, ObjectSize, MFI.getObjectAlign(FI)); } /// Return a vector shuffle operation which /// performs the same shuffle in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef Mask) const { unsigned NumMaskElts = VT.getVectorNumElements(); unsigned NumDestElts = NVT.getVectorNumElements(); unsigned NumEltsGrowth = NumDestElts / NumMaskElts; assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); if (NumEltsGrowth == 1) return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); SmallVector NewMask; for (unsigned i = 0; i != NumMaskElts; ++i) { int Idx = Mask[i]; for (unsigned j = 0; j != NumEltsGrowth; ++j) { if (Idx < 0) NewMask.push_back(-1); else NewMask.push_back(Idx * NumEltsGrowth + j); } } assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); } /// Expands the ConstantFP node to an integer constant or /// a load from the constant pool. SDValue SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { bool Extend = false; SDLoc dl(CFP); // If a FP immediate is precise when represented as a float and if the // target can do an extending load from float to double, we put it into // the constant pool as a float, even if it's is statically typed as a // double. This shrinks FP constants and canonicalizes them for targets where // an FP extending load is the same cost as a normal load (such as on the x87 // fp stack or PPC FP unit). EVT VT = CFP->getValueType(0); ConstantFP *LLVMC = const_cast(CFP->getConstantFPValue()); if (!UseCP) { assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, (VT == MVT::f64) ? MVT::i64 : MVT::i32); } APFloat APF = CFP->getValueAPF(); EVT OrigVT = VT; EVT SVT = VT; // We don't want to shrink SNaNs. Converting the SNaN back to its real type // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). if (!APF.isSignaling()) { while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) { SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); if (ConstantFPSDNode::isValueValidForType(SVT, APF) && // Only do this if the target has a native EXTLOAD instruction from // smaller type. TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && TLI.ShouldShrinkFPConstant(OrigVT)) { Type *SType = SVT.getTypeForEVT(*DAG.getContext()); LLVMC = cast(ConstantFoldCastOperand( Instruction::FPTrunc, LLVMC, SType, DAG.getDataLayout())); VT = SVT; Extend = true; } } } SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); Align Alignment = cast(CPIdx)->getAlign(); if (Extend) { SDValue Result = DAG.getExtLoad( ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, Alignment); return Result; } SDValue Result = DAG.getLoad( OrigVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); return Result; } /// Expands the Constant node to a load from the constant pool. SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { SDLoc dl(CP); EVT VT = CP->getValueType(0); SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), TLI.getPointerTy(DAG.getDataLayout())); Align Alignment = cast(CPIdx)->getAlign(); SDValue Result = DAG.getLoad( VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); return Result; } SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Op) { SDValue Vec = Op.getOperand(0); SDValue Val = Op.getOperand(1); SDValue Idx = Op.getOperand(2); SDLoc dl(Op); if (ConstantSDNode *InsertPos = dyn_cast(Idx)) { // SCALAR_TO_VECTOR requires that the type of the value being inserted // match the element type of the vector being created, except for // integers in which case the inserted value can be over width. EVT EltVT = Vec.getValueType().getVectorElementType(); if (Val.getValueType() == EltVT || (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Vec.getValueType(), Val); unsigned NumElts = Vec.getValueType().getVectorNumElements(); // We generate a shuffle of InVec and ScVec, so the shuffle mask // should be 0,1,2,3,4,5... with the appropriate element replaced with // elt 0 of the RHS. SmallVector ShufOps; for (unsigned i = 0; i != NumElts; ++i) ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); } } return ExpandInsertToVectorThroughStack(Op); } SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { if (!ISD::isNormalStore(ST)) return SDValue(); LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' // FIXME: move this to the DAG Combiner! Note that we can't regress due // to phase ordering between legalized code and the dag combiner. This // probably means that we need to integrate dag combiner and legalizer // together. // We generally can't do this one for long doubles. SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDValue Value = ST->getValue(); MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); AAMDNodes AAInfo = ST->getAAInfo(); SDLoc dl(ST); // Don't optimise TargetConstantFP if (Value.getOpcode() == ISD::TargetConstantFP) return SDValue(); if (ConstantFPSDNode *CFP = dyn_cast(Value)) { if (CFP->getValueType(0) == MVT::f32 && TLI.isTypeLegal(MVT::i32)) { SDValue Con = DAG.getConstant(CFP->getValueAPF(). bitcastToAPInt().zextOrTrunc(32), SDLoc(CFP), MVT::i32); return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); } if (CFP->getValueType(0) == MVT::f64 && !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) { // If this target supports 64-bit registers, do a single 64-bit store. if (TLI.isTypeLegal(MVT::i64)) { SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). zextOrTrunc(64), SDLoc(CFP), MVT::i64); return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); } if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { // Otherwise, if the target supports 32-bit registers, use 2 32-bit // stores. If the target supports neither 32- nor 64-bits, this // xform is certainly not worth it. const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); if (DAG.getDataLayout().isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(4), dl); Hi = DAG.getStore(Chain, dl, Hi, Ptr, ST->getPointerInfo().getWithOffset(4), ST->getOriginalAlign(), MMOFlags, AAInfo); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } } } return SDValue(); } void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { StoreSDNode *ST = cast(Node); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDLoc dl(Node); MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); AAMDNodes AAInfo = ST->getAAInfo(); if (!ST->isTruncatingStore()) { LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { ReplaceNode(ST, OptStore); return; } SDValue Value = ST->getValue(); MVT VT = Value.getSimpleValueType(); switch (TLI.getOperationAction(ISD::STORE, VT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { // If this is an unaligned store and the target doesn't support it, // expand it. EVT MemVT = ST->getMemoryVT(); const DataLayout &DL = DAG.getDataLayout(); if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, *ST->getMemOperand())) { LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); SDValue Result = TLI.expandUnalignedStore(ST, DAG); ReplaceNode(SDValue(ST, 0), Result); } else LLVM_DEBUG(dbgs() << "Legal store\n"); break; } case TargetLowering::Custom: { LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res && Res != SDValue(Node, 0)) ReplaceNode(SDValue(Node, 0), Res); return; } case TargetLowering::Promote: { MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); assert(NVT.getSizeInBits() == VT.getSizeInBits() && "Can only promote stores to same size type"); Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); ReplaceNode(SDValue(Node, 0), Result); break; } } return; } LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); SDValue Value = ST->getValue(); EVT StVT = ST->getMemoryVT(); TypeSize StWidth = StVT.getSizeInBits(); TypeSize StSize = StVT.getStoreSizeInBits(); auto &DL = DAG.getDataLayout(); if (StWidth != StSize) { // Promote to a byte-sized store with upper bits zero if not // storing an integral number of bytes. For example, promote // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedValue()); Value = DAG.getZeroExtendInReg(Value, dl, StVT); SDValue Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, ST->getOriginalAlign(), MMOFlags, AAInfo); ReplaceNode(SDValue(Node, 0), Result); } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedValue())) { // If not storing a power-of-2 number of bits, expand as two stores. assert(!StVT.isVector() && "Unsupported truncstore!"); unsigned StWidthBits = StWidth.getFixedValue(); unsigned LogStWidth = Log2_32(StWidthBits); assert(LogStWidth < 32); unsigned RoundWidth = 1 << LogStWidth; assert(RoundWidth < StWidthBits); unsigned ExtraWidth = StWidthBits - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Store size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi; unsigned IncrementSize; if (DL.isLittleEndian()) { // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) // Store the bottom RoundWidth bits. Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); Hi = DAG.getNode( ISD::SRL, dl, Value.getValueType(), Value, DAG.getConstant(RoundWidth, dl, TLI.getShiftAmountTy(Value.getValueType(), DL))); Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); } else { // Big endian - avoid unaligned stores. // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X // Store the top RoundWidth bits. Hi = DAG.getNode( ISD::SRL, dl, Value.getValueType(), Value, DAG.getConstant(ExtraWidth, dl, TLI.getShiftAmountTy(Value.getValueType(), DL))); Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); } // The order of the stores doesn't matter. SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); ReplaceNode(SDValue(Node, 0), Result); } else { switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { EVT MemVT = ST->getMemoryVT(); // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, *ST->getMemOperand())) { SDValue Result = TLI.expandUnalignedStore(ST, DAG); ReplaceNode(SDValue(ST, 0), Result); } break; } case TargetLowering::Custom: { SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res && Res != SDValue(Node, 0)) ReplaceNode(SDValue(Node, 0), Res); return; } case TargetLowering::Expand: assert(!StVT.isVector() && "Vector Stores are handled in LegalizeVectorOps"); SDValue Result; // TRUNCSTORE:i16 i32 -> STORE i16 if (TLI.isTypeLegal(StVT)) { Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); } else { // The in-memory type isn't legal. Truncate to the type it would promote // to, and then do a truncstore. Value = DAG.getNode(ISD::TRUNCATE, dl, TLI.getTypeToTransformTo(*DAG.getContext(), StVT), Value); Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, ST->getOriginalAlign(), MMOFlags, AAInfo); } ReplaceNode(SDValue(Node, 0), Result); break; } } } void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { LoadSDNode *LD = cast(Node); SDValue Chain = LD->getChain(); // The chain. SDValue Ptr = LD->getBasePtr(); // The base pointer. SDValue Value; // The value returned by the load op. SDLoc dl(Node); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) { LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); MVT VT = Node->getSimpleValueType(0); SDValue RVal = SDValue(Node, 0); SDValue RChain = SDValue(Node, 1); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { EVT MemVT = LD->getMemoryVT(); const DataLayout &DL = DAG.getDataLayout(); // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, *LD->getMemOperand())) { std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); } break; } case TargetLowering::Custom: if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { RVal = Res; RChain = Res.getValue(1); } break; case TargetLowering::Promote: { MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); assert(NVT.getSizeInBits() == VT.getSizeInBits() && "Can only promote loads to same size type"); SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); RChain = Res.getValue(1); break; } } if (RChain.getNode() != Node) { assert(RVal.getNode() != Node && "Load must be completely replaced"); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); if (UpdatedNodes) { UpdatedNodes->insert(RVal.getNode()); UpdatedNodes->insert(RChain.getNode()); } ReplacedNode(Node); } return; } LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); EVT SrcVT = LD->getMemoryVT(); TypeSize SrcWidth = SrcVT.getSizeInBits(); MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); AAMDNodes AAInfo = LD->getAAInfo(); if (SrcWidth != SrcVT.getStoreSizeInBits() && // Some targets pretend to have an i1 loading operation, and actually // load an i8. This trick is correct for ZEXTLOAD because the top 7 // bits are guaranteed to be zero; it helps the optimizers understand // that these bits are zero. It is also useful for EXTLOAD, since it // tells the optimizers that those bits are undefined. It would be // nice to have an effective generic way of getting these benefits... // Until such a way is found, don't insist on promoting i1 here. (SrcVT != MVT::i1 || TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == TargetLowering::Promote)) { // Promote to a byte-sized load if not loading an integral number of // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. unsigned NewWidth = SrcVT.getStoreSizeInBits(); EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); SDValue Ch; // The extra bits are guaranteed to be zero, since we stored them that // way. A zext load from NVT thus automatically gives zext from SrcVT. ISD::LoadExtType NewExtType = ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), NVT, LD->getOriginalAlign(), MMOFlags, AAInfo); Ch = Result.getValue(1); // The chain. if (ExtType == ISD::SEXTLOAD) // Having the top bits zero doesn't help when sign extending. Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) // All the top bits are guaranteed to be zero - inform the optimizers. Result = DAG.getNode(ISD::AssertZext, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); Value = Result; Chain = Ch; } else if (!isPowerOf2_64(SrcWidth.getKnownMinValue())) { // If not loading a power-of-2 number of bits, expand as two loads. assert(!SrcVT.isVector() && "Unsupported extload!"); unsigned SrcWidthBits = SrcWidth.getFixedValue(); unsigned LogSrcWidth = Log2_32(SrcWidthBits); assert(LogSrcWidth < 32); unsigned RoundWidth = 1 << LogSrcWidth; assert(RoundWidth < SrcWidthBits); unsigned ExtraWidth = SrcWidthBits - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Load size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi, Ch; unsigned IncrementSize; auto &DL = DAG.getDataLayout(); if (DL.isLittleEndian()) { // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) // Load the bottom RoundWidth bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), MMOFlags, AAInfo); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode( ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(RoundWidth, dl, TLI.getShiftAmountTy(Hi.getValueType(), DL))); // Join the hi and lo parts. Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } else { // Big endian - avoid unaligned loads. // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 // Load the top RoundWidth bits. Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), MMOFlags, AAInfo); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(IncrementSize), dl); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode( ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(ExtraWidth, dl, TLI.getShiftAmountTy(Hi.getValueType(), DL))); // Join the hi and lo parts. Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } Chain = Ch; } else { bool isCustom = false; switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), SrcVT.getSimpleVT())) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; [[fallthrough]]; case TargetLowering::Legal: Value = SDValue(Node, 0); Chain = SDValue(Node, 1); if (isCustom) { if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { Value = Res; Chain = Res.getValue(1); } } else { // If this is an unaligned load and the target doesn't support it, // expand it. EVT MemVT = LD->getMemoryVT(); const DataLayout &DL = DAG.getDataLayout(); if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, *LD->getMemOperand())) { std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); } } break; case TargetLowering::Expand: { EVT DestVT = Node->getValueType(0); if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { // If the source type is not legal, see if there is a legal extload to // an intermediate type that we can then extend further. EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); if ((LoadVT.isFloatingPoint() == SrcVT.isFloatingPoint()) && (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT))) { // If we are loading a legal type, this is a non-extload followed by a // full extend. ISD::LoadExtType MidExtType = (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, SrcVT, LD->getMemOperand()); unsigned ExtendOp = ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); Chain = Load.getValue(1); break; } // Handle the special case of fp16 extloads. EXTLOAD doesn't have the // normal undefined upper bits behavior to allow using an in-reg extend // with the illegal FP type, so load as an integer and do the // from-integer conversion. EVT SVT = SrcVT.getScalarType(); if (SVT == MVT::f16 || SVT == MVT::bf16) { EVT ISrcVT = SrcVT.changeTypeToInteger(); EVT IDestVT = DestVT.changeTypeToInteger(); EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, Ptr, ISrcVT, LD->getMemOperand()); Value = DAG.getNode(SVT == MVT::f16 ? ISD::FP16_TO_FP : ISD::BF16_TO_FP, dl, DestVT, Result); Chain = Result.getValue(1); break; } } assert(!SrcVT.isVector() && "Vector Loads are handled in LegalizeVectorOps"); // FIXME: This does not work for vectors on most targets. Sign- // and zero-extend operations are currently folded into extending // loads, whether they are legal or not, and then we end up here // without any support for legalizing them. assert(ExtType != ISD::EXTLOAD && "EXTLOAD should always be supported!"); // Turn the unsupported load into an EXTLOAD followed by an // explicit zero/sign extend inreg. SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), Chain, Ptr, SrcVT, LD->getMemOperand()); SDValue ValRes; if (ExtType == ISD::SEXTLOAD) ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); Value = ValRes; Chain = Result.getValue(1); break; } } } // Since loads produce two values, make sure to remember that we legalized // both of them. if (Chain.getNode() != Node) { assert(Value.getNode() != Node && "Load must be completely replaced"); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); if (UpdatedNodes) { UpdatedNodes->insert(Value.getNode()); UpdatedNodes->insert(Chain.getNode()); } ReplacedNode(Node); } } /// Return a legal replacement for the given operation, with all legal operands. void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); // Allow illegal target nodes and illegal registers. if (Node->getOpcode() == ISD::TargetConstant || Node->getOpcode() == ISD::Register) return; #ifndef NDEBUG for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == TargetLowering::TypeLegal && "Unexpected illegal type!"); for (const SDValue &Op : Node->op_values()) assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == TargetLowering::TypeLegal || Op.getOpcode() == ISD::TargetConstant || Op.getOpcode() == ISD::Register) && "Unexpected illegal type!"); #endif // Figure out the correct action; the way to query this varies by opcode TargetLowering::LegalizeAction Action = TargetLowering::Legal; bool SimpleFinishLegalizing = true; switch (Node->getOpcode()) { case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: case ISD::STACKSAVE: Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); break; case ISD::GET_DYNAMIC_AREA_OFFSET: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); break; case ISD::VAARG: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action != TargetLowering::Promote) Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); break; case ISD::SET_FPENV: case ISD::SET_FPMODE: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType()); break; case ISD::FP_TO_FP16: case ISD::FP_TO_BF16: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::EXTRACT_VECTOR_ELT: case ISD::LROUND: case ISD::LLROUND: case ISD::LRINT: case ISD::LLRINT: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType()); break; case ISD::STRICT_FP_TO_FP16: case ISD::STRICT_FP_TO_BF16: case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::STRICT_LRINT: case ISD::STRICT_LLRINT: case ISD::STRICT_LROUND: case ISD::STRICT_LLROUND: // These pseudo-ops are the same as the other STRICT_ ops except // they are registered with setOperationAction() using the input type // instead of the output type. Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType()); break; case ISD::SIGN_EXTEND_INREG: { EVT InnerType = cast(Node->getOperand(1))->getVT(); Action = TLI.getOperationAction(Node->getOpcode(), InnerType); break; } case ISD::ATOMIC_STORE: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType()); break; case ISD::SELECT_CC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: case ISD::SETCC: case ISD::SETCCCARRY: case ISD::VP_SETCC: case ISD::BR_CC: { unsigned Opc = Node->getOpcode(); unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 : Opc == ISD::STRICT_FSETCC ? 3 : Opc == ISD::STRICT_FSETCCS ? 3 : Opc == ISD::SETCCCARRY ? 3 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 : 1; unsigned CompareOperand = Opc == ISD::BR_CC ? 2 : Opc == ISD::STRICT_FSETCC ? 1 : Opc == ISD::STRICT_FSETCCS ? 1 : 0; MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); ISD::CondCode CCCode = cast(Node->getOperand(CCOperand))->get(); Action = TLI.getCondCodeAction(CCCode, OpVT); if (Action == TargetLowering::Legal) { if (Node->getOpcode() == ISD::SELECT_CC) Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); else Action = TLI.getOperationAction(Node->getOpcode(), OpVT); } break; } case ISD::LOAD: case ISD::STORE: // FIXME: Model these properly. LOAD and STORE are complicated, and // STORE expects the unlegalized operand in some cases. SimpleFinishLegalizing = false; break; case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: // FIXME: This shouldn't be necessary. These nodes have special properties // dealing with the recursive nature of legalization. Removing this // special case should be done as part of making LegalizeDAG non-recursive. SimpleFinishLegalizing = false; break; case ISD::EXTRACT_ELEMENT: case ISD::GET_ROUNDING: case ISD::MERGE_VALUES: case ISD::EH_RETURN: case ISD::FRAME_TO_ARGS_OFFSET: case ISD::EH_DWARF_CFA: case ISD::EH_SJLJ_SETJMP: case ISD::EH_SJLJ_LONGJMP: case ISD::EH_SJLJ_SETUP_DISPATCH: // These operations lie about being legal: when they claim to be legal, // they should actually be expanded. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Expand; break; case ISD::INIT_TRAMPOLINE: case ISD::ADJUST_TRAMPOLINE: case ISD::FRAMEADDR: case ISD::RETURNADDR: case ISD::ADDROFRETURNADDR: case ISD::SPONENTRY: // These operations lie about being legal: when they claim to be legal, // they should actually be custom-lowered. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Custom; break; case ISD::CLEAR_CACHE: // This operation is typically going to be LibCall unless the target wants // something differrent. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); break; case ISD::READCYCLECOUNTER: case ISD::READSTEADYCOUNTER: // READCYCLECOUNTER and READSTEADYCOUNTER return a i64, even if type // legalization might have expanded that to several smaller types. Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); break; case ISD::READ_REGISTER: case ISD::WRITE_REGISTER: // Named register is legal in the DAG, but blocked by register name // selection if not implemented by target (to chose the correct register) // They'll be converted to Copy(To/From)Reg. Action = TargetLowering::Legal; break; case ISD::UBSANTRAP: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Expand) { // replace ISD::UBSANTRAP with ISD::TRAP SDValue NewVal; NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), Node->getOperand(0)); ReplaceNode(Node, NewVal.getNode()); LegalizeOp(NewVal.getNode()); return; } break; case ISD::DEBUGTRAP: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Expand) { // replace ISD::DEBUGTRAP with ISD::TRAP SDValue NewVal; NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), Node->getOperand(0)); ReplaceNode(Node, NewVal.getNode()); LegalizeOp(NewVal.getNode()); return; } break; case ISD::SADDSAT: case ISD::UADDSAT: case ISD::SSUBSAT: case ISD::USUBSAT: case ISD::SSHLSAT: case ISD::USHLSAT: case ISD::SCMP: case ISD::UCMP: case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); break; case ISD::SMULFIX: case ISD::SMULFIXSAT: case ISD::UMULFIX: case ISD::UMULFIXSAT: case ISD::SDIVFIX: case ISD::SDIVFIXSAT: case ISD::UDIVFIX: case ISD::UDIVFIXSAT: { unsigned Scale = Node->getConstantOperandVal(2); Action = TLI.getFixedPointOperationAction(Node->getOpcode(), Node->getValueType(0), Scale); break; } case ISD::MSCATTER: Action = TLI.getOperationAction(Node->getOpcode(), cast(Node)->getValue().getValueType()); break; case ISD::MSTORE: Action = TLI.getOperationAction(Node->getOpcode(), cast(Node)->getValue().getValueType()); break; case ISD::VP_SCATTER: Action = TLI.getOperationAction( Node->getOpcode(), cast(Node)->getValue().getValueType()); break; case ISD::VP_STORE: Action = TLI.getOperationAction( Node->getOpcode(), cast(Node)->getValue().getValueType()); break; case ISD::EXPERIMENTAL_VP_STRIDED_STORE: Action = TLI.getOperationAction( Node->getOpcode(), cast(Node)->getValue().getValueType()); break; case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_MUL: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAXIMUM: case ISD::VECREDUCE_FMINIMUM: case ISD::IS_FPCLASS: Action = TLI.getOperationAction( Node->getOpcode(), Node->getOperand(0).getValueType()); break; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: case ISD::VP_REDUCE_FADD: case ISD::VP_REDUCE_FMUL: case ISD::VP_REDUCE_ADD: case ISD::VP_REDUCE_MUL: case ISD::VP_REDUCE_AND: case ISD::VP_REDUCE_OR: case ISD::VP_REDUCE_XOR: case ISD::VP_REDUCE_SMAX: case ISD::VP_REDUCE_SMIN: case ISD::VP_REDUCE_UMAX: case ISD::VP_REDUCE_UMIN: case ISD::VP_REDUCE_FMAX: case ISD::VP_REDUCE_FMIN: case ISD::VP_REDUCE_FMAXIMUM: case ISD::VP_REDUCE_FMINIMUM: case ISD::VP_REDUCE_SEQ_FADD: case ISD::VP_REDUCE_SEQ_FMUL: Action = TLI.getOperationAction( Node->getOpcode(), Node->getOperand(1).getValueType()); break; case ISD::VP_CTTZ_ELTS: case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType()); break; default: if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { Action = TLI.getCustomOperationAction(*Node); } else { Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); } break; } if (SimpleFinishLegalizing) { SDNode *NewNode = Node; switch (Node->getOpcode()) { default: break; case ISD::SHL: case ISD::SRL: case ISD::SRA: case ISD::ROTL: case ISD::ROTR: { // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); if (!Op1.getValueType().isVector()) { SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); // The getShiftAmountOperand() may create a new operand node or // return the existing one. If new operand is created we need // to update the parent node. // Do not try to legalize SAO here! It will be automatically legalized // in the next round. if (SAO != Op1) NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); } } break; case ISD::FSHL: case ISD::FSHR: case ISD::SRL_PARTS: case ISD::SRA_PARTS: case ISD::SHL_PARTS: { // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue Op2 = Node->getOperand(2); if (!Op2.getValueType().isVector()) { SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); // The getShiftAmountOperand() may create a new operand node or // return the existing one. If new operand is created we need // to update the parent node. if (SAO != Op2) NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); } break; } } if (NewNode != Node) { ReplaceNode(Node, NewNode); Node = NewNode; } switch (Action) { case TargetLowering::Legal: LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); return; case TargetLowering::Custom: LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); // FIXME: The handling for custom lowering with multiple results is // a complete mess. if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { if (!(Res.getNode() != Node || Res.getResNo() != 0)) return; if (Node->getNumValues() == 1) { // Verify the new types match the original. Glue is waived because // ISD::ADDC can be legalized by replacing Glue with an integer type. assert((Res.getValueType() == Node->getValueType(0) || Node->getValueType(0) == MVT::Glue) && "Type mismatch for custom legalized operation"); LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); // We can just directly replace this node with the lowered value. ReplaceNode(SDValue(Node, 0), Res); return; } SmallVector ResultVals; for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { // Verify the new types match the original. Glue is waived because // ISD::ADDC can be legalized by replacing Glue with an integer type. assert((Res->getValueType(i) == Node->getValueType(i) || Node->getValueType(i) == MVT::Glue) && "Type mismatch for custom legalized operation"); ResultVals.push_back(Res.getValue(i)); } LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); ReplaceNode(Node, ResultVals.data()); return; } LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); [[fallthrough]]; case TargetLowering::Expand: if (ExpandNode(Node)) return; [[fallthrough]]; case TargetLowering::LibCall: ConvertNodeToLibcall(Node); return; case TargetLowering::Promote: PromoteNode(Node); return; } } switch (Node->getOpcode()) { default: #ifndef NDEBUG dbgs() << "NODE: "; Node->dump( &DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to legalize this operator!"); case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: break; case ISD::LOAD: return LegalizeLoadOps(Node); case ISD::STORE: return LegalizeStoreOps(Node); } } SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); SDLoc dl(Op); // Before we generate a new store to a temporary stack slot, see if there is // already one that we can use. There often is because when we scalarize // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in // the vector. If all are expanded here, we don't want one store per vector // element. // Caches for hasPredecessorHelper SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Op.getNode()); Worklist.push_back(Idx.getNode()); SDValue StackPtr, Ch; for (SDNode *User : Vec.getNode()->uses()) { if (StoreSDNode *ST = dyn_cast(User)) { if (ST->isIndexed() || ST->isTruncatingStore() || ST->getValue() != Vec) continue; // Make sure that nothing else could have stored into the destination of // this store. if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) continue; // If the index is dependent on the store we will introduce a cycle when // creating the load (the load uses the index, and by replacing the chain // we will make the index dependent on the load). Also, the store might be // dependent on the extractelement and introduce a cycle when creating // the load. if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || ST->hasPredecessor(Op.getNode())) continue; StackPtr = ST->getBasePtr(); Ch = SDValue(ST, 0); break; } } EVT VecVT = Vec.getValueType(); if (!Ch.getNode()) { // Store the value to a temporary stack slot, then LOAD the returned part. StackPtr = DAG.CreateStackTemporary(VecVT); MachineMemOperand *StoreMMO = getStackAlignedMMO( StackPtr, DAG.getMachineFunction(), VecVT.isScalableVector()); Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, StoreMMO); } SDValue NewLoad; Align ElementAlignment = std::min(cast(Ch)->getAlign(), DAG.getDataLayout().getPrefTypeAlign( Op.getValueType().getTypeForEVT(*DAG.getContext()))); if (Op.getValueType().isVector()) { StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, Op.getValueType(), Idx); NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo(), ElementAlignment); } else { StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(), VecVT.getVectorElementType(), ElementAlignment); } // Replace the chain going out of the store, by the one out of the load. DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); // We introduced a cycle though, so update the loads operands, making sure // to use the original store's chain as an incoming chain. SmallVector NewLoadOperands(NewLoad->op_begin(), NewLoad->op_end()); NewLoadOperands[0] = Ch; NewLoad = SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); return NewLoad; } SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); SDValue Vec = Op.getOperand(0); SDValue Part = Op.getOperand(1); SDValue Idx = Op.getOperand(2); SDLoc dl(Op); // Store the value to a temporary stack slot, then LOAD the returned part. EVT VecVT = Vec.getValueType(); EVT PartVT = Part.getValueType(); SDValue StackPtr = DAG.CreateStackTemporary(VecVT); int FI = cast(StackPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); // First store the whole vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); // Freeze the index so we don't poison the clamping code we're about to emit. Idx = DAG.getFreeze(Idx); // Then store the inserted part. if (PartVT.isVector()) { SDValue SubStackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, PartVT, Idx); // Store the subvector. Ch = DAG.getStore( Ch, dl, Part, SubStackPtr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); } else { SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); // Store the scalar value. Ch = DAG.getTruncStore( Ch, dl, Part, SubStackPtr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), VecVT.getVectorElementType()); } // Finally, load the updated vector. return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); } SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { assert((Node->getOpcode() == ISD::BUILD_VECTOR || Node->getOpcode() == ISD::CONCAT_VECTORS) && "Unexpected opcode!"); // We can't handle this case efficiently. Allocate a sufficiently // aligned object on the stack, store each operand into it, then load // the result as a vector. // Create the stack frame object. EVT VT = Node->getValueType(0); EVT MemVT = isa(Node) ? VT.getVectorElementType() : Node->getOperand(0).getValueType(); SDLoc dl(Node); SDValue FIPtr = DAG.CreateStackTemporary(VT); int FI = cast(FIPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); // Emit a store of each element to the stack slot. SmallVector Stores; unsigned TypeByteSize = MemVT.getSizeInBits() / 8; assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); // If the destination vector element type of a BUILD_VECTOR is narrower than // the source element type, only store the bits necessary. bool Truncate = isa(Node) && MemVT.bitsLT(Node->getOperand(0).getValueType()); // Store (in the right endianness) the elements to memory. for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { // Ignore undef elements. if (Node->getOperand(i).isUndef()) continue; unsigned Offset = TypeByteSize*i; SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::getFixed(Offset), dl); if (Truncate) Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset), MemVT)); else Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset))); } SDValue StoreChain; if (!Stores.empty()) // Not all undef elements? StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); else StoreChain = DAG.getEntryNode(); // Result is a load from the stack slot. return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); } /// Bitcast a floating-point value to an integer value. Only bitcast the part /// containing the sign bit if the target has no integer value capable of /// holding all bits of the floating-point value. void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, SDValue Value) const { EVT FloatVT = Value.getValueType(); unsigned NumBits = FloatVT.getScalarSizeInBits(); State.FloatVT = FloatVT; EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); // Convert to an integer of the same size. if (TLI.isTypeLegal(IVT)) { State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); State.SignMask = APInt::getSignMask(NumBits); State.SignBit = NumBits - 1; return; } auto &DataLayout = DAG.getDataLayout(); // Store the float to memory, then load the sign part out as an integer. MVT LoadTy = TLI.getRegisterType(MVT::i8); // First create a temporary that is aligned for both the load and store. SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); int FI = cast(StackPtr.getNode())->getIndex(); // Then store the float to it. State.FloatPtr = StackPtr; MachineFunction &MF = DAG.getMachineFunction(); State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, State.FloatPointerInfo); SDValue IntPtr; if (DataLayout.isBigEndian()) { assert(FloatVT.isByteSized() && "Unsupported floating point type!"); // Load out a legal integer with the same sign bit as the float. IntPtr = StackPtr; State.IntPointerInfo = State.FloatPointerInfo; } else { // Advance the pointer so that the loaded byte will contain the sign bit. unsigned ByteOffset = (NumBits / 8) - 1; IntPtr = DAG.getMemBasePlusOffset(StackPtr, TypeSize::getFixed(ByteOffset), DL); State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, ByteOffset); } State.IntPtr = IntPtr; State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, State.IntPointerInfo, MVT::i8); State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); State.SignBit = 7; } /// Replace the integer value produced by getSignAsIntValue() with a new value /// and cast the result back to a floating-point type. SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, SDValue NewIntValue) const { if (!State.Chain) return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); // Override the part containing the sign bit in the value stored on the stack. SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, State.IntPointerInfo, MVT::i8); return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, State.FloatPointerInfo); } SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { SDLoc DL(Node); SDValue Mag = Node->getOperand(0); SDValue Sign = Node->getOperand(1); // Get sign bit into an integer value. FloatSignAsInt SignAsInt; getSignAsIntValue(SignAsInt, DL, Sign); EVT IntVT = SignAsInt.IntValue.getValueType(); SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, SignMask); // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) EVT FloatVT = Mag.getValueType(); if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, DAG.getConstant(0, DL, IntVT), ISD::SETNE); return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); } // Transform Mag value to integer, and clear the sign bit. FloatSignAsInt MagAsInt; getSignAsIntValue(MagAsInt, DL, Mag); EVT MagVT = MagAsInt.IntValue.getValueType(); SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, ClearSignMask); // Get the signbit at the right position for MagAsInt. int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; EVT ShiftVT = IntVT; if (SignBit.getScalarValueSizeInBits() < ClearedSign.getScalarValueSizeInBits()) { SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); ShiftVT = MagVT; } if (ShiftAmount > 0) { SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); } else if (ShiftAmount < 0) { SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); } if (SignBit.getScalarValueSizeInBits() > ClearedSign.getScalarValueSizeInBits()) { SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); } SDNodeFlags Flags; Flags.setDisjoint(true); // Store the part with the modified sign and convert back to float. SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit, Flags); return modifySignAsInt(MagAsInt, DL, CopiedSign); } SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { // Get the sign bit as an integer. SDLoc DL(Node); FloatSignAsInt SignAsInt; getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); EVT IntVT = SignAsInt.IntValue.getValueType(); // Flip the sign. SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); SDValue SignFlip = DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); // Convert back to float. return modifySignAsInt(SignAsInt, DL, SignFlip); } SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { SDLoc DL(Node); SDValue Value = Node->getOperand(0); // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. EVT FloatVT = Value.getValueType(); if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); } // Transform value to integer, clear the sign bit and transform back. FloatSignAsInt ValueAsInt; getSignAsIntValue(ValueAsInt, DL, Value); EVT IntVT = ValueAsInt.IntValue.getValueType(); SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, ClearSignMask); return modifySignAsInt(ValueAsInt, DL, ClearedSign); } void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, SmallVectorImpl &Results) { Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); SDLoc dl(Node); EVT VT = Node->getValueType(0); SDValue Tmp1 = SDValue(Node, 0); SDValue Tmp2 = SDValue(Node, 1); SDValue Tmp3 = Node->getOperand(2); SDValue Chain = Tmp1.getOperand(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); Align Alignment = cast(Tmp3)->getAlignValue(); const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); unsigned Opc = TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? ISD::ADD : ISD::SUB; Align StackAlign = TFL->getStackAlign(); Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value if (Alignment > StackAlign) Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, DAG.getConstant(-Alignment.value(), dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); Results.push_back(Tmp1); Results.push_back(Tmp2); } /// Emit a store/load combination to the stack. This stores /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does /// a load from the stack slot to DestVT, extending it if needed. /// The resultant code need not be legal. SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, const SDLoc &dl) { return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); } SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, const SDLoc &dl, SDValue Chain) { EVT SrcVT = SrcOp.getValueType(); Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); // Don't convert with stack if the load/store is expensive. if ((SrcVT.bitsGT(SlotVT) && !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || (SlotVT.bitsLT(DestVT) && !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) return SDValue(); // Create the stack frame object. Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); FrameIndexSDNode *StackPtrFI = cast(FIPtr); int SPFI = StackPtrFI->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); // Emit a store to the stack slot. Use a truncstore if the input value is // later than DestVT. SDValue Store; if (SrcVT.bitsGT(SlotVT)) Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SlotVT, SrcAlign); else { assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); } // Result is a load from the stack slot. if (SlotVT.bitsEq(DestVT)) return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, DestAlign); } SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { SDLoc dl(Node); // Create a vector sized/aligned stack slot, store the value to element #0, // then load the whole vector back out. SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); FrameIndexSDNode *StackPtrFI = cast(StackPtr); int SPFI = StackPtrFI->getIndex(); SDValue Ch = DAG.getTruncStore( DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), Node->getValueType(0).getVectorElementType()); return DAG.getLoad( Node->getValueType(0), dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); } static bool ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &Res) { unsigned NumElems = Node->getNumOperands(); SDLoc dl(Node); EVT VT = Node->getValueType(0); // Try to group the scalars into pairs, shuffle the pairs together, then // shuffle the pairs of pairs together, etc. until the vector has // been built. This will work only if all of the necessary shuffle masks // are legal. // We do this in two phases; first to check the legality of the shuffles, // and next, assuming that all shuffles are legal, to create the new nodes. for (int Phase = 0; Phase < 2; ++Phase) { SmallVector>, 16> IntermedVals, NewIntermedVals; for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.isUndef()) continue; SDValue Vec; if (Phase) Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); IntermedVals.push_back(std::make_pair(Vec, SmallVector(1, i))); } while (IntermedVals.size() > 2) { NewIntermedVals.clear(); for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { // This vector and the next vector are shuffled together (simply to // append the one to the other). SmallVector ShuffleVec(NumElems, -1); SmallVector FinalIndices; FinalIndices.reserve(IntermedVals[i].second.size() + IntermedVals[i+1].second.size()); int k = 0; for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; ++j, ++k) { ShuffleVec[k] = j; FinalIndices.push_back(IntermedVals[i].second[j]); } for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; ++j, ++k) { ShuffleVec[k] = NumElems + j; FinalIndices.push_back(IntermedVals[i+1].second[j]); } SDValue Shuffle; if (Phase) Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, IntermedVals[i+1].first, ShuffleVec); else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) return false; NewIntermedVals.push_back( std::make_pair(Shuffle, std::move(FinalIndices))); } // If we had an odd number of defined values, then append the last // element to the array of new vectors. if ((IntermedVals.size() & 1) != 0) NewIntermedVals.push_back(IntermedVals.back()); IntermedVals.swap(NewIntermedVals); } assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && "Invalid number of intermediate vectors"); SDValue Vec1 = IntermedVals[0].first; SDValue Vec2; if (IntermedVals.size() > 1) Vec2 = IntermedVals[1].first; else if (Phase) Vec2 = DAG.getUNDEF(VT); SmallVector ShuffleVec(NumElems, -1); for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) ShuffleVec[IntermedVals[0].second[i]] = i; for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; if (Phase) Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) return false; } return true; } /// Expand a BUILD_VECTOR node on targets that don't /// support the operation, but do support the resultant vector type. SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { unsigned NumElems = Node->getNumOperands(); SDValue Value1, Value2; SDLoc dl(Node); EVT VT = Node->getValueType(0); EVT OpVT = Node->getOperand(0).getValueType(); EVT EltVT = VT.getVectorElementType(); // If the only non-undef value is the low element, turn this into a // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. bool isOnlyLowElement = true; bool MoreThanTwoValues = false; bool isConstant = true; for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.isUndef()) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; if (!Value1.getNode()) { Value1 = V; } else if (!Value2.getNode()) { if (V != Value1) Value2 = V; } else if (V != Value1 && V != Value2) { MoreThanTwoValues = true; } } if (!Value1.getNode()) return DAG.getUNDEF(VT); if (isOnlyLowElement) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); // If all elements are constants, create a load from the constant pool. if (isConstant) { SmallVector CV; for (unsigned i = 0, e = NumElems; i != e; ++i) { if (ConstantFPSDNode *V = dyn_cast(Node->getOperand(i))) { CV.push_back(const_cast(V->getConstantFPValue())); } else if (ConstantSDNode *V = dyn_cast(Node->getOperand(i))) { if (OpVT==EltVT) CV.push_back(const_cast(V->getConstantIntValue())); else { // If OpVT and EltVT don't match, EltVT is not legal and the // element values have been promoted/truncated earlier. Undo this; // we don't want a v16i8 to become a v16i32 for example. const ConstantInt *CI = V->getConstantIntValue(); CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), CI->getZExtValue())); } } else { assert(Node->getOperand(i).isUndef()); Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); CV.push_back(UndefValue::get(OpNTy)); } } Constant *CP = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); Align Alignment = cast(CPIdx)->getAlign(); return DAG.getLoad( VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); } SmallSet DefinedValues; for (unsigned i = 0; i < NumElems; ++i) { if (Node->getOperand(i).isUndef()) continue; DefinedValues.insert(Node->getOperand(i)); } if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { if (!MoreThanTwoValues) { SmallVector ShuffleVec(NumElems, -1); for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.isUndef()) continue; ShuffleVec[i] = V == Value1 ? 0 : NumElems; } if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { // Get the splatted value into the low element of a vector register. SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); SDValue Vec2; if (Value2.getNode()) Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); else Vec2 = DAG.getUNDEF(VT); // Return shuffle(LowValVec, undef, <0,0,0,0>) return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); } } else { SDValue Res; if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) return Res; } } // Otherwise, we can't handle this case efficiently. return ExpandVectorBuildThroughStack(Node); } SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { SDLoc DL(Node); EVT VT = Node->getValueType(0); SDValue SplatVal = Node->getOperand(0); return DAG.getSplatBuildVector(VT, DL, SplatVal); } // Expand a node into a call to a libcall, returning the value as the first // result and the chain as the second. If the result value does not fit into a // register, return the lo part and set the hi part to the by-reg argument in // the first. If it does fit into a single register, return the result and // leave the Hi part unset. std::pair SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, TargetLowering::ArgListTy &&Args, bool isSigned) { EVT CodePtrTy = TLI.getPointerTy(DAG.getDataLayout()); SDValue Callee; if (const char *LibcallName = TLI.getLibcallName(LC)) Callee = DAG.getExternalSymbol(LibcallName, CodePtrTy); else { Callee = DAG.getUNDEF(CodePtrTy); DAG.getContext()->emitError(Twine("no libcall available for ") + Node->getOperationName(&DAG)); } EVT RetVT = Node->getValueType(0); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); // By default, the input chain to this libcall is the entry node of the // function. If the libcall is going to be emitted as a tail call then // TLI.isUsedByReturnOnly will change it to the right chain if the return // node which is being folded has a non-entry input chain. SDValue InChain = DAG.getEntryNode(); // isTailCall may be true since the callee does not reference caller stack // frame. Check if it's in the right position and that the return types match. SDValue TCChain = InChain; const Function &F = DAG.getMachineFunction().getFunction(); bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain) && (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); if (isTailCall) InChain = TCChain; TargetLowering::CallLoweringInfo CLI(DAG); bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); CLI.setDebugLoc(SDLoc(Node)) .setChain(InChain) .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) .setTailCall(isTailCall) .setSExtResult(signExtend) .setZExtResult(!signExtend) .setIsPostTypeLegalization(true); std::pair CallInfo = TLI.LowerCallTo(CLI); if (!CallInfo.second.getNode()) { LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); // It's a tailcall, return the chain (which is the DAG root). return {DAG.getRoot(), DAG.getRoot()}; } LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); return CallInfo; } std::pair SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned) { TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (const SDValue &Op : Node->op_values()) { EVT ArgVT = Op.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Op; Entry.Ty = ArgTy; Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); Entry.IsZExt = !Entry.IsSExt; Args.push_back(Entry); } return ExpandLibCall(LC, Node, std::move(Args), isSigned); } void SelectionDAGLegalize::ExpandFrexpLibCall( SDNode *Node, SmallVectorImpl &Results) { SDLoc dl(Node); EVT VT = Node->getValueType(0); EVT ExpVT = Node->getValueType(1); SDValue FPOp = Node->getOperand(0); EVT ArgVT = FPOp.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListEntry FPArgEntry; FPArgEntry.Node = FPOp; FPArgEntry.Ty = ArgTy; SDValue StackSlot = DAG.CreateStackTemporary(ExpVT); TargetLowering::ArgListEntry PtrArgEntry; PtrArgEntry.Node = StackSlot; PtrArgEntry.Ty = PointerType::get(*DAG.getContext(), DAG.getDataLayout().getAllocaAddrSpace()); TargetLowering::ArgListTy Args = {FPArgEntry, PtrArgEntry}; RTLIB::Libcall LC = RTLIB::getFREXP(VT); auto [Call, Chain] = ExpandLibCall(LC, Node, std::move(Args), false); // FIXME: Get type of int for libcall declaration and cast int FrameIdx = cast(StackSlot)->getIndex(); auto PtrInfo = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); SDValue LoadExp = DAG.getLoad(ExpVT, dl, Chain, StackSlot, PtrInfo); SDValue OutputChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadExp.getValue(1), DAG.getRoot()); DAG.setRoot(OutputChain); Results.push_back(Call); Results.push_back(LoadExp); } void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, RTLIB::Libcall LC, SmallVectorImpl &Results) { if (LC == RTLIB::UNKNOWN_LIBCALL) llvm_unreachable("Can't create an unknown libcall!"); if (Node->isStrictFPOpcode()) { EVT RetVT = Node->getValueType(0); SmallVector Ops(drop_begin(Node->ops())); TargetLowering::MakeLibCallOptions CallOptions; // FIXME: This doesn't support tail calls. std::pair Tmp = TLI.makeLibCall(DAG, LC, RetVT, Ops, CallOptions, SDLoc(Node), Node->getOperand(0)); Results.push_back(Tmp.first); Results.push_back(Tmp.second); } else { bool IsSignedArgument = Node->getOpcode() == ISD::FLDEXP; SDValue Tmp = ExpandLibCall(LC, Node, IsSignedArgument).first; Results.push_back(Tmp); } } /// Expand the node to a libcall based on the result type. void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128, SmallVectorImpl &Results) { RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), Call_F32, Call_F64, Call_F80, Call_F128, Call_PPCF128); ExpandFPLibCall(Node, LC, Results); } SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC = Call_I8; break; case MVT::i16: LC = Call_I16; break; case MVT::i32: LC = Call_I32; break; case MVT::i64: LC = Call_I64; break; case MVT::i128: LC = Call_I128; break; } return ExpandLibCall(LC, Node, isSigned).first; } /// Expand the node to a libcall based on first argument type (for instance /// lround and its variant). void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128, SmallVectorImpl &Results) { EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), Call_F32, Call_F64, Call_F80, Call_F128, Call_PPCF128); ExpandFPLibCall(Node, LC, Results); } /// Issue libcalls to __{u}divmod to compute div / rem pairs. void SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl &Results) { unsigned Opcode = Node->getOpcode(); bool isSigned = Opcode == ISD::SDIVREM; RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; } // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); EVT RetVT = Node->getValueType(0); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (const SDValue &Op : Node->op_values()) { EVT ArgVT = Op.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Op; Entry.Ty = ArgTy; Entry.IsSExt = isSigned; Entry.IsZExt = !isSigned; Args.push_back(Entry); } // Also pass the return address of the remainder. SDValue FIPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = FIPtr; Entry.Ty = PointerType::getUnqual(RetTy->getContext()); Entry.IsSExt = isSigned; Entry.IsZExt = !isSigned; Args.push_back(Entry); SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy(DAG.getDataLayout())); SDLoc dl(Node); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(InChain) .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) .setSExtResult(isSigned) .setZExtResult(!isSigned); std::pair CallInfo = TLI.LowerCallTo(CLI); // Remainder is loaded back from the stack frame. SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); Results.push_back(CallInfo.first); Results.push_back(Rem); } /// Return true if sincos libcall is available. static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::f32: LC = RTLIB::SINCOS_F32; break; case MVT::f64: LC = RTLIB::SINCOS_F64; break; case MVT::f80: LC = RTLIB::SINCOS_F80; break; case MVT::f128: LC = RTLIB::SINCOS_F128; break; case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; } return TLI.getLibcallName(LC) != nullptr; } /// Only issue sincos libcall if both sin and cos are needed. static bool useSinCos(SDNode *Node) { unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN ? ISD::FCOS : ISD::FSIN; SDValue Op0 = Node->getOperand(0); for (const SDNode *User : Op0.getNode()->uses()) { if (User == Node) continue; // The other user might have been turned into sincos already. if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) return true; } return false; } /// Issue libcalls to sincos to compute sin / cos pairs. void SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl &Results) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::f32: LC = RTLIB::SINCOS_F32; break; case MVT::f64: LC = RTLIB::SINCOS_F64; break; case MVT::f80: LC = RTLIB::SINCOS_F80; break; case MVT::f128: LC = RTLIB::SINCOS_F128; break; case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; } // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); EVT RetVT = Node->getValueType(0); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; // Pass the argument. Entry.Node = Node->getOperand(0); Entry.Ty = RetTy; Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); // Pass the return address of sin. SDValue SinPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = SinPtr; Entry.Ty = PointerType::getUnqual(RetTy->getContext()); Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); // Also pass the return address of the cos. SDValue CosPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = CosPtr; Entry.Ty = PointerType::getUnqual(RetTy->getContext()); Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy(DAG.getDataLayout())); SDLoc dl(Node); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args)); std::pair CallInfo = TLI.LowerCallTo(CLI); Results.push_back( DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); Results.push_back( DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); } SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node) const { SDLoc dl(Node); EVT VT = Node->getValueType(0); SDValue X = Node->getOperand(0); SDValue N = Node->getOperand(1); EVT ExpVT = N.getValueType(); EVT AsIntVT = VT.changeTypeToInteger(); if (AsIntVT == EVT()) // TODO: How to handle f80? return SDValue(); if (Node->getOpcode() == ISD::STRICT_FLDEXP) // TODO return SDValue(); SDNodeFlags NSW; NSW.setNoSignedWrap(true); SDNodeFlags NUW_NSW; NUW_NSW.setNoUnsignedWrap(true); NUW_NSW.setNoSignedWrap(true); EVT SetCCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ExpVT); const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem); const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); const int Precision = APFloat::semanticsPrecision(FltSem); const SDValue MaxExp = DAG.getConstant(MaxExpVal, dl, ExpVT); const SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); const SDValue DoubleMaxExp = DAG.getConstant(2 * MaxExpVal, dl, ExpVT); const APFloat One(FltSem, "1.0"); APFloat ScaleUpK = scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven); // Offset by precision to avoid denormal range. APFloat ScaleDownK = scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven); // TODO: Should really introduce control flow and use a block for the > // MaxExp, < MinExp cases // First, handle exponents Exp > MaxExp and scale down. SDValue NGtMaxExp = DAG.getSetCC(dl, SetCCVT, N, MaxExp, ISD::SETGT); SDValue DecN0 = DAG.getNode(ISD::SUB, dl, ExpVT, N, MaxExp, NSW); SDValue ClampMaxVal = DAG.getConstant(3 * MaxExpVal, dl, ExpVT); SDValue ClampN_Big = DAG.getNode(ISD::SMIN, dl, ExpVT, N, ClampMaxVal); SDValue DecN1 = DAG.getNode(ISD::SUB, dl, ExpVT, ClampN_Big, DoubleMaxExp, NSW); SDValue ScaleUpTwice = DAG.getSetCC(dl, SetCCVT, N, DoubleMaxExp, ISD::SETUGT); const SDValue ScaleUpVal = DAG.getConstantFP(ScaleUpK, dl, VT); SDValue ScaleUp0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleUpVal); SDValue ScaleUp1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleUp0, ScaleUpVal); SDValue SelectN_Big = DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleUpTwice, DecN1, DecN0); SDValue SelectX_Big = DAG.getNode(ISD::SELECT, dl, VT, ScaleUpTwice, ScaleUp1, ScaleUp0); // Now handle exponents Exp < MinExp SDValue NLtMinExp = DAG.getSetCC(dl, SetCCVT, N, MinExp, ISD::SETLT); SDValue Increment0 = DAG.getConstant(-(MinExpVal + Precision), dl, ExpVT); SDValue Increment1 = DAG.getConstant(-2 * (MinExpVal + Precision), dl, ExpVT); SDValue IncN0 = DAG.getNode(ISD::ADD, dl, ExpVT, N, Increment0, NUW_NSW); SDValue ClampMinVal = DAG.getConstant(3 * MinExpVal + 2 * Precision, dl, ExpVT); SDValue ClampN_Small = DAG.getNode(ISD::SMAX, dl, ExpVT, N, ClampMinVal); SDValue IncN1 = DAG.getNode(ISD::ADD, dl, ExpVT, ClampN_Small, Increment1, NSW); const SDValue ScaleDownVal = DAG.getConstantFP(ScaleDownK, dl, VT); SDValue ScaleDown0 = DAG.getNode(ISD::FMUL, dl, VT, X, ScaleDownVal); SDValue ScaleDown1 = DAG.getNode(ISD::FMUL, dl, VT, ScaleDown0, ScaleDownVal); SDValue ScaleDownTwice = DAG.getSetCC( dl, SetCCVT, N, DAG.getConstant(2 * MinExpVal + Precision, dl, ExpVT), ISD::SETULT); SDValue SelectN_Small = DAG.getNode(ISD::SELECT, dl, ExpVT, ScaleDownTwice, IncN1, IncN0); SDValue SelectX_Small = DAG.getNode(ISD::SELECT, dl, VT, ScaleDownTwice, ScaleDown1, ScaleDown0); // Now combine the two out of range exponent handling cases with the base // case. SDValue NewX = DAG.getNode( ISD::SELECT, dl, VT, NGtMaxExp, SelectX_Big, DAG.getNode(ISD::SELECT, dl, VT, NLtMinExp, SelectX_Small, X)); SDValue NewN = DAG.getNode( ISD::SELECT, dl, ExpVT, NGtMaxExp, SelectN_Big, DAG.getNode(ISD::SELECT, dl, ExpVT, NLtMinExp, SelectN_Small, N)); SDValue BiasedN = DAG.getNode(ISD::ADD, dl, ExpVT, NewN, MaxExp, NSW); SDValue ExponentShiftAmt = DAG.getShiftAmountConstant(Precision - 1, ExpVT, dl); SDValue CastExpToValTy = DAG.getZExtOrTrunc(BiasedN, dl, AsIntVT); SDValue AsInt = DAG.getNode(ISD::SHL, dl, AsIntVT, CastExpToValTy, ExponentShiftAmt, NUW_NSW); SDValue AsFP = DAG.getNode(ISD::BITCAST, dl, VT, AsInt); return DAG.getNode(ISD::FMUL, dl, VT, NewX, AsFP); } SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node) const { SDLoc dl(Node); SDValue Val = Node->getOperand(0); EVT VT = Val.getValueType(); EVT ExpVT = Node->getValueType(1); EVT AsIntVT = VT.changeTypeToInteger(); if (AsIntVT == EVT()) // TODO: How to handle f80? return SDValue(); const fltSemantics &FltSem = SelectionDAG::EVTToAPFloatSemantics(VT); const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem); const unsigned Precision = APFloat::semanticsPrecision(FltSem); const unsigned BitSize = VT.getScalarSizeInBits(); // TODO: Could introduce control flow and skip over the denormal handling. // scale_up = fmul value, scalbn(1.0, precision + 1) // extracted_exp = (bitcast value to uint) >> precision - 1 // biased_exp = extracted_exp + min_exp // extracted_fract = (bitcast value to uint) & (fract_mask | sign_mask) // // is_denormal = val < smallest_normalized // computed_fract = is_denormal ? scale_up : extracted_fract // computed_exp = is_denormal ? biased_exp + (-precision - 1) : biased_exp // // result_0 = (!isfinite(val) || iszero(val)) ? val : computed_fract // result_1 = (!isfinite(val) || iszero(val)) ? 0 : computed_exp SDValue NegSmallestNormalizedInt = DAG.getConstant( APFloat::getSmallestNormalized(FltSem, true).bitcastToAPInt(), dl, AsIntVT); SDValue SmallestNormalizedInt = DAG.getConstant( APFloat::getSmallestNormalized(FltSem, false).bitcastToAPInt(), dl, AsIntVT); // Masks out the exponent bits. SDValue ExpMask = DAG.getConstant(APFloat::getInf(FltSem).bitcastToAPInt(), dl, AsIntVT); // Mask out the exponent part of the value. // // e.g, for f32 FractSignMaskVal = 0x807fffff APInt FractSignMaskVal = APInt::getBitsSet(BitSize, 0, Precision - 1); FractSignMaskVal.setBit(BitSize - 1); // Set the sign bit APInt SignMaskVal = APInt::getSignedMaxValue(BitSize); SDValue SignMask = DAG.getConstant(SignMaskVal, dl, AsIntVT); SDValue FractSignMask = DAG.getConstant(FractSignMaskVal, dl, AsIntVT); const APFloat One(FltSem, "1.0"); // Scale a possible denormal input. // e.g., for f64, 0x1p+54 APFloat ScaleUpKVal = scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven); SDValue ScaleUpK = DAG.getConstantFP(ScaleUpKVal, dl, VT); SDValue ScaleUp = DAG.getNode(ISD::FMUL, dl, VT, Val, ScaleUpK); EVT SetCCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue AsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, Val); SDValue Abs = DAG.getNode(ISD::AND, dl, AsIntVT, AsInt, SignMask); SDValue AddNegSmallestNormal = DAG.getNode(ISD::ADD, dl, AsIntVT, Abs, NegSmallestNormalizedInt); SDValue DenormOrZero = DAG.getSetCC(dl, SetCCVT, AddNegSmallestNormal, NegSmallestNormalizedInt, ISD::SETULE); SDValue IsDenormal = DAG.getSetCC(dl, SetCCVT, Abs, SmallestNormalizedInt, ISD::SETULT); SDValue MinExp = DAG.getConstant(MinExpVal, dl, ExpVT); SDValue Zero = DAG.getConstant(0, dl, ExpVT); SDValue ScaledAsInt = DAG.getNode(ISD::BITCAST, dl, AsIntVT, ScaleUp); SDValue ScaledSelect = DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ScaledAsInt, AsInt); SDValue ExpMaskScaled = DAG.getNode(ISD::AND, dl, AsIntVT, ScaledAsInt, ExpMask); SDValue ScaledValue = DAG.getNode(ISD::SELECT, dl, AsIntVT, IsDenormal, ExpMaskScaled, Abs); // Extract the exponent bits. SDValue ExponentShiftAmt = DAG.getShiftAmountConstant(Precision - 1, AsIntVT, dl); SDValue ShiftedExp = DAG.getNode(ISD::SRL, dl, AsIntVT, ScaledValue, ExponentShiftAmt); SDValue Exp = DAG.getSExtOrTrunc(ShiftedExp, dl, ExpVT); SDValue NormalBiasedExp = DAG.getNode(ISD::ADD, dl, ExpVT, Exp, MinExp); SDValue DenormalOffset = DAG.getConstant(-Precision - 1, dl, ExpVT); SDValue DenormalExpBias = DAG.getNode(ISD::SELECT, dl, ExpVT, IsDenormal, DenormalOffset, Zero); SDValue MaskedFractAsInt = DAG.getNode(ISD::AND, dl, AsIntVT, ScaledSelect, FractSignMask); const APFloat Half(FltSem, "0.5"); SDValue FPHalf = DAG.getConstant(Half.bitcastToAPInt(), dl, AsIntVT); SDValue Or = DAG.getNode(ISD::OR, dl, AsIntVT, MaskedFractAsInt, FPHalf); SDValue MaskedFract = DAG.getNode(ISD::BITCAST, dl, VT, Or); SDValue ComputedExp = DAG.getNode(ISD::ADD, dl, ExpVT, NormalBiasedExp, DenormalExpBias); SDValue Result0 = DAG.getNode(ISD::SELECT, dl, VT, DenormOrZero, Val, MaskedFract); SDValue Result1 = DAG.getNode(ISD::SELECT, dl, ExpVT, DenormOrZero, Zero, ComputedExp); return DAG.getMergeValues({Result0, Result1}, dl); } /// This function is responsible for legalizing a /// INT_TO_FP operation of the specified operand when the target requests that /// we expand it. At this point, we know that the result and operand types are /// legal for the target. SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain) { bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || Node->getOpcode() == ISD::SINT_TO_FP); EVT DestVT = Node->getValueType(0); SDLoc dl(Node); unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; SDValue Op0 = Node->getOperand(OpNo); EVT SrcVT = Op0.getValueType(); // TODO: Should any fast-math-flags be set for the created nodes? LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && (DestVT.bitsLE(MVT::f64) || TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND : ISD::FP_EXTEND, DestVT))) { LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " "expansion\n"); // Get the stack frame index of a 8 byte buffer. SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); SDValue Lo = Op0; // if signed map to unsigned space if (isSigned) { // Invert sign bit (signed to unsigned mapping). Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, DAG.getConstant(0x80000000u, dl, MVT::i32)); } // Initial hi portion of constructed double. SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); // If this a big endian target, swap the lo and high data. if (DAG.getDataLayout().isBigEndian()) std::swap(Lo, Hi); SDValue MemChain = DAG.getEntryNode(); // Store the lo of the constructed double. SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, MachinePointerInfo()); // Store the hi of the constructed double. SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::getFixed(4), dl); SDValue Store2 = DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); // load the constructed double SDValue Load = DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); // FP constant to bias correct the final result SDValue Bias = DAG.getConstantFP( isSigned ? llvm::bit_cast(0x4330000080000000ULL) : llvm::bit_cast(0x4330000000000000ULL), dl, MVT::f64); // Subtract the bias and get the final result. SDValue Sub; SDValue Result; if (Node->isStrictFPOpcode()) { Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, {Node->getOperand(0), Load, Bias}); Chain = Sub.getValue(1); if (DestVT != Sub.getValueType()) { std::pair ResultPair; ResultPair = DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); Result = ResultPair.first; Chain = ResultPair.second; } else Result = Sub; } else { Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); } return Result; } if (isSigned) return SDValue(); // TODO: Generalize this for use with other types. if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || (SrcVT == MVT::i64 && DestVT == MVT::f64)) { LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); // For unsigned conversions, convert them to signed conversions using the // algorithm from the x86_64 __floatundisf in compiler_rt. That method // should be valid for i32->f32 as well. // More generally this transform should be valid if there are 3 more bits // in the integer type than the significand. Rounding uses the first bit // after the width of the significand and the OR of all bits after that. So // we need to be able to OR the shifted out bit into one of the bits that // participate in the OR. // TODO: This really should be implemented using a branch rather than a // select. We happen to get lucky and machinesink does the right // thing most of the time. This would be a good candidate for a // pseudo-op, or, even better, for whole-function isel. EVT SetCCVT = getSetCCResultType(SrcVT); SDValue SignBitTest = DAG.getSetCC( dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); SDValue AndConst = DAG.getConstant(1, dl, SrcVT); SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); SDValue Slow, Fast; if (Node->isStrictFPOpcode()) { // In strict mode, we must avoid spurious exceptions, and therefore // must make sure to only emit a single STRICT_SINT_TO_FP. SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, { Node->getOperand(0), InCvt }); Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, { Fast.getValue(1), Fast, Fast }); Chain = Slow.getValue(1); // The STRICT_SINT_TO_FP inherits the exception mode from the // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can // never raise any exception. SDNodeFlags Flags; Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); Fast->setFlags(Flags); Flags.setNoFPExcept(true); Slow->setFlags(Flags); } else { SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); } return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); } // Don't expand it if there isn't cheap fadd. if (!TLI.isOperationLegalOrCustom( Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) return SDValue(); // The following optimization is valid only if every value in SrcVT (when // treated as signed) is representable in DestVT. Check that the mantissa // size of DestVT is >= than the number of bits in SrcVT -1. assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= SrcVT.getSizeInBits() - 1 && "Cannot perform lossless SINT_TO_FP!"); SDValue Tmp1; if (Node->isStrictFPOpcode()) { Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, { Node->getOperand(0), Op0 }); } else Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); SDValue Zero = DAG.getIntPtrConstant(0, dl), Four = DAG.getIntPtrConstant(4, dl); SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Four, Zero); // If the sign bit of the integer is set, the large number will be treated // as a negative number. To counteract this, the dynamic code adds an // offset depending on the data type. uint64_t FF; switch (SrcVT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) } if (DAG.getDataLayout().isLittleEndian()) FF <<= 32; Constant *FudgeFactor = ConstantInt::get( Type::getInt64Ty(*DAG.getContext()), FF); SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); Align Alignment = cast(CPIdx)->getAlign(); CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); Alignment = commonAlignment(Alignment, 4); SDValue FudgeInReg; if (DestVT == MVT::f32) FudgeInReg = DAG.getLoad( MVT::f32, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); else { SDValue Load = DAG.getExtLoad( ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, Alignment); HandleSDNode Handle(Load); LegalizeOp(Load.getNode()); FudgeInReg = Handle.getValue(); } if (Node->isStrictFPOpcode()) { SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, { Tmp1.getValue(1), Tmp1, FudgeInReg }); Chain = Result.getValue(1); return Result; } return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); } /// This function is responsible for legalizing a /// *INT_TO_FP operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP /// operation that takes a larger input. void SelectionDAGLegalize::PromoteLegalINT_TO_FP( SDNode *N, const SDLoc &dl, SmallVectorImpl &Results) { bool IsStrict = N->isStrictFPOpcode(); bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::STRICT_SINT_TO_FP; EVT DestVT = N->getValueType(0); SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; // First step, figure out the appropriate *INT_TO_FP operation to use. EVT NewInTy = LegalOp.getValueType(); unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (true) { NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); assert(NewInTy.isInteger() && "Ran out of possibilities!"); // If the target supports SINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { OpToUse = SIntOp; break; } if (IsSigned) continue; // If the target supports UINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { OpToUse = UIntOp; break; } // Otherwise, try a larger type. } // Okay, we found the operation and type to use. Zero extend our input to the // desired type then run the operation on it. if (IsStrict) { SDValue Res = DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, {N->getOperand(0), DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NewInTy, LegalOp)}); Results.push_back(Res); Results.push_back(Res.getValue(1)); return; } Results.push_back( DAG.getNode(OpToUse, dl, DestVT, DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NewInTy, LegalOp))); } /// This function is responsible for legalizing a /// FP_TO_*INT operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT /// operation that returns a larger result. void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, SmallVectorImpl &Results) { bool IsStrict = N->isStrictFPOpcode(); bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || N->getOpcode() == ISD::STRICT_FP_TO_SINT; EVT DestVT = N->getValueType(0); SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); // First step, figure out the appropriate FP_TO*INT operation to use. EVT NewOutTy = DestVT; unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (true) { NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); assert(NewOutTy.isInteger() && "Ran out of possibilities!"); // A larger signed type can hold all unsigned values of the requested type, // so using FP_TO_SINT is valid OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) break; // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) break; // Otherwise, try a larger type. } // Okay, we found the operation and type to use. SDValue Operation; if (IsStrict) { SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); } else Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); // Truncate the result of the extended FP_TO_*INT operation to the desired // size. SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); Results.push_back(Trunc); if (IsStrict) Results.push_back(Operation.getValue(1)); } /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point /// the result and operand types are legal and there must be a legal /// FP_TO_*INT_SAT operation for a larger result type. SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl) { unsigned Opcode = Node->getOpcode(); // Scan for the appropriate larger type to use. EVT NewOutTy = Node->getValueType(0); while (true) { NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); assert(NewOutTy.isInteger() && "Ran out of possibilities!"); if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) break; } // Saturation width is determined by second operand, so we don't have to // perform any fixup and can directly truncate the result. SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), Node->getOperand(1)); return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); } /// Open code the operations for PARITY of the specified operation. SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { EVT VT = Op.getValueType(); EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); unsigned Sz = VT.getScalarSizeInBits(); // If CTPOP is legal, use it. Otherwise use shifts and xor. SDValue Result; if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); } else { Result = Op; for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, DAG.getConstant(1ULL << (--i), dl, ShVT)); Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); } } return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); } SDValue SelectionDAGLegalize::PromoteReduction(SDNode *Node) { MVT VecVT = Node->getOperand(1).getSimpleValueType(); MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT); MVT ScalarVT = Node->getSimpleValueType(0); MVT NewScalarVT = NewVecVT.getVectorElementType(); SDLoc DL(Node); SmallVector Operands(Node->getNumOperands()); // promote the initial value. // FIXME: Support integer. assert(Node->getOperand(0).getValueType().isFloatingPoint() && "Only FP promotion is supported"); Operands[0] = DAG.getNode(ISD::FP_EXTEND, DL, NewScalarVT, Node->getOperand(0)); for (unsigned j = 1; j != Node->getNumOperands(); ++j) if (Node->getOperand(j).getValueType().isVector() && !(ISD::isVPOpcode(Node->getOpcode()) && ISD::getVPMaskIdx(Node->getOpcode()) == j)) { // Skip mask operand. // promote the vector operand. // FIXME: Support integer. assert(Node->getOperand(j).getValueType().isFloatingPoint() && "Only FP promotion is supported"); Operands[j] = DAG.getNode(ISD::FP_EXTEND, DL, NewVecVT, Node->getOperand(j)); } else { Operands[j] = Node->getOperand(j); // Skip VL operand. } SDValue Res = DAG.getNode(Node->getOpcode(), DL, NewScalarVT, Operands, Node->getFlags()); assert(ScalarVT.isFloatingPoint() && "Only FP promotion is supported"); return DAG.getNode(ISD::FP_ROUND, DL, ScalarVT, Res, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); } bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { LLVM_DEBUG(dbgs() << "Trying to expand node\n"); SmallVector Results; SDLoc dl(Node); SDValue Tmp1, Tmp2, Tmp3, Tmp4; bool NeedInvert; switch (Node->getOpcode()) { case ISD::ABS: if ((Tmp1 = TLI.expandABS(Node, DAG))) Results.push_back(Tmp1); break; case ISD::ABDS: case ISD::ABDU: if ((Tmp1 = TLI.expandABD(Node, DAG))) Results.push_back(Tmp1); break; case ISD::AVGCEILS: case ISD::AVGCEILU: case ISD::AVGFLOORS: case ISD::AVGFLOORU: if ((Tmp1 = TLI.expandAVG(Node, DAG))) Results.push_back(Tmp1); break; case ISD::CTPOP: if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) Results.push_back(Tmp1); break; case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) Results.push_back(Tmp1); break; case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) Results.push_back(Tmp1); break; case ISD::BITREVERSE: if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) Results.push_back(Tmp1); break; case ISD::BSWAP: if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) Results.push_back(Tmp1); break; case ISD::PARITY: Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); break; case ISD::FRAMEADDR: case ISD::RETURNADDR: case ISD::FRAME_TO_ARGS_OFFSET: Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); break; case ISD::EH_DWARF_CFA: { SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, TLI.getPointerTy(DAG.getDataLayout())); SDValue Offset = DAG.getNode(ISD::ADD, dl, CfaArg.getValueType(), DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, CfaArg.getValueType()), CfaArg); SDValue FA = DAG.getNode( ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), FA, Offset)); break; } case ISD::GET_ROUNDING: Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); Results.push_back(Node->getOperand(0)); break; case ISD::EH_RETURN: case ISD::EH_LABEL: case ISD::PREFETCH: case ISD::VAEND: case ISD::EH_SJLJ_LONGJMP: // If the target didn't expand these, there's nothing to do, so just // preserve the chain and be done. Results.push_back(Node->getOperand(0)); break; case ISD::READCYCLECOUNTER: case ISD::READSTEADYCOUNTER: // If the target didn't expand this, just return 'zero' and preserve the // chain. Results.append(Node->getNumValues() - 1, DAG.getConstant(0, dl, Node->getValueType(0))); Results.push_back(Node->getOperand(0)); break; case ISD::EH_SJLJ_SETJMP: // If the target didn't expand this, just return 'zero' and preserve the // chain. Results.push_back(DAG.getConstant(0, dl, MVT::i32)); Results.push_back(Node->getOperand(0)); break; case ISD::ATOMIC_LOAD: { // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); SDValue Swap = DAG.getAtomicCmpSwap( ISD::ATOMIC_CMP_SWAP, dl, cast(Node)->getMemoryVT(), VTs, Node->getOperand(0), Node->getOperand(1), Zero, Zero, cast(Node)->getMemOperand()); Results.push_back(Swap.getValue(0)); Results.push_back(Swap.getValue(1)); break; } case ISD::ATOMIC_STORE: { // There is no libcall for atomic store; fake it with ATOMIC_SWAP. SDValue Swap = DAG.getAtomic( ISD::ATOMIC_SWAP, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(2), Node->getOperand(1), cast(Node)->getMemOperand()); Results.push_back(Swap.getValue(1)); break; } case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and // splits out the success value as a comparison. Expanding the resulting // ATOMIC_CMP_SWAP will produce a libcall. SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); SDValue Res = DAG.getAtomicCmpSwap( ISD::ATOMIC_CMP_SWAP, dl, cast(Node)->getMemoryVT(), VTs, Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), Node->getOperand(3), cast(Node)->getMemOperand()); SDValue ExtRes = Res; SDValue LHS = Res; SDValue RHS = Node->getOperand(1); EVT AtomicType = cast(Node)->getMemoryVT(); EVT OuterType = Node->getValueType(0); switch (TLI.getExtendForAtomicOps()) { case ISD::SIGN_EXTEND: LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, DAG.getValueType(AtomicType)); RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, Node->getOperand(2), DAG.getValueType(AtomicType)); ExtRes = LHS; break; case ISD::ZERO_EXTEND: LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, DAG.getValueType(AtomicType)); RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); ExtRes = LHS; break; case ISD::ANY_EXTEND: LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); break; default: llvm_unreachable("Invalid atomic op extension"); } SDValue Success = DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); Results.push_back(ExtRes.getValue(0)); Results.push_back(Success); Results.push_back(Res.getValue(1)); break; } case ISD::ATOMIC_LOAD_SUB: { SDLoc DL(Node); EVT VT = Node->getValueType(0); SDValue RHS = Node->getOperand(2); AtomicSDNode *AN = cast(Node); if (RHS->getOpcode() == ISD::SIGN_EXTEND_INREG && cast(RHS->getOperand(1))->getVT() == AN->getMemoryVT()) RHS = RHS->getOperand(0); SDValue NewRHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS); SDValue Res = DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, AN->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), NewRHS, AN->getMemOperand()); Results.push_back(Res); Results.push_back(Res.getValue(1)); break; } case ISD::DYNAMIC_STACKALLOC: ExpandDYNAMIC_STACKALLOC(Node, Results); break; case ISD::MERGE_VALUES: for (unsigned i = 0; i < Node->getNumValues(); i++) Results.push_back(Node->getOperand(i)); break; case ISD::UNDEF: { EVT VT = Node->getValueType(0); if (VT.isInteger()) Results.push_back(DAG.getConstant(0, dl, VT)); else { assert(VT.isFloatingPoint() && "Unknown value type!"); Results.push_back(DAG.getConstantFP(0, dl, VT)); } break; } case ISD::STRICT_FP_ROUND: // When strict mode is enforced we can't do expansion because it // does not honor the "strict" properties. Only libcall is allowed. if (TLI.isStrictFPEnabled()) break; // We might as well mutate to FP_ROUND when FP_ROUND operation is legal // since this operation is more efficient than stack operation. if (TLI.getStrictFPOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Legal) break; // We fall back to use stack operation when the FP_ROUND operation // isn't available. if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), Node->getValueType(0), dl, Node->getOperand(0)))) { ReplaceNode(Node, Tmp1.getNode()); LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); return true; } break; case ISD::FP_ROUND: { if ((Tmp1 = TLI.expandFP_ROUND(Node, DAG))) { Results.push_back(Tmp1); break; } [[fallthrough]]; } case ISD::BITCAST: if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0), dl))) Results.push_back(Tmp1); break; case ISD::STRICT_FP_EXTEND: // When strict mode is enforced we can't do expansion because it // does not honor the "strict" properties. Only libcall is allowed. if (TLI.isStrictFPEnabled()) break; // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal // since this operation is more efficient than stack operation. if (TLI.getStrictFPOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Legal) break; // We fall back to use stack operation when the FP_EXTEND operation // isn't available. if ((Tmp1 = EmitStackConvert( Node->getOperand(1), Node->getOperand(1).getValueType(), Node->getValueType(0), dl, Node->getOperand(0)))) { ReplaceNode(Node, Tmp1.getNode()); LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); return true; } break; case ISD::FP_EXTEND: { SDValue Op = Node->getOperand(0); EVT SrcVT = Op.getValueType(); EVT DstVT = Node->getValueType(0); if (SrcVT.getScalarType() == MVT::bf16) { Results.push_back(DAG.getNode(ISD::BF16_TO_FP, SDLoc(Node), DstVT, Op)); break; } if ((Tmp1 = EmitStackConvert(Op, SrcVT, DstVT, dl))) Results.push_back(Tmp1); break; } case ISD::BF16_TO_FP: { // Always expand bf16 to f32 casts, they lower to ext + shift. // // Note that the operand of this code can be bf16 or an integer type in case // bf16 is not supported on the target and was softened. SDValue Op = Node->getOperand(0); if (Op.getValueType() == MVT::bf16) { Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i16, Op)); } else { Op = DAG.getAnyExtOrTrunc(Op, dl, MVT::i32); } Op = DAG.getNode( ISD::SHL, dl, MVT::i32, Op, DAG.getConstant(16, dl, TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); // Add fp_extend in case the output is bigger than f32. if (Node->getValueType(0) != MVT::f32) Op = DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Op); Results.push_back(Op); break; } case ISD::FP_TO_BF16: { SDValue Op = Node->getOperand(0); if (Op.getValueType() != MVT::f32) Op = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); // Certain SNaNs will turn into infinities if we do a simple shift right. if (!DAG.isKnownNeverSNaN(Op)) { Op = DAG.getNode(ISD::FCANONICALIZE, dl, MVT::f32, Op, Node->getFlags()); } Op = DAG.getNode( ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op), DAG.getConstant(16, dl, TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); // The result of this node can be bf16 or an integer type in case bf16 is // not supported on the target and was softened to i16 for storage. if (Node->getValueType(0) == MVT::bf16) { Op = DAG.getNode(ISD::BITCAST, dl, MVT::bf16, DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Op)); } else { Op = DAG.getAnyExtOrTrunc(Op, dl, Node->getValueType(0)); } Results.push_back(Op); break; } case ISD::SIGN_EXTEND_INREG: { EVT ExtraVT = cast(Node->getOperand(1))->getVT(); EVT VT = Node->getValueType(0); // An in-register sign-extend of a boolean is a negation: // 'true' (1) sign-extended is -1. // 'false' (0) sign-extended is 0. // However, we must mask the high bits of the source operand because the // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. // TODO: Do this for vectors too? if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { SDValue One = DAG.getConstant(1, dl, VT); SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); SDValue Zero = DAG.getConstant(0, dl, VT); SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); Results.push_back(Neg); break; } // NOTE: we could fall back on load/store here too for targets without // SRA. However, it is doubtful that any exist. EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); unsigned BitsDiff = VT.getScalarSizeInBits() - ExtraVT.getScalarSizeInBits(); SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), Node->getOperand(0), ShiftCst); Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); Results.push_back(Tmp1); break; } case ISD::UINT_TO_FP: case ISD::STRICT_UINT_TO_FP: if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { Results.push_back(Tmp1); if (Node->isStrictFPOpcode()) Results.push_back(Tmp2); break; } [[fallthrough]]; case ISD::SINT_TO_FP: case ISD::STRICT_SINT_TO_FP: if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { Results.push_back(Tmp1); if (Node->isStrictFPOpcode()) Results.push_back(Tmp2); } break; case ISD::FP_TO_SINT: if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) Results.push_back(Tmp1); break; case ISD::STRICT_FP_TO_SINT: if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { ReplaceNode(Node, Tmp1.getNode()); LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); return true; } break; case ISD::FP_TO_UINT: if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) Results.push_back(Tmp1); break; case ISD::STRICT_FP_TO_UINT: if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { // Relink the chain. DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); // Replace the new UINT result. ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); return true; } break; case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); break; case ISD::VAARG: Results.push_back(DAG.expandVAArg(Node)); Results.push_back(Results[0].getValue(1)); break; case ISD::VACOPY: Results.push_back(DAG.expandVACopy(Node)); break; case ISD::EXTRACT_VECTOR_ELT: if (Node->getOperand(0).getValueType().getVectorElementCount().isScalar()) // This must be an access of the only element. Return it. Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Node->getOperand(0)); else Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); Results.push_back(Tmp1); break; case ISD::EXTRACT_SUBVECTOR: Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); break; case ISD::INSERT_SUBVECTOR: Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); break; case ISD::CONCAT_VECTORS: Results.push_back(ExpandVectorBuildThroughStack(Node)); break; case ISD::SCALAR_TO_VECTOR: Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); break; case ISD::INSERT_VECTOR_ELT: Results.push_back(ExpandINSERT_VECTOR_ELT(SDValue(Node, 0))); break; case ISD::VECTOR_SHUFFLE: { SmallVector NewMask; ArrayRef Mask = cast(Node)->getMask(); EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); if (!TLI.isTypeLegal(EltVT)) { EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); // BUILD_VECTOR operands are allowed to be wider than the element type. // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept // it. if (NewEltVT.bitsLT(EltVT)) { // Convert shuffle node. // If original node was v4i64 and the new EltVT is i32, // cast operands to v8i32 and re-build the mask. // Calculate new VT, the size of the new VT should be equal to original. EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, VT.getSizeInBits() / NewEltVT.getSizeInBits()); assert(NewVT.bitsEq(VT)); // cast operands to new VT Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); // Convert the shuffle mask unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); // EltVT gets smaller assert(factor > 0); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { if (Mask[i] < 0) { for (unsigned fi = 0; fi < factor; ++fi) NewMask.push_back(Mask[i]); } else { for (unsigned fi = 0; fi < factor; ++fi) NewMask.push_back(Mask[i]*factor+fi); } } Mask = NewMask; VT = NewVT; } EltVT = NewEltVT; } unsigned NumElems = VT.getVectorNumElements(); SmallVector Ops; for (unsigned i = 0; i != NumElems; ++i) { if (Mask[i] < 0) { Ops.push_back(DAG.getUNDEF(EltVT)); continue; } unsigned Idx = Mask[i]; if (Idx < NumElems) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getVectorIdxConstant(Idx, dl))); else Ops.push_back( DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, DAG.getVectorIdxConstant(Idx - NumElems, dl))); } Tmp1 = DAG.getBuildVector(VT, dl, Ops); // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); Results.push_back(Tmp1); break; } case ISD::VECTOR_SPLICE: { Results.push_back(TLI.expandVectorSplice(Node, DAG)); break; } case ISD::EXTRACT_ELEMENT: { EVT OpTy = Node->getOperand(0).getValueType(); if (Node->getConstantOperandVal(1)) { // 1 -> Hi Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), DAG.getConstant(OpTy.getSizeInBits() / 2, dl, TLI.getShiftAmountTy( Node->getOperand(0).getValueType(), DAG.getDataLayout()))); Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); } else { // 0 -> Lo Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Node->getOperand(0)); } Results.push_back(Tmp1); break; } case ISD::STACKSAVE: // Expand to CopyFromReg if the target set // StackPointerRegisterToSaveRestore. if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, Node->getValueType(0))); Results.push_back(Results[0].getValue(1)); } else { Results.push_back(DAG.getUNDEF(Node->getValueType(0))); Results.push_back(Node->getOperand(0)); } break; case ISD::STACKRESTORE: // Expand to CopyToReg if the target set // StackPointerRegisterToSaveRestore. if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, Node->getOperand(1))); } else { Results.push_back(Node->getOperand(0)); } break; case ISD::GET_DYNAMIC_AREA_OFFSET: Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); Results.push_back(Results[0].getValue(0)); break; case ISD::FCOPYSIGN: Results.push_back(ExpandFCOPYSIGN(Node)); break; case ISD::FNEG: Results.push_back(ExpandFNEG(Node)); break; case ISD::FABS: Results.push_back(ExpandFABS(Node)); break; case ISD::IS_FPCLASS: { auto Test = static_cast(Node->getConstantOperandVal(1)); if (SDValue Expanded = TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), Test, Node->getFlags(), SDLoc(Node), DAG)) Results.push_back(Expanded); break; } case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: { // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B ISD::CondCode Pred; switch (Node->getOpcode()) { default: llvm_unreachable("How did we get here?"); case ISD::SMAX: Pred = ISD::SETGT; break; case ISD::SMIN: Pred = ISD::SETLT; break; case ISD::UMAX: Pred = ISD::SETUGT; break; case ISD::UMIN: Pred = ISD::SETULT; break; } Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); Results.push_back(Tmp1); break; } case ISD::FMINNUM: case ISD::FMAXNUM: { if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) Results.push_back(Expanded); break; } case ISD::FMINIMUM: case ISD::FMAXIMUM: { if (SDValue Expanded = TLI.expandFMINIMUM_FMAXIMUM(Node, DAG)) Results.push_back(Expanded); break; } case ISD::FSIN: case ISD::FCOS: { EVT VT = Node->getValueType(0); // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / // fcos which share the same operand and both are used. if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || isSinCosLibcallAvailable(Node, TLI)) && useSinCos(Node)) { SDVTList VTs = DAG.getVTList(VT, VT); Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); if (Node->getOpcode() == ISD::FCOS) Tmp1 = Tmp1.getValue(1); Results.push_back(Tmp1); } break; } case ISD::FLDEXP: case ISD::STRICT_FLDEXP: { EVT VT = Node->getValueType(0); RTLIB::Libcall LC = RTLIB::getLDEXP(VT); // Use the LibCall instead, it is very likely faster // FIXME: Use separate LibCall action. if (TLI.getLibcallName(LC)) break; if (SDValue Expanded = expandLdexp(Node)) { Results.push_back(Expanded); if (Node->getOpcode() == ISD::STRICT_FLDEXP) Results.push_back(Expanded.getValue(1)); } break; } case ISD::FFREXP: { RTLIB::Libcall LC = RTLIB::getFREXP(Node->getValueType(0)); // Use the LibCall instead, it is very likely faster // FIXME: Use separate LibCall action. if (TLI.getLibcallName(LC)) break; if (SDValue Expanded = expandFrexp(Node)) { Results.push_back(Expanded); Results.push_back(Expanded.getValue(1)); } break; } case ISD::FMAD: llvm_unreachable("Illegal fmad should never be formed"); case ISD::FP16_TO_FP: if (Node->getValueType(0) != MVT::f32) { // We can extend to types bigger than f32 in two steps without changing // the result. Since "f16 -> f32" is much more commonly available, give // CodeGen the option of emitting that before resorting to a libcall. SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); Results.push_back( DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); } break; case ISD::STRICT_BF16_TO_FP: case ISD::STRICT_FP16_TO_FP: if (Node->getValueType(0) != MVT::f32) { // We can extend to types bigger than f32 in two steps without changing // the result. Since "f16 -> f32" is much more commonly available, give // CodeGen the option of emitting that before resorting to a libcall. SDValue Res = DAG.getNode(Node->getOpcode(), dl, {MVT::f32, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {Node->getValueType(0), MVT::Other}, {Res.getValue(1), Res}); Results.push_back(Res); Results.push_back(Res.getValue(1)); } break; case ISD::FP_TO_FP16: LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { SDValue Op = Node->getOperand(0); MVT SVT = Op.getSimpleValueType(); if ((SVT == MVT::f64 || SVT == MVT::f80) && TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { // Under fastmath, we can expand this node into a fround followed by // a float-half conversion. SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); Results.push_back( DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); } } break; case ISD::ConstantFP: { ConstantFPSDNode *CFP = cast(Node); // Check to see if this FP immediate is already legal. // If this is a legal constant, turn it into a TargetConstantFP node. if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), DAG.shouldOptForSize())) Results.push_back(ExpandConstantFP(CFP, true)); break; } case ISD::Constant: { ConstantSDNode *CP = cast(Node); Results.push_back(ExpandConstant(CP)); break; } case ISD::FSUB: { EVT VT = Node->getValueType(0); if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { const SDNodeFlags Flags = Node->getFlags(); Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); Results.push_back(Tmp1); } break; } case ISD::SUB: { EVT VT = Node->getValueType(0); assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && TLI.isOperationLegalOrCustom(ISD::XOR, VT) && "Don't know how to expand this subtraction!"); Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); break; } case ISD::UREM: case ISD::SREM: if (TLI.expandREM(Node, Tmp1, DAG)) Results.push_back(Tmp1); break; case ISD::UDIV: case ISD::SDIV: { bool isSigned = Node->getOpcode() == ISD::SDIV; unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; EVT VT = Node->getValueType(0); if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { SDVTList VTs = DAG.getVTList(VT, VT); Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), Node->getOperand(1)); Results.push_back(Tmp1); } break; } case ISD::MULHU: case ISD::MULHS: { unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), Node->getOperand(1)); Results.push_back(Tmp1.getValue(1)); break; } case ISD::UMUL_LOHI: case ISD::SMUL_LOHI: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); MVT VT = LHS.getSimpleValueType(); unsigned MULHOpcode = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); break; } SmallVector Halves; EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); assert(TLI.isTypeLegal(HalfType)); if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, HalfType, DAG, TargetLowering::MulExpansionKind::Always)) { for (unsigned i = 0; i < 2; ++i) { SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); SDValue Shift = DAG.getConstant( HalfType.getScalarSizeInBits(), dl, TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); } break; } break; } case ISD::MUL: { EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); // See if multiply or divide can be lowered using two-result operations. // We just need the low half of the multiply; try both the signed // and unsigned forms. If the target supports both SMUL_LOHI and // UMUL_LOHI, form a preference by checking which forms of plain // MULH it supports. bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); unsigned OpToUse = 0; if (HasSMUL_LOHI && !HasMULHS) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI && !HasMULHU) { OpToUse = ISD::UMUL_LOHI; } else if (HasSMUL_LOHI) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI) { OpToUse = ISD::UMUL_LOHI; } if (OpToUse) { Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), Node->getOperand(1))); break; } SDValue Lo, Hi; EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && TLI.isOperationLegalOrCustom(ISD::SHL, VT) && TLI.isOperationLegalOrCustom(ISD::OR, VT) && TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); SDValue Shift = DAG.getConstant(HalfType.getSizeInBits(), dl, TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); } break; } case ISD::FSHL: case ISD::FSHR: if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) Results.push_back(Expanded); break; case ISD::ROTL: case ISD::ROTR: if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) Results.push_back(Expanded); break; case ISD::SADDSAT: case ISD::UADDSAT: case ISD::SSUBSAT: case ISD::USUBSAT: Results.push_back(TLI.expandAddSubSat(Node, DAG)); break; case ISD::SCMP: case ISD::UCMP: Results.push_back(TLI.expandCMP(Node, DAG)); break; case ISD::SSHLSAT: case ISD::USHLSAT: Results.push_back(TLI.expandShlSat(Node, DAG)); break; case ISD::SMULFIX: case ISD::SMULFIXSAT: case ISD::UMULFIX: case ISD::UMULFIXSAT: Results.push_back(TLI.expandFixedPointMul(Node, DAG)); break; case ISD::SDIVFIX: case ISD::SDIVFIXSAT: case ISD::UDIVFIX: case ISD::UDIVFIXSAT: if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), Node->getOperand(0), Node->getOperand(1), Node->getConstantOperandVal(2), DAG)) { Results.push_back(V); break; } // FIXME: We might want to retry here with a wider type if we fail, if that // type is legal. // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is // <= 128 (which is the case for all of the default Embedded-C types), // we will only get here with types and scales that we could always expand // if we were allowed to generate libcalls to division functions of illegal // type. But we cannot do that. llvm_unreachable("Cannot expand DIVFIX!"); case ISD::UADDO_CARRY: case ISD::USUBO_CARRY: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue Carry = Node->getOperand(2); bool IsAdd = Node->getOpcode() == ISD::UADDO_CARRY; // Initial add of the 2 operands. unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; EVT VT = LHS.getValueType(); SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); // Initial check for overflow. EVT CarryType = Node->getValueType(1); EVT SetCCType = getSetCCResultType(Node->getValueType(0)); ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); // Add of the sum and the carry. SDValue One = DAG.getConstant(1, dl, VT); SDValue CarryExt = DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); // Second check for overflow. If we are adding, we can only overflow if the // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. // If we are subtracting, we can only overflow if the initial sum is 0 and // the carry is set, resulting in a new sum of all 1s. SDValue Zero = DAG.getConstant(0, dl, VT); SDValue Overflow2 = IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, DAG.getZExtOrTrunc(Carry, dl, SetCCType)); SDValue ResultCarry = DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); Results.push_back(Sum2); Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); break; } case ISD::SADDO: case ISD::SSUBO: { SDValue Result, Overflow; TLI.expandSADDSUBO(Node, Result, Overflow, DAG); Results.push_back(Result); Results.push_back(Overflow); break; } case ISD::UADDO: case ISD::USUBO: { SDValue Result, Overflow; TLI.expandUADDSUBO(Node, Result, Overflow, DAG); Results.push_back(Result); Results.push_back(Overflow); break; } case ISD::UMULO: case ISD::SMULO: { SDValue Result, Overflow; if (TLI.expandMULO(Node, Result, Overflow, DAG)) { Results.push_back(Result); Results.push_back(Overflow); } break; } case ISD::BUILD_PAIR: { EVT PairTy = Node->getValueType(0); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); Tmp2 = DAG.getNode( ISD::SHL, dl, PairTy, Tmp2, DAG.getConstant(PairTy.getSizeInBits() / 2, dl, TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); break; } case ISD::SELECT: Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); if (Tmp1.getOpcode() == ISD::SETCC) { Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), Tmp2, Tmp3, cast(Tmp1.getOperand(2))->get()); } else { Tmp1 = DAG.getSelectCC(dl, Tmp1, DAG.getConstant(0, dl, Tmp1.getValueType()), Tmp2, Tmp3, ISD::SETNE); } Tmp1->setFlags(Node->getFlags()); Results.push_back(Tmp1); break; case ISD::BR_JT: { SDValue Chain = Node->getOperand(0); SDValue Table = Node->getOperand(1); SDValue Index = Node->getOperand(2); int JTI = cast(Table.getNode())->getIndex(); const DataLayout &TD = DAG.getDataLayout(); EVT PTy = TLI.getPointerTy(TD); unsigned EntrySize = DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); // For power-of-two jumptable entry sizes convert multiplication to a shift. // This transformation needs to be done here since otherwise the MIPS // backend will end up emitting a three instruction multiply sequence // instead of a single shift and MSP430 will call a runtime function. if (llvm::isPowerOf2_32(EntrySize)) Index = DAG.getNode( ISD::SHL, dl, Index.getValueType(), Index, DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); else Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, DAG.getConstant(EntrySize, dl, Index.getValueType())); SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, Table); EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); SDValue LD = DAG.getExtLoad( ISD::SEXTLOAD, dl, PTy, Chain, Addr, MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); Addr = LD; if (TLI.isJumpTableRelative()) { // For PIC, the sequence is: // BRIND(load(Jumptable + index) + RelocBase) // RelocBase can be JumpTable, GOT or some sort of global base. Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, TLI.getPICJumpTableRelocBase(Table, DAG)); } Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, JTI, DAG); Results.push_back(Tmp1); break; } case ISD::BRCOND: // Expand brcond's setcc into its constituent parts and create a BR_CC // Node. Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); if (Tmp2.getOpcode() == ISD::SETCC && TLI.isOperationLegalOrCustom(ISD::BR_CC, Tmp2.getOperand(0).getValueType())) { Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), Tmp2.getOperand(0), Tmp2.getOperand(1), Node->getOperand(2)); } else { // We test only the i1 bit. Skip the AND if UNDEF or another AND. if (Tmp2.isUndef() || (Tmp2.getOpcode() == ISD::AND && isOneConstant(Tmp2.getOperand(1)))) Tmp3 = Tmp2; else Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, DAG.getConstant(1, dl, Tmp2.getValueType())); Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, DAG.getCondCode(ISD::SETNE), Tmp3, DAG.getConstant(0, dl, Tmp3.getValueType()), Node->getOperand(2)); } Results.push_back(Tmp1); break; case ISD::SETCC: case ISD::VP_SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: { bool IsVP = Node->getOpcode() == ISD::VP_SETCC; bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS; bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); unsigned Offset = IsStrict ? 1 : 0; Tmp1 = Node->getOperand(0 + Offset); Tmp2 = Node->getOperand(1 + Offset); Tmp3 = Node->getOperand(2 + Offset); SDValue Mask, EVL; if (IsVP) { Mask = Node->getOperand(3 + Offset); EVL = Node->getOperand(4 + Offset); } bool Legalized = TLI.LegalizeSetCCCondCode( DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, Chain, IsSignaling); if (Legalized) { // If we expanded the SETCC by swapping LHS and RHS, or by inverting the // condition code, create a new SETCC node. if (Tmp3.getNode()) { if (IsStrict) { Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); Chain = Tmp1.getValue(1); } else if (IsVP) { Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); } else { Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Node->getFlags()); } } // If we expanded the SETCC by inverting the condition code, then wrap // the existing SETCC in a NOT to restore the intended condition. if (NeedInvert) { if (!IsVP) Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); else Tmp1 = DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); } Results.push_back(Tmp1); if (IsStrict) Results.push_back(Chain); break; } // FIXME: It seems Legalized is false iff CCCode is Legal. I don't // understand if this code is useful for strict nodes. assert(!IsStrict && "Don't know how to expand for strict nodes."); // Otherwise, SETCC for the given comparison type must be completely // illegal; expand it into a SELECT_CC. // FIXME: This drops the mask/evl for VP_SETCC. EVT VT = Node->getValueType(0); EVT Tmp1VT = Tmp1.getValueType(); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, DAG.getBoolConstant(true, dl, VT, Tmp1VT), DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); Tmp1->setFlags(Node->getFlags()); Results.push_back(Tmp1); break; } case ISD::SELECT_CC: { // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS Tmp1 = Node->getOperand(0); // LHS Tmp2 = Node->getOperand(1); // RHS Tmp3 = Node->getOperand(2); // True Tmp4 = Node->getOperand(3); // False EVT VT = Node->getValueType(0); SDValue Chain; SDValue CC = Node->getOperand(4); ISD::CondCode CCOp = cast(CC)->get(); if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { // If the condition code is legal, then we need to expand this // node using SETCC and SELECT. EVT CmpVT = Tmp1.getValueType(); assert(!TLI.isOperationExpand(ISD::SELECT, VT) && "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " "expanded."); EVT CCVT = getSetCCResultType(CmpVT); SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); Results.push_back( DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4, Node->getFlags())); break; } // SELECT_CC is legal, so the condition code must not be. bool Legalized = false; // Try to legalize by inverting the condition. This is for targets that // might support an ordered version of a condition, but not the unordered // version (or vice versa). ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { // Use the new condition code and swap true and false Legalized = true; Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); Tmp1->setFlags(Node->getFlags()); } else { // If The inverse is not legal, then try to swap the arguments using // the inverse condition code. ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { // The swapped inverse condition is legal, so swap true and false, // lhs and rhs. Legalized = true; Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); Tmp1->setFlags(Node->getFlags()); } } if (!Legalized) { Legalized = TLI.LegalizeSetCCCondCode( DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); // If we expanded the SETCC by inverting the condition code, then swap // the True/False operands to match. if (NeedInvert) std::swap(Tmp3, Tmp4); // If we expanded the SETCC by swapping LHS and RHS, or by inverting the // condition code, create a new SELECT_CC node. if (CC.getNode()) { Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Tmp4, CC); } else { Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); CC = DAG.getCondCode(ISD::SETNE); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Tmp4, CC); } Tmp1->setFlags(Node->getFlags()); } Results.push_back(Tmp1); break; } case ISD::BR_CC: { // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS SDValue Chain; Tmp1 = Node->getOperand(0); // Chain Tmp2 = Node->getOperand(2); // LHS Tmp3 = Node->getOperand(3); // RHS Tmp4 = Node->getOperand(1); // CC bool Legalized = TLI.LegalizeSetCCCondCode( DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); (void)Legalized; assert(Legalized && "Can't legalize BR_CC with legal condition!"); // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC // node. if (Tmp4.getNode()) { assert(!NeedInvert && "Don't know how to invert BR_CC!"); Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); } else { Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); } Results.push_back(Tmp1); break; } case ISD::BUILD_VECTOR: Results.push_back(ExpandBUILD_VECTOR(Node)); break; case ISD::SPLAT_VECTOR: Results.push_back(ExpandSPLAT_VECTOR(Node)); break; case ISD::SRA: case ISD::SRL: case ISD::SHL: { // Scalarize vector SRA/SRL/SHL. EVT VT = Node->getValueType(0); assert(VT.isVector() && "Unable to legalize non-vector shift"); assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); unsigned NumElem = VT.getVectorNumElements(); SmallVector Scalars; for (unsigned Idx = 0; Idx < NumElem; Idx++) { SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, VT.getScalarType(), Ex, Sh)); } SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); Results.push_back(Result); break; } case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_MUL: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAXIMUM: case ISD::VECREDUCE_FMINIMUM: Results.push_back(TLI.expandVecReduce(Node, DAG)); break; case ISD::VP_CTTZ_ELTS: case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: Results.push_back(TLI.expandVPCTTZElements(Node, DAG)); break; case ISD::CLEAR_CACHE: // The default expansion of llvm.clear_cache is simply a no-op for those // targets where it is not needed. Results.push_back(Node->getOperand(0)); break; case ISD::GLOBAL_OFFSET_TABLE: case ISD::GlobalAddress: case ISD::GlobalTLSAddress: case ISD::ExternalSymbol: case ISD::ConstantPool: case ISD::JumpTable: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: // FIXME: Custom lowering for these operations shouldn't return null! // Return true so that we don't call ConvertNodeToLibcall which also won't // do anything. return true; } if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { // FIXME: We were asked to expand a strict floating-point operation, // but there is currently no expansion implemented that would preserve // the "strict" properties. For now, we just fall back to the non-strict // version if that is legal on the target. The actual mutation of the // operation will happen in SelectionDAGISel::DoInstructionSelection. switch (Node->getOpcode()) { default: if (TLI.getStrictFPOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Legal) return true; break; case ISD::STRICT_FSUB: { if (TLI.getStrictFPOperationAction( ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) return true; if (TLI.getStrictFPOperationAction( ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) break; EVT VT = Node->getValueType(0); const SDNodeFlags Flags = Node->getFlags(); SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), {Node->getOperand(0), Node->getOperand(1), Neg}, Flags); Results.push_back(Fadd); Results.push_back(Fadd.getValue(1)); break; } case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::STRICT_LRINT: case ISD::STRICT_LLRINT: case ISD::STRICT_LROUND: case ISD::STRICT_LLROUND: // These are registered by the operand type instead of the value // type. Reflect that here. if (TLI.getStrictFPOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType()) == TargetLowering::Legal) return true; break; } } // Replace the original node with the legalized result. if (Results.empty()) { LLVM_DEBUG(dbgs() << "Cannot expand node\n"); return false; } LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); ReplaceNode(Node, Results.data()); return true; } void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); SmallVector Results; SDLoc dl(Node); // FIXME: Check flags on the node to see if we can use a finite call. unsigned Opc = Node->getOpcode(); switch (Opc) { case ISD::ATOMIC_FENCE: { // If the target didn't lower this, lower it to '__sync_synchronize()' call // FIXME: handle "fence singlethread" more efficiently. TargetLowering::ArgListTy Args; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Node->getOperand(0)) .setLibCallee( CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol("__sync_synchronize", TLI.getPointerTy(DAG.getDataLayout())), std::move(Args)); std::pair CallResult = TLI.LowerCallTo(CLI); Results.push_back(CallResult.second); break; } // By default, atomic intrinsics are marked Legal and lowered. Targets // which don't support them directly, however, may want libcalls, in which // case they mark them Expand, and we get here. case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_CLR: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_CMP_SWAP: { MVT VT = cast(Node)->getMemoryVT().getSimpleVT(); AtomicOrdering Order = cast(Node)->getMergedOrdering(); RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); EVT RetVT = Node->getValueType(0); TargetLowering::MakeLibCallOptions CallOptions; SmallVector Ops; if (TLI.getLibcallName(LC)) { // If outline atomic available, prepare its arguments and expand. Ops.append(Node->op_begin() + 2, Node->op_end()); Ops.push_back(Node->getOperand(1)); } else { LC = RTLIB::getSYNC(Opc, VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); // Arguments for expansion to sync libcall Ops.append(Node->op_begin() + 1, Node->op_end()); } std::pair Tmp = TLI.makeLibCall(DAG, LC, RetVT, Ops, CallOptions, SDLoc(Node), Node->getOperand(0)); Results.push_back(Tmp.first); Results.push_back(Tmp.second); break; } case ISD::TRAP: { // If this operation is not supported, lower it to 'abort()' call TargetLowering::ArgListTy Args; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Node->getOperand(0)) .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol( "abort", TLI.getPointerTy(DAG.getDataLayout())), std::move(Args)); std::pair CallResult = TLI.LowerCallTo(CLI); Results.push_back(CallResult.second); break; } case ISD::CLEAR_CACHE: { TargetLowering::MakeLibCallOptions CallOptions; SDValue InputChain = Node->getOperand(0); SDValue StartVal = Node->getOperand(1); SDValue EndVal = Node->getOperand(2); std::pair Tmp = TLI.makeLibCall( DAG, RTLIB::CLEAR_CACHE, MVT::isVoid, {StartVal, EndVal}, CallOptions, SDLoc(Node), InputChain); Results.push_back(Tmp.second); break; } case ISD::FMINNUM: case ISD::STRICT_FMINNUM: ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, RTLIB::FMIN_F80, RTLIB::FMIN_F128, RTLIB::FMIN_PPCF128, Results); break; // FIXME: We do not have libcalls for FMAXIMUM and FMINIMUM. So, we cannot use // libcall legalization for these nodes, but there is no default expasion for // these nodes either (see PR63267 for example). case ISD::FMAXNUM: case ISD::STRICT_FMAXNUM: ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, RTLIB::FMAX_F80, RTLIB::FMAX_F128, RTLIB::FMAX_PPCF128, Results); break; case ISD::FSQRT: case ISD::STRICT_FSQRT: ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_F128, RTLIB::SQRT_PPCF128, Results); break; case ISD::FCBRT: ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, RTLIB::CBRT_F80, RTLIB::CBRT_F128, RTLIB::CBRT_PPCF128, Results); break; case ISD::FSIN: case ISD::STRICT_FSIN: ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_F128, RTLIB::SIN_PPCF128, Results); break; case ISD::FCOS: case ISD::STRICT_FCOS: ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_F128, RTLIB::COS_PPCF128, Results); break; case ISD::FTAN: case ISD::STRICT_FTAN: ExpandFPLibCall(Node, RTLIB::TAN_F32, RTLIB::TAN_F64, RTLIB::TAN_F80, RTLIB::TAN_F128, RTLIB::TAN_PPCF128, Results); break; case ISD::FASIN: case ISD::STRICT_FASIN: ExpandFPLibCall(Node, RTLIB::ASIN_F32, RTLIB::ASIN_F64, RTLIB::ASIN_F80, RTLIB::ASIN_F128, RTLIB::ASIN_PPCF128, Results); break; case ISD::FACOS: case ISD::STRICT_FACOS: ExpandFPLibCall(Node, RTLIB::ACOS_F32, RTLIB::ACOS_F64, RTLIB::ACOS_F80, RTLIB::ACOS_F128, RTLIB::ACOS_PPCF128, Results); break; case ISD::FATAN: case ISD::STRICT_FATAN: ExpandFPLibCall(Node, RTLIB::ATAN_F32, RTLIB::ATAN_F64, RTLIB::ATAN_F80, RTLIB::ATAN_F128, RTLIB::ATAN_PPCF128, Results); break; case ISD::FSINH: case ISD::STRICT_FSINH: ExpandFPLibCall(Node, RTLIB::SINH_F32, RTLIB::SINH_F64, RTLIB::SINH_F80, RTLIB::SINH_F128, RTLIB::SINH_PPCF128, Results); break; case ISD::FCOSH: case ISD::STRICT_FCOSH: ExpandFPLibCall(Node, RTLIB::COSH_F32, RTLIB::COSH_F64, RTLIB::COSH_F80, RTLIB::COSH_F128, RTLIB::COSH_PPCF128, Results); break; case ISD::FTANH: case ISD::STRICT_FTANH: ExpandFPLibCall(Node, RTLIB::TANH_F32, RTLIB::TANH_F64, RTLIB::TANH_F80, RTLIB::TANH_F128, RTLIB::TANH_PPCF128, Results); break; case ISD::FSINCOS: // Expand into sincos libcall. ExpandSinCosLibCall(Node, Results); break; case ISD::FLOG: case ISD::STRICT_FLOG: ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); break; case ISD::FLOG2: case ISD::STRICT_FLOG2: ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); break; case ISD::FLOG10: case ISD::STRICT_FLOG10: ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); break; case ISD::FEXP: case ISD::STRICT_FEXP: ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); break; case ISD::FEXP2: case ISD::STRICT_FEXP2: ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); break; case ISD::FEXP10: ExpandFPLibCall(Node, RTLIB::EXP10_F32, RTLIB::EXP10_F64, RTLIB::EXP10_F80, RTLIB::EXP10_F128, RTLIB::EXP10_PPCF128, Results); break; case ISD::FTRUNC: case ISD::STRICT_FTRUNC: ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, RTLIB::TRUNC_PPCF128, Results); break; case ISD::FFLOOR: case ISD::STRICT_FFLOOR: ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, RTLIB::FLOOR_PPCF128, Results); break; case ISD::FCEIL: case ISD::STRICT_FCEIL: ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_F128, RTLIB::CEIL_PPCF128, Results); break; case ISD::FRINT: case ISD::STRICT_FRINT: ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_F128, RTLIB::RINT_PPCF128, Results); break; case ISD::FNEARBYINT: case ISD::STRICT_FNEARBYINT: ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_F128, RTLIB::NEARBYINT_PPCF128, Results); break; case ISD::FROUND: case ISD::STRICT_FROUND: ExpandFPLibCall(Node, RTLIB::ROUND_F32, RTLIB::ROUND_F64, RTLIB::ROUND_F80, RTLIB::ROUND_F128, RTLIB::ROUND_PPCF128, Results); break; case ISD::FROUNDEVEN: case ISD::STRICT_FROUNDEVEN: ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, RTLIB::ROUNDEVEN_F64, RTLIB::ROUNDEVEN_F80, RTLIB::ROUNDEVEN_F128, RTLIB::ROUNDEVEN_PPCF128, Results); break; case ISD::FLDEXP: case ISD::STRICT_FLDEXP: ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80, RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128, Results); break; case ISD::FFREXP: { ExpandFrexpLibCall(Node, Results); break; } case ISD::FPOWI: case ISD::STRICT_FPOWI: { RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); if (!TLI.getLibcallName(LC)) { // Some targets don't have a powi libcall; use pow instead. if (Node->isStrictFPOpcode()) { SDValue Exponent = DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), {Node->getValueType(0), Node->getValueType(1)}, {Node->getOperand(0), Node->getOperand(2)}); SDValue FPOW = DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), {Node->getValueType(0), Node->getValueType(1)}, {Exponent.getValue(1), Node->getOperand(1), Exponent}); Results.push_back(FPOW); Results.push_back(FPOW.getValue(1)); } else { SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), Node->getOperand(1)); Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), Node->getValueType(0), Node->getOperand(0), Exponent)); } break; } unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; bool ExponentHasSizeOfInt = DAG.getLibInfo().getIntSize() == Node->getOperand(1 + Offset).getValueType().getSizeInBits(); if (!ExponentHasSizeOfInt) { // If the exponent does not match with sizeof(int) a libcall to // RTLIB::POWI would use the wrong type for the argument. DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); Results.push_back(DAG.getUNDEF(Node->getValueType(0))); break; } ExpandFPLibCall(Node, LC, Results); break; } case ISD::FPOW: case ISD::STRICT_FPOW: ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); break; case ISD::LROUND: case ISD::STRICT_LROUND: ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, RTLIB::LROUND_F64, RTLIB::LROUND_F80, RTLIB::LROUND_F128, RTLIB::LROUND_PPCF128, Results); break; case ISD::LLROUND: case ISD::STRICT_LLROUND: ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, RTLIB::LLROUND_F128, RTLIB::LLROUND_PPCF128, Results); break; case ISD::LRINT: case ISD::STRICT_LRINT: ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, RTLIB::LRINT_F64, RTLIB::LRINT_F80, RTLIB::LRINT_F128, RTLIB::LRINT_PPCF128, Results); break; case ISD::LLRINT: case ISD::STRICT_LLRINT: ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, RTLIB::LLRINT_F128, RTLIB::LLRINT_PPCF128, Results); break; case ISD::FDIV: case ISD::STRICT_FDIV: ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_F128, RTLIB::DIV_PPCF128, Results); break; case ISD::FREM: case ISD::STRICT_FREM: ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_F128, RTLIB::REM_PPCF128, Results); break; case ISD::FMA: case ISD::STRICT_FMA: ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_F128, RTLIB::FMA_PPCF128, Results); break; case ISD::FADD: case ISD::STRICT_FADD: ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_F128, RTLIB::ADD_PPCF128, Results); break; case ISD::FMUL: case ISD::STRICT_FMUL: ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_F128, RTLIB::MUL_PPCF128, Results); break; case ISD::FP16_TO_FP: if (Node->getValueType(0) == MVT::f32) { Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false).first); } break; case ISD::STRICT_BF16_TO_FP: if (Node->getValueType(0) == MVT::f32) { TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall( DAG, RTLIB::FPEXT_BF16_F32, MVT::f32, Node->getOperand(1), CallOptions, SDLoc(Node), Node->getOperand(0)); Results.push_back(Tmp.first); Results.push_back(Tmp.second); } break; case ISD::STRICT_FP16_TO_FP: { if (Node->getValueType(0) == MVT::f32) { TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall( DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, SDLoc(Node), Node->getOperand(0)); Results.push_back(Tmp.first); Results.push_back(Tmp.second); } break; } case ISD::FP_TO_FP16: { RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); Results.push_back(ExpandLibCall(LC, Node, false).first); break; } case ISD::FP_TO_BF16: { RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); Results.push_back(ExpandLibCall(LC, Node, false).first); break; } case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: { // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP bool IsStrict = Node->isStrictFPOpcode(); bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || Node->getOpcode() == ISD::STRICT_SINT_TO_FP; EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); EVT RVT = Node->getValueType(0); EVT NVT = EVT(); SDLoc dl(Node); // Even if the input is legal, no libcall may exactly match, eg. we don't // have i1 -> fp conversions. So, it needs to be promoted to a larger type, // eg: i13 -> fp. Then, look for an appropriate libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++t) { NVT = (MVT::SimpleValueType)t; // The source needs to big enough to hold the operand. if (NVT.bitsGE(SVT)) LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) : RTLIB::getUINTTOFP(NVT, RVT); } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); // Sign/zero extend the argument if the libcall takes a larger type. SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(IsStrict ? 1 : 0)); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setSExt(Signed); std::pair Tmp = TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); Results.push_back(Tmp.first); if (IsStrict) Results.push_back(Tmp.second); break; } case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: { // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. bool IsStrict = Node->isStrictFPOpcode(); bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || Node->getOpcode() == ISD::STRICT_FP_TO_SINT; SDValue Op = Node->getOperand(IsStrict ? 1 : 0); EVT SVT = Op.getValueType(); EVT RVT = Node->getValueType(0); EVT NVT = EVT(); SDLoc dl(Node); // Even if the result is legal, no libcall may exactly match, eg. we don't // have fp -> i1 conversions. So, it needs to be promoted to a larger type, // eg: fp -> i32. Then, look for an appropriate libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++IntVT) { NVT = (MVT::SimpleValueType)IntVT; // The type needs to big enough to hold the result. if (NVT.bitsGE(RVT)) LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) : RTLIB::getFPTOUINT(SVT, NVT); } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); // Truncate the result if the libcall returns a larger type. Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); if (IsStrict) Results.push_back(Tmp.second); break; } case ISD::FP_ROUND: case ISD::STRICT_FP_ROUND: { // X = FP_ROUND(Y, TRUNC) // TRUNC is a flag, which is always an integer that is zero or one. // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND // is known to not change the value of Y. // We can only expand it into libcall if the TRUNC is 0. bool IsStrict = Node->isStrictFPOpcode(); SDValue Op = Node->getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); EVT VT = Node->getValueType(0); assert(cast(Node->getOperand(IsStrict ? 2 : 1))->isZero() && "Unable to expand as libcall if it is not normal rounding"); RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); Results.push_back(Tmp.first); if (IsStrict) Results.push_back(Tmp.second); break; } case ISD::FP_EXTEND: { Results.push_back( ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), Node->getValueType(0)), Node, false).first); break; } case ISD::STRICT_FP_EXTEND: case ISD::STRICT_FP_TO_FP16: case ISD::STRICT_FP_TO_BF16: { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (Node->getOpcode() == ISD::STRICT_FP_TO_FP16) LC = RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); else if (Node->getOpcode() == ISD::STRICT_FP_TO_BF16) LC = RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::bf16); else LC = RTLIB::getFPEXT(Node->getOperand(1).getValueType(), Node->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); TargetLowering::MakeLibCallOptions CallOptions; std::pair Tmp = TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), CallOptions, SDLoc(Node), Node->getOperand(0)); Results.push_back(Tmp.first); Results.push_back(Tmp.second); break; } case ISD::FSUB: case ISD::STRICT_FSUB: ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_F128, RTLIB::SUB_PPCF128, Results); break; case ISD::SREM: Results.push_back(ExpandIntLibCall(Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, RTLIB::SREM_I64, RTLIB::SREM_I128)); break; case ISD::UREM: Results.push_back(ExpandIntLibCall(Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, RTLIB::UREM_I64, RTLIB::UREM_I128)); break; case ISD::SDIV: Results.push_back(ExpandIntLibCall(Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, RTLIB::SDIV_I64, RTLIB::SDIV_I128)); break; case ISD::UDIV: Results.push_back(ExpandIntLibCall(Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, RTLIB::UDIV_I64, RTLIB::UDIV_I128)); break; case ISD::SDIVREM: case ISD::UDIVREM: // Expand into divrem libcall ExpandDivRemLibCall(Node, Results); break; case ISD::MUL: Results.push_back(ExpandIntLibCall(Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, RTLIB::MUL_I64, RTLIB::MUL_I128)); break; case ISD::CTLZ_ZERO_UNDEF: switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("LibCall explicitly requested, but not available"); case MVT::i32: Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false).first); break; case MVT::i64: Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false).first); break; case MVT::i128: Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false).first); break; } break; case ISD::RESET_FPENV: { // It is legalized to call 'fesetenv(FE_DFL_ENV)'. On most targets // FE_DFL_ENV is defined as '((const fenv_t *) -1)' in glibc. SDValue Ptr = DAG.getIntPtrConstant(-1LL, dl); SDValue Chain = Node->getOperand(0); Results.push_back( DAG.makeStateFunctionCall(RTLIB::FESETENV, Ptr, Chain, dl)); break; } case ISD::GET_FPENV_MEM: { SDValue Chain = Node->getOperand(0); SDValue EnvPtr = Node->getOperand(1); Results.push_back( DAG.makeStateFunctionCall(RTLIB::FEGETENV, EnvPtr, Chain, dl)); break; } case ISD::SET_FPENV_MEM: { SDValue Chain = Node->getOperand(0); SDValue EnvPtr = Node->getOperand(1); Results.push_back( DAG.makeStateFunctionCall(RTLIB::FESETENV, EnvPtr, Chain, dl)); break; } case ISD::GET_FPMODE: { // Call fegetmode, which saves control modes into a stack slot. Then load // the value to return from the stack. EVT ModeVT = Node->getValueType(0); SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); int SPFI = cast(StackPtr.getNode())->getIndex(); SDValue Chain = DAG.makeStateFunctionCall(RTLIB::FEGETMODE, StackPtr, Node->getOperand(0), dl); SDValue LdInst = DAG.getLoad( ModeVT, dl, Chain, StackPtr, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); Results.push_back(LdInst); Results.push_back(LdInst.getValue(1)); break; } case ISD::SET_FPMODE: { // Move control modes to stack slot and then call fesetmode with the pointer // to the slot as argument. SDValue Mode = Node->getOperand(1); EVT ModeVT = Mode.getValueType(); SDValue StackPtr = DAG.CreateStackTemporary(ModeVT); int SPFI = cast(StackPtr.getNode())->getIndex(); SDValue StInst = DAG.getStore( Node->getOperand(0), dl, Mode, StackPtr, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); Results.push_back( DAG.makeStateFunctionCall(RTLIB::FESETMODE, StackPtr, StInst, dl)); break; } case ISD::RESET_FPMODE: { // It is legalized to a call 'fesetmode(FE_DFL_MODE)'. On most targets // FE_DFL_MODE is defined as '((const femode_t *) -1)' in glibc. If not, the // target must provide custom lowering. const DataLayout &DL = DAG.getDataLayout(); EVT PtrTy = TLI.getPointerTy(DL); SDValue Mode = DAG.getConstant(-1LL, dl, PtrTy); Results.push_back(DAG.makeStateFunctionCall(RTLIB::FESETMODE, Mode, Node->getOperand(0), dl)); break; } } // Replace the original node with the legalized result. if (!Results.empty()) { LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); ReplaceNode(Node, Results.data()); } else LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); } // Determine the vector type to use in place of an original scalar element when // promoting equally sized vectors. static MVT getPromotedVectorElementType(const TargetLowering &TLI, MVT EltVT, MVT NewEltVT) { unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); MVT MidVT = OldEltsPerNewElt == 1 ? NewEltVT : MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); assert(TLI.isTypeLegal(MidVT) && "unexpected"); return MidVT; } void SelectionDAGLegalize::PromoteNode(SDNode *Node) { LLVM_DEBUG(dbgs() << "Trying to promote node\n"); SmallVector Results; MVT OVT = Node->getSimpleValueType(0); if (Node->getOpcode() == ISD::UINT_TO_FP || Node->getOpcode() == ISD::SINT_TO_FP || Node->getOpcode() == ISD::SETCC || Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { OVT = Node->getOperand(0).getSimpleValueType(); } if (Node->getOpcode() == ISD::ATOMIC_STORE || Node->getOpcode() == ISD::STRICT_UINT_TO_FP || Node->getOpcode() == ISD::STRICT_SINT_TO_FP || Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS || Node->getOpcode() == ISD::VP_REDUCE_FADD || Node->getOpcode() == ISD::VP_REDUCE_FMUL || Node->getOpcode() == ISD::VP_REDUCE_FMAX || Node->getOpcode() == ISD::VP_REDUCE_FMIN || Node->getOpcode() == ISD::VP_REDUCE_FMAXIMUM || Node->getOpcode() == ISD::VP_REDUCE_FMINIMUM || Node->getOpcode() == ISD::VP_REDUCE_SEQ_FADD) OVT = Node->getOperand(1).getSimpleValueType(); if (Node->getOpcode() == ISD::BR_CC || Node->getOpcode() == ISD::SELECT_CC) OVT = Node->getOperand(2).getSimpleValueType(); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); SDLoc dl(Node); SDValue Tmp1, Tmp2, Tmp3, Tmp4; switch (Node->getOpcode()) { case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTLZ: case ISD::CTPOP: { // Zero extend the argument unless its cttz, then use any_extend. if (Node->getOpcode() == ISD::CTTZ || Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); else Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); unsigned NewOpc = Node->getOpcode(); if (NewOpc == ISD::CTTZ) { // The count is the same in the promoted type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), OVT.getSizeInBits()); Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, DAG.getConstant(TopBit, dl, NVT)); NewOpc = ISD::CTTZ_ZERO_UNDEF; } // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is // already the correct result. Tmp1 = DAG.getNode(NewOpc, dl, NVT, Tmp1); if (NewOpc == ISD::CTLZ) { // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), dl, NVT)); } Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); break; } case ISD::CTLZ_ZERO_UNDEF: { // We know that the argument is unlikely to be zero, hence we can take a // different approach as compared to ISD::CTLZ // Any Extend the argument auto AnyExtendedNode = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); // Tmp1 = Tmp1 << (sizeinbits(NVT) - sizeinbits(Old VT)) auto ShiftConstant = DAG.getShiftAmountConstant( NVT.getSizeInBits() - OVT.getSizeInBits(), NVT, dl); auto LeftShiftResult = DAG.getNode(ISD::SHL, dl, NVT, AnyExtendedNode, ShiftConstant); // Perform the larger operation auto CTLZResult = DAG.getNode(Node->getOpcode(), dl, NVT, LeftShiftResult); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, CTLZResult)); break; } case ISD::BITREVERSE: case ISD::BSWAP: { unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); Tmp1 = DAG.getNode( ISD::SRL, dl, NVT, Tmp1, DAG.getConstant(DiffBits, dl, TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); break; } case ISD::FP_TO_UINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::STRICT_FP_TO_SINT: PromoteLegalFP_TO_INT(Node, dl, Results); break; case ISD::FP_TO_UINT_SAT: case ISD::FP_TO_SINT_SAT: Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); break; case ISD::UINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::STRICT_SINT_TO_FP: PromoteLegalINT_TO_FP(Node, dl, Results); break; case ISD::VAARG: { SDValue Chain = Node->getOperand(0); // Get the chain. SDValue Ptr = Node->getOperand(1); // Get the pointer. unsigned TruncOp; if (OVT.isVector()) { TruncOp = ISD::BITCAST; } else { assert(OVT.isInteger() && "VAARG promotion is supported only for vectors or integer types"); TruncOp = ISD::TRUNCATE; } // Perform the larger operation, then convert back Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), Node->getConstantOperandVal(3)); Chain = Tmp1.getValue(1); Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); // Modified the chain result - switch anything that used the old chain to // use the new one. DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); if (UpdatedNodes) { UpdatedNodes->insert(Tmp2.getNode()); UpdatedNodes->insert(Chain.getNode()); } ReplacedNode(Node); break; } case ISD::MUL: case ISD::SDIV: case ISD::SREM: case ISD::UDIV: case ISD::UREM: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::AND: case ISD::OR: case ISD::XOR: { unsigned ExtOp, TruncOp; if (OVT.isVector()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else { assert(OVT.isInteger() && "Cannot promote logic operation"); switch (Node->getOpcode()) { default: ExtOp = ISD::ANY_EXTEND; break; case ISD::SDIV: case ISD::SREM: case ISD::SMIN: case ISD::SMAX: ExtOp = ISD::SIGN_EXTEND; break; case ISD::UDIV: case ISD::UREM: ExtOp = ISD::ZERO_EXTEND; break; case ISD::UMIN: case ISD::UMAX: if (TLI.isSExtCheaperThanZExt(OVT, NVT)) ExtOp = ISD::SIGN_EXTEND; else ExtOp = ISD::ZERO_EXTEND; break; } TruncOp = ISD::TRUNCATE; } // Promote each of the values to the new type. Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); // Perform the larger operation, then convert back Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); break; } case ISD::UMUL_LOHI: case ISD::SMUL_LOHI: { // Promote to a multiply in a wider integer type. unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); auto &DL = DAG.getDataLayout(); unsigned OriginalSize = OVT.getScalarSizeInBits(); Tmp2 = DAG.getNode( ISD::SRL, dl, NVT, Tmp1, DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); break; } case ISD::SELECT: { unsigned ExtOp, TruncOp; if (Node->getValueType(0).isVector() || Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else if (Node->getValueType(0).isInteger()) { ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } else { ExtOp = ISD::FP_EXTEND; TruncOp = ISD::FP_ROUND; } Tmp1 = Node->getOperand(0); // Promote each of the values to the new type. Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); // Perform the larger operation, then round down. Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); Tmp1->setFlags(Node->getFlags()); if (TruncOp != ISD::FP_ROUND) Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); else Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, DAG.getIntPtrConstant(0, dl)); Results.push_back(Tmp1); break; } case ISD::VECTOR_SHUFFLE: { ArrayRef Mask = cast(Node)->getMask(); // Cast the two input vectors. Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); // Convert the shuffle mask to the right # elements. Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); Results.push_back(Tmp1); break; } case ISD::VECTOR_SPLICE: { Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, Node->getOperand(2)); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); break; } case ISD::SELECT_CC: { SDValue Cond = Node->getOperand(4); ISD::CondCode CCCode = cast(Cond)->get(); // Type of the comparison operands. MVT CVT = Node->getSimpleValueType(0); assert(CVT == OVT && "not handled"); unsigned ExtOp = ISD::FP_EXTEND; if (NVT.isInteger()) { ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; } // Promote the comparison operands, if needed. if (TLI.isCondCodeLegal(CCCode, CVT)) { Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); } else { Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); } // Cast the true/false operands. Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, Node->getFlags()); // Cast the result back to the original type. if (ExtOp != ISD::FP_EXTEND) Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); else Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); Results.push_back(Tmp1); break; } case ISD::SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: { unsigned ExtOp = ISD::FP_EXTEND; if (NVT.isInteger()) { ISD::CondCode CCCode = cast(Node->getOperand(2))->get(); if (isSignedIntSetCC(CCCode) || TLI.isSExtCheaperThanZExt(Node->getOperand(0).getValueType(), NVT)) ExtOp = ISD::SIGN_EXTEND; else ExtOp = ISD::ZERO_EXTEND; } if (Node->isStrictFPOpcode()) { SDValue InChain = Node->getOperand(0); std::tie(Tmp1, std::ignore) = DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); std::tie(Tmp2, std::ignore) = DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); SmallVector TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, Node->getFlags())); Results.push_back(Results.back().getValue(1)); break; } Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2), Node->getFlags())); break; } case ISD::BR_CC: { unsigned ExtOp = ISD::FP_EXTEND; if (NVT.isInteger()) { ISD::CondCode CCCode = cast(Node->getOperand(1))->get(); ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; } Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Node->getOperand(0), Node->getOperand(1), Tmp1, Tmp2, Node->getOperand(4))); break; } case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINIMUM: case ISD::FMAXIMUM: case ISD::FPOW: Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Node->getFlags()); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); break; case ISD::STRICT_FADD: case ISD::STRICT_FSUB: case ISD::STRICT_FMUL: case ISD::STRICT_FDIV: case ISD::STRICT_FMINNUM: case ISD::STRICT_FMAXNUM: case ISD::STRICT_FREM: case ISD::STRICT_FPOW: Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(2)}); Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), Tmp2.getValue(1)); Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, {Tmp3, Tmp1, Tmp2}); Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); Results.push_back(Tmp1); Results.push_back(Tmp1.getValue(1)); break; case ISD::FMA: Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); break; case ISD::STRICT_FMA: Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(2)}); Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(3)}); Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), Tmp2.getValue(1), Tmp3.getValue(1)); Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, {Tmp4, Tmp1, Tmp2, Tmp3}); Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); Results.push_back(Tmp4); Results.push_back(Tmp4.getValue(1)); break; case ISD::FCOPYSIGN: case ISD::FLDEXP: case ISD::FPOWI: { Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = Node->getOperand(1); Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); // fcopysign doesn't change anything but the sign bit, so // (fp_round (fcopysign (fpext a), b)) // is as precise as // (fp_round (fpext a)) // which is a no-op. Mark it as a TRUNCating FP_ROUND. const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, DAG.getIntPtrConstant(isTrunc, dl, /*isTarget=*/true))); break; } case ISD::STRICT_FPOWI: Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); Results.push_back(Tmp3); Results.push_back(Tmp3.getValue(1)); break; case ISD::FFREXP: { Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::FFREXP, dl, {NVT, Node->getValueType(1)}, Tmp1); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); Results.push_back(Tmp2.getValue(1)); break; } case ISD::FFLOOR: case ISD::FCEIL: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::FTRUNC: case ISD::FNEG: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FTAN: case ISD::FASIN: case ISD::FACOS: case ISD::FATAN: case ISD::FSINH: case ISD::FCOSH: case ISD::FTANH: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FABS: case ISD::FEXP: case ISD::FEXP2: case ISD::FEXP10: case ISD::FCANONICALIZE: Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); break; case ISD::STRICT_FFLOOR: case ISD::STRICT_FCEIL: case ISD::STRICT_FRINT: case ISD::STRICT_FNEARBYINT: case ISD::STRICT_FROUND: case ISD::STRICT_FROUNDEVEN: case ISD::STRICT_FTRUNC: case ISD::STRICT_FSQRT: case ISD::STRICT_FSIN: case ISD::STRICT_FCOS: case ISD::STRICT_FTAN: case ISD::STRICT_FASIN: case ISD::STRICT_FACOS: case ISD::STRICT_FATAN: case ISD::STRICT_FSINH: case ISD::STRICT_FCOSH: case ISD::STRICT_FTANH: case ISD::STRICT_FLOG: case ISD::STRICT_FLOG2: case ISD::STRICT_FLOG10: case ISD::STRICT_FEXP: case ISD::STRICT_FEXP2: Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, {Tmp1.getValue(1), Tmp1}); Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); Results.push_back(Tmp3); Results.push_back(Tmp3.getValue(1)); break; case ISD::BUILD_VECTOR: { MVT EltVT = OVT.getVectorElementType(); MVT NewEltVT = NVT.getVectorElementType(); // Handle bitcasts to a different vector type with the same total bit size // // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 // => // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && "Invalid promote type for build_vector"); assert(NewEltVT.bitsLE(EltVT) && "not handled"); MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); SmallVector NewOps; for (const SDValue &Op : Node->op_values()) NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); SDLoc SL(Node); SDValue Concat = DAG.getNode(MidVT == NewEltVT ? ISD::BUILD_VECTOR : ISD::CONCAT_VECTORS, SL, NVT, NewOps); SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); Results.push_back(CvtVec); break; } case ISD::EXTRACT_VECTOR_ELT: { MVT EltVT = OVT.getVectorElementType(); MVT NewEltVT = NVT.getVectorElementType(); // Handle bitcasts to a different vector type with the same total bit size. // // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 // => // v4i32:castx = bitcast x:v2i64 // // i64 = bitcast // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), // (i32 (extract_vector_elt castx, (2 * y + 1))) // assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && "Invalid promote type for extract_vector_elt"); assert(NewEltVT.bitsLT(EltVT) && "not handled"); MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); SDValue Idx = Node->getOperand(1); EVT IdxVT = Idx.getValueType(); SDLoc SL(Node); SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); SmallVector NewOps; for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, CastVec, TmpIdx); NewOps.push_back(Elt); } SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); break; } case ISD::INSERT_VECTOR_ELT: { MVT EltVT = OVT.getVectorElementType(); MVT NewEltVT = NVT.getVectorElementType(); // Handle bitcasts to a different vector type with the same total bit size // // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 // => // v4i32:castx = bitcast x:v2i64 // v2i32:casty = bitcast y:i64 // // v2i64 = bitcast // (v4i32 insert_vector_elt // (v4i32 insert_vector_elt v4i32:castx, // (extract_vector_elt casty, 0), 2 * z), // (extract_vector_elt casty, 1), (2 * z + 1)) assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && "Invalid promote type for insert_vector_elt"); assert(NewEltVT.bitsLT(EltVT) && "not handled"); MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); SDValue Val = Node->getOperand(1); SDValue Idx = Node->getOperand(2); EVT IdxVT = Idx.getValueType(); SDLoc SL(Node); SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); SDValue NewVec = CastVec; for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, CastVal, IdxOffset); NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, NewVec, Elt, InEltIdx); } Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); break; } case ISD::SCALAR_TO_VECTOR: { MVT EltVT = OVT.getVectorElementType(); MVT NewEltVT = NVT.getVectorElementType(); // Handle bitcasts to different vector type with the same total bit size. // // e.g. v2i64 = scalar_to_vector x:i64 // => // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) // MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); SDValue Val = Node->getOperand(0); SDLoc SL(Node); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); SDValue Undef = DAG.getUNDEF(MidVT); SmallVector NewElts; NewElts.push_back(CastVal); for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) NewElts.push_back(Undef); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); Results.push_back(CvtVec); break; } case ISD::ATOMIC_SWAP: case ISD::ATOMIC_STORE: { AtomicSDNode *AM = cast(Node); SDLoc SL(Node); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); assert(NVT.getSizeInBits() == OVT.getSizeInBits() && "unexpected promotion type"); assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && "unexpected atomic_swap with illegal type"); SDValue Op0 = AM->getBasePtr(); SDValue Op1 = CastVal; // ATOMIC_STORE uses a swapped operand order from every other AtomicSDNode, // but really it should merge with ISD::STORE. if (AM->getOpcode() == ISD::ATOMIC_STORE) std::swap(Op0, Op1); SDValue NewAtomic = DAG.getAtomic(AM->getOpcode(), SL, NVT, AM->getChain(), Op0, Op1, AM->getMemOperand()); if (AM->getOpcode() != ISD::ATOMIC_STORE) { Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); Results.push_back(NewAtomic.getValue(1)); } else Results.push_back(NewAtomic); break; } case ISD::ATOMIC_LOAD: { AtomicSDNode *AM = cast(Node); SDLoc SL(Node); assert(NVT.getSizeInBits() == OVT.getSizeInBits() && "unexpected promotion type"); assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && "unexpected atomic_load with illegal type"); SDValue NewAtomic = DAG.getAtomic(ISD::ATOMIC_LOAD, SL, NVT, DAG.getVTList(NVT, MVT::Other), {AM->getChain(), AM->getBasePtr()}, AM->getMemOperand()); Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); Results.push_back(NewAtomic.getValue(1)); break; } case ISD::SPLAT_VECTOR: { SDValue Scalar = Node->getOperand(0); MVT ScalarType = Scalar.getSimpleValueType(); MVT NewScalarType = NVT.getVectorElementType(); if (ScalarType.isInteger()) { Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NewScalarType, Scalar); Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); break; } Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewScalarType, Scalar); Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); Results.push_back( DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true))); break; } case ISD::VP_REDUCE_FADD: case ISD::VP_REDUCE_FMUL: case ISD::VP_REDUCE_FMAX: case ISD::VP_REDUCE_FMIN: case ISD::VP_REDUCE_FMAXIMUM: case ISD::VP_REDUCE_FMINIMUM: case ISD::VP_REDUCE_SEQ_FADD: Results.push_back(PromoteReduction(Node)); break; } // Replace the original node with the legalized result. if (!Results.empty()) { LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); ReplaceNode(Node, Results.data()); } else LLVM_DEBUG(dbgs() << "Could not promote node\n"); } /// This is the entry point for the file. void SelectionDAG::Legalize() { AssignTopologicalOrder(); SmallPtrSet LegalizedNodes; // Use a delete listener to remove nodes which were deleted during // legalization from LegalizeNodes. This is needed to handle the situation // where a new node is allocated by the object pool to the same address of a // previously deleted node. DAGNodeDeletedListener DeleteListener( *this, [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); SelectionDAGLegalize Legalizer(*this, LegalizedNodes); // Visit all the nodes. We start in topological order, so that we see // nodes with their original operands intact. Legalization can produce // new nodes which may themselves need to be legalized. Iterate until all // nodes have been legalized. while (true) { bool AnyLegalized = false; for (auto NI = allnodes_end(); NI != allnodes_begin();) { --NI; SDNode *N = &*NI; if (N->use_empty() && N != getRoot().getNode()) { ++NI; DeleteNode(N); continue; } if (LegalizedNodes.insert(N).second) { AnyLegalized = true; Legalizer.LegalizeOp(N); if (N->use_empty() && N != getRoot().getNode()) { ++NI; DeleteNode(N); } } } if (!AnyLegalized) break; } // Remove dead nodes now. RemoveDeadNodes(); } bool SelectionDAG::LegalizeOp(SDNode *N, SmallSetVector &UpdatedNodes) { SmallPtrSet LegalizedNodes; SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); // Directly insert the node in question, and legalize it. This will recurse // as needed through operands. LegalizedNodes.insert(N); Legalizer.LegalizeOp(N); return LegalizedNodes.count(N); }