//===- FastISel.cpp - Implementation of the FastISel class ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // // "Fast" instruction selection is designed to emit very poor code quickly. // Also, it is not designed to be able to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations are not supported. It is // also not intended to be able to do much optimization, except in a few cases // where doing optimizations reduces overall compile time. For example, folding // constants into immediate fields is often done, because it's cheap and it // reduces the number of instructions later phases have to examine. // // "Fast" instruction selection is able to fail gracefully and transfer // control to the SelectionDAG selector for operations that it doesn't // support. In many cases, this allows us to avoid duplicating a lot of // the complicated lowering logic that SelectionDAG currently has. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. Also, // at -O0, the LLVM optimizers are not running, and this makes the // compile time of codegen a much higher portion of the overall compile // time. Despite its limitations, "fast" instruction selection is able to // handle enough code on its own to provide noticeable overall speedups // in -O0 compiles. // // Basic operations are supported in a target-independent way, by reading // the same instruction descriptions that the SelectionDAG selector reads, // and identifying simple arithmetic operations that can be directly selected // from simple operators. More complicated operations currently require // target-specific code. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/FastISel.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "isel" STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " "target-independent selector"); STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " "target-specific selector"); STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); /// Set the current block to which generated machine instructions will be /// appended. void FastISel::startNewBlock() { assert(LocalValueMap.empty() && "local values should be cleared after finishing a BB"); // Instructions are appended to FuncInfo.MBB. If the basic block already // contains labels or copies, use the last instruction as the last local // value. EmitStartPt = nullptr; if (!FuncInfo.MBB->empty()) EmitStartPt = &FuncInfo.MBB->back(); LastLocalValue = EmitStartPt; } void FastISel::finishBasicBlock() { flushLocalValueMap(); } bool FastISel::lowerArguments() { if (!FuncInfo.CanLowerReturn) // Fallback to SDISel argument lowering code to deal with sret pointer // parameter. return false; if (!fastLowerArguments()) return false; // Enter arguments into ValueMap for uses in non-entry BBs. for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), E = FuncInfo.Fn->arg_end(); I != E; ++I) { DenseMap::iterator VI = LocalValueMap.find(&*I); assert(VI != LocalValueMap.end() && "Missed an argument?"); FuncInfo.ValueMap[&*I] = VI->second; } return true; } /// Return the defined register if this instruction defines exactly one /// virtual register and uses no other virtual registers. Otherwise return 0. static Register findLocalRegDef(MachineInstr &MI) { Register RegDef; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; if (MO.isDef()) { if (RegDef) return Register(); RegDef = MO.getReg(); } else if (MO.getReg().isVirtual()) { // This is another use of a vreg. Don't delete it. return Register(); } } return RegDef; } static bool isRegUsedByPhiNodes(Register DefReg, FunctionLoweringInfo &FuncInfo) { for (auto &P : FuncInfo.PHINodesToUpdate) if (P.second == DefReg) return true; return false; } void FastISel::flushLocalValueMap() { // If FastISel bails out, it could leave local value instructions behind // that aren't used for anything. Detect and erase those. if (LastLocalValue != EmitStartPt) { // Save the first instruction after local values, for later. MachineBasicBlock::iterator FirstNonValue(LastLocalValue); ++FirstNonValue; MachineBasicBlock::reverse_iterator RE = EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) : FuncInfo.MBB->rend(); MachineBasicBlock::reverse_iterator RI(LastLocalValue); for (MachineInstr &LocalMI : llvm::make_early_inc_range(llvm::make_range(RI, RE))) { Register DefReg = findLocalRegDef(LocalMI); if (!DefReg) continue; if (FuncInfo.RegsWithFixups.count(DefReg)) continue; bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { if (EmitStartPt == &LocalMI) EmitStartPt = EmitStartPt->getPrevNode(); LLVM_DEBUG(dbgs() << "removing dead local value materialization" << LocalMI); LocalMI.eraseFromParent(); } } if (FirstNonValue != FuncInfo.MBB->end()) { // See if there are any local value instructions left. If so, we want to // make sure the first one has a debug location; if it doesn't, use the // first non-value instruction's debug location. // If EmitStartPt is non-null, this block had copies at the top before // FastISel started doing anything; it points to the last one, so the // first local value instruction is the one after EmitStartPt. // If EmitStartPt is null, the first local value instruction is at the // top of the block. MachineBasicBlock::iterator FirstLocalValue = EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) : FuncInfo.MBB->begin(); if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); } } LocalValueMap.clear(); LastLocalValue = EmitStartPt; recomputeInsertPt(); SavedInsertPt = FuncInfo.InsertPt; } Register FastISel::getRegForValue(const Value *V) { EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); // Don't handle non-simple values in FastISel. if (!RealVT.isSimple()) return Register(); // Ignore illegal types. We must do this before looking up the value // in ValueMap because Arguments are given virtual registers regardless // of whether FastISel can handle them. MVT VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT)) { // Handle integer promotions, though, because they're common and easy. if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); else return Register(); } // Look up the value to see if we already have a register for it. Register Reg = lookUpRegForValue(V); if (Reg) return Reg; // In bottom-up mode, just create the virtual register which will be used // to hold the value. It will be materialized later. if (isa(V) && (!isa(V) || !FuncInfo.StaticAllocaMap.count(cast(V)))) return FuncInfo.InitializeRegForValue(V); SavePoint SaveInsertPt = enterLocalValueArea(); // Materialize the value in a register. Emit any instructions in the // local value area. Reg = materializeRegForValue(V, VT); leaveLocalValueArea(SaveInsertPt); return Reg; } Register FastISel::materializeConstant(const Value *V, MVT VT) { Register Reg; if (const auto *CI = dyn_cast(V)) { if (CI->getValue().getActiveBits() <= 64) Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); } else if (isa(V)) Reg = fastMaterializeAlloca(cast(V)); else if (isa(V)) // Translate this as an integer zero so that it can be // local-CSE'd with actual integer zeros. Reg = getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); else if (const auto *CF = dyn_cast(V)) { if (CF->isNullValue()) Reg = fastMaterializeFloatZero(CF); else // Try to emit the constant directly. Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); if (!Reg) { // Try to emit the constant by using an integer constant with a cast. const APFloat &Flt = CF->getValueAPF(); EVT IntVT = TLI.getPointerTy(DL); uint32_t IntBitWidth = IntVT.getSizeInBits(); APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); bool isExact; (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); if (isExact) { Register IntegerReg = getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); if (IntegerReg) Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); } } } else if (const auto *Op = dyn_cast(V)) { if (!selectOperator(Op, Op->getOpcode())) if (!isa(Op) || !fastSelectInstruction(cast(Op))) return 0; Reg = lookUpRegForValue(Op); } else if (isa(V)) { Reg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); } return Reg; } /// Helper for getRegForValue. This function is called when the value isn't /// already available in a register and must be materialized with new /// instructions. Register FastISel::materializeRegForValue(const Value *V, MVT VT) { Register Reg; // Give the target-specific code a try first. if (isa(V)) Reg = fastMaterializeConstant(cast(V)); // If target-specific code couldn't or didn't want to handle the value, then // give target-independent code a try. if (!Reg) Reg = materializeConstant(V, VT); // Don't cache constant materializations in the general ValueMap. // To do so would require tracking what uses they dominate. if (Reg) { LocalValueMap[V] = Reg; LastLocalValue = MRI.getVRegDef(Reg); } return Reg; } Register FastISel::lookUpRegForValue(const Value *V) { // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominates-use requirement enforced. DenseMap::iterator I = FuncInfo.ValueMap.find(V); if (I != FuncInfo.ValueMap.end()) return I->second; return LocalValueMap[V]; } void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { if (!isa(I)) { LocalValueMap[I] = Reg; return; } Register &AssignedReg = FuncInfo.ValueMap[I]; if (!AssignedReg) // Use the new register. AssignedReg = Reg; else if (Reg != AssignedReg) { // Arrange for uses of AssignedReg to be replaced by uses of Reg. for (unsigned i = 0; i < NumRegs; i++) { FuncInfo.RegFixups[AssignedReg + i] = Reg + i; FuncInfo.RegsWithFixups.insert(Reg + i); } AssignedReg = Reg; } } Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) { Register IdxN = getRegForValue(Idx); if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. return Register(); // If the index is smaller or larger than intptr_t, truncate or extend it. EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(PtrVT)) { IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); } else if (IdxVT.bitsGT(PtrVT)) { IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); } return IdxN; } Register FastISel::getRegForGEPIndex(const Value *Idx) { return getRegForGEPIndex(TLI.getPointerTy(DL), Idx); } void FastISel::recomputeInsertPt() { if (getLastLocalValue()) { FuncInfo.InsertPt = getLastLocalValue(); FuncInfo.MBB = FuncInfo.InsertPt->getParent(); ++FuncInfo.InsertPt; } else FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); } void FastISel::removeDeadCode(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E) { assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && "Invalid iterator!"); while (I != E) { if (SavedInsertPt == I) SavedInsertPt = E; if (EmitStartPt == I) EmitStartPt = E.isValid() ? &*E : nullptr; if (LastLocalValue == I) LastLocalValue = E.isValid() ? &*E : nullptr; MachineInstr *Dead = &*I; ++I; Dead->eraseFromParent(); ++NumFastIselDead; } recomputeInsertPt(); } FastISel::SavePoint FastISel::enterLocalValueArea() { SavePoint OldInsertPt = FuncInfo.InsertPt; recomputeInsertPt(); return OldInsertPt; } void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) LastLocalValue = &*std::prev(FuncInfo.InsertPt); // Restore the previous insert position. FuncInfo.InsertPt = OldInsertPt; } bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. if (!TLI.isTypeLegal(VT)) { // MVT::i1 is special. Allow AND, OR, or XOR because they // don't require additional zeroing, which makes them easy. if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode)) VT = TLI.getTypeToTransformTo(I->getContext(), VT); else return false; } // Check if the first operand is a constant, and handle it as "ri". At -O0, // we don't have anything that canonicalizes operand order. if (const auto *CI = dyn_cast(I->getOperand(0))) if (isa(I) && cast(I)->isCommutative()) { Register Op1 = getRegForValue(I->getOperand(1)); if (!Op1) return false; Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), VT.getSimpleVT()); if (!ResultReg) return false; // We successfully emitted code for the given LLVM Instruction. updateValueMap(I, ResultReg); return true; } Register Op0 = getRegForValue(I->getOperand(0)); if (!Op0) // Unhandled operand. Halt "fast" selection and bail. return false; // Check if the second operand is a constant and handle it appropriately. if (const auto *CI = dyn_cast(I->getOperand(1))) { uint64_t Imm = CI->getSExtValue(); // Transform "sdiv exact X, 8" -> "sra X, 3". if (ISDOpcode == ISD::SDIV && isa(I) && cast(I)->isExact() && isPowerOf2_64(Imm)) { Imm = Log2_64(Imm); ISDOpcode = ISD::SRA; } // Transform "urem x, pow2" -> "and x, pow2-1". if (ISDOpcode == ISD::UREM && isa(I) && isPowerOf2_64(Imm)) { --Imm; ISDOpcode = ISD::AND; } Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, VT.getSimpleVT()); if (!ResultReg) return false; // We successfully emitted code for the given LLVM Instruction. updateValueMap(I, ResultReg); return true; } Register Op1 = getRegForValue(I->getOperand(1)); if (!Op1) // Unhandled operand. Halt "fast" selection and bail. return false; // Now we have both operands in registers. Emit the instruction. Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op1); if (!ResultReg) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. updateValueMap(I, ResultReg); return true; } bool FastISel::selectGetElementPtr(const User *I) { Register N = getRegForValue(I->getOperand(0)); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; // FIXME: The code below does not handle vector GEPs. Halt "fast" selection // and bail. if (isa(I->getType())) return false; // Keep a running tab of the total offset to coalesce multiple N = N + Offset // into a single N = N + TotalOffset. uint64_t TotalOffs = 0; // FIXME: What's a good SWAG number for MaxOffs? uint64_t MaxOffs = 2048; MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT(); for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); GTI != E; ++GTI) { const Value *Idx = GTI.getOperand(); if (StructType *StTy = GTI.getStructTypeOrNull()) { uint64_t Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); if (TotalOffs >= MaxOffs) { N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; TotalOffs = 0; } } } else { // If this is a constant subscript, handle it quickly. if (const auto *CI = dyn_cast(Idx)) { if (CI->isZero()) continue; // N = N + Offset uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; if (TotalOffs >= MaxOffs) { N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; TotalOffs = 0; } continue; } if (TotalOffs) { N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; TotalOffs = 0; } // N = N + Idx * ElementSize; uint64_t ElementSize = GTI.getSequentialElementStride(DL); Register IdxN = getRegForGEPIndex(VT, Idx); if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. return false; if (ElementSize != 1) { IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. return false; } N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; } } if (TotalOffs) { N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); if (!N) // Unhandled operand. Halt "fast" selection and bail. return false; } // We successfully emitted code for the given LLVM Instruction. updateValueMap(I, N); return true; } bool FastISel::addStackMapLiveVars(SmallVectorImpl &Ops, const CallInst *CI, unsigned StartIdx) { for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { Value *Val = CI->getArgOperand(i); // Check for constants and encode them with a StackMaps::ConstantOp prefix. if (const auto *C = dyn_cast(Val)) { Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); } else if (isa(Val)) { Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); Ops.push_back(MachineOperand::CreateImm(0)); } else if (auto *AI = dyn_cast(Val)) { // Values coming from a stack location also require a special encoding, // but that is added later on by the target specific frame index // elimination implementation. auto SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) Ops.push_back(MachineOperand::CreateFI(SI->second)); else return false; } else { Register Reg = getRegForValue(Val); if (!Reg) return false; Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); } } return true; } bool FastISel::selectStackmap(const CallInst *I) { // void @llvm.experimental.stackmap(i64 , i32 , // [live variables...]) assert(I->getCalledFunction()->getReturnType()->isVoidTy() && "Stackmap cannot return a value."); // The stackmap intrinsic only records the live variables (the arguments // passed to it) and emits NOPS (if requested). Unlike the patchpoint // intrinsic, this won't be lowered to a function call. This means we don't // have to worry about calling conventions and target-specific lowering code. // Instead we perform the call lowering right here. // // CALLSEQ_START(0, 0...) // STACKMAP(id, nbytes, ...) // CALLSEQ_END(0, 0) // SmallVector Ops; // Add the and constants. assert(isa(I->getOperand(PatchPointOpers::IDPos)) && "Expected a constant integer."); const auto *ID = cast(I->getOperand(PatchPointOpers::IDPos)); Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); assert(isa(I->getOperand(PatchPointOpers::NBytesPos)) && "Expected a constant integer."); const auto *NumBytes = cast(I->getOperand(PatchPointOpers::NBytesPos)); Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); // Push live variables for the stack map (skipping the first two arguments // and ). if (!addStackMapLiveVars(Ops, I, 2)) return false; // We are not adding any register mask info here, because the stackmap doesn't // clobber anything. // Add scratch registers as implicit def and early clobber. CallingConv::ID CC = I->getCallingConv(); const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); for (unsigned i = 0; ScratchRegs[i]; ++i) Ops.push_back(MachineOperand::CreateReg( ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); auto Builder = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) Builder.addImm(0); // Issue STACKMAP. MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::STACKMAP)); for (auto const &MO : Ops) MIB.add(MO); // Issue CALLSEQ_END unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) .addImm(0) .addImm(0); // Inform the Frame Information that we have a stackmap in this function. FuncInfo.MF->getFrameInfo().setHasStackMap(); return true; } /// Lower an argument list according to the target calling convention. /// /// This is a helper for lowering intrinsics that follow a target calling /// convention or require stack pointer adjustment. Only a subset of the /// intrinsic's operands need to participate in the calling convention. bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs, const Value *Callee, bool ForceRetVoidTy, CallLoweringInfo &CLI) { ArgListTy Args; Args.reserve(NumArgs); // Populate the argument list. for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { Value *V = CI->getOperand(ArgI); assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); ArgListEntry Entry; Entry.Val = V; Entry.Ty = V->getType(); Entry.setAttributes(CI, ArgI); Args.push_back(Entry); } Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) : CI->getType(); CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); return lowerCallTo(CLI); } FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { SmallString<32> MangledName; Mangler::getNameWithPrefix(MangledName, Target, DL); MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); } bool FastISel::selectPatchpoint(const CallInst *I) { // @llvm.experimental.patchpoint.(i64 , // i32 , // i8* , // i32 , // [Args...], // [live variables...]) CallingConv::ID CC = I->getCallingConv(); bool IsAnyRegCC = CC == CallingConv::AnyReg; bool HasDef = !I->getType()->isVoidTy(); Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); // Check if we can lower the return type when using anyregcc. MVT ValueType; if (IsAnyRegCC && HasDef) { ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true); if (ValueType == MVT::Other) return false; } // Get the real number of arguments participating in the call assert(isa(I->getOperand(PatchPointOpers::NArgPos)) && "Expected a constant integer."); const auto *NumArgsVal = cast(I->getOperand(PatchPointOpers::NArgPos)); unsigned NumArgs = NumArgsVal->getZExtValue(); // Skip the four meta args: , , , // This includes all meta-operands up to but not including CC. unsigned NumMetaOpers = PatchPointOpers::CCPos; assert(I->arg_size() >= NumMetaOpers + NumArgs && "Not enough arguments provided to the patchpoint intrinsic"); // For AnyRegCC the arguments are lowered later on manually. unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; CallLoweringInfo CLI; CLI.setIsPatchPoint(); if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) return false; assert(CLI.Call && "No call instruction specified."); SmallVector Ops; // Add an explicit result reg if we use the anyreg calling convention. if (IsAnyRegCC && HasDef) { assert(CLI.NumResultRegs == 0 && "Unexpected result register."); assert(ValueType.isValid()); CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType)); CLI.NumResultRegs = 1; Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); } // Add the and constants. assert(isa(I->getOperand(PatchPointOpers::IDPos)) && "Expected a constant integer."); const auto *ID = cast(I->getOperand(PatchPointOpers::IDPos)); Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); assert(isa(I->getOperand(PatchPointOpers::NBytesPos)) && "Expected a constant integer."); const auto *NumBytes = cast(I->getOperand(PatchPointOpers::NBytesPos)); Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); // Add the call target. if (const auto *C = dyn_cast(Callee)) { uint64_t CalleeConstAddr = cast(C->getOperand(0))->getZExtValue(); Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); } else if (const auto *C = dyn_cast(Callee)) { if (C->getOpcode() == Instruction::IntToPtr) { uint64_t CalleeConstAddr = cast(C->getOperand(0))->getZExtValue(); Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); } else llvm_unreachable("Unsupported ConstantExpr."); } else if (const auto *GV = dyn_cast(Callee)) { Ops.push_back(MachineOperand::CreateGA(GV, 0)); } else if (isa(Callee)) Ops.push_back(MachineOperand::CreateImm(0)); else llvm_unreachable("Unsupported callee address."); // Adjust to account for any arguments that have been passed on // the stack instead. unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); // Add the calling convention Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); // Add the arguments we omitted previously. The register allocator should // place these in any free register. if (IsAnyRegCC) { for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { Register Reg = getRegForValue(I->getArgOperand(i)); if (!Reg) return false; Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); } } // Push the arguments from the call instruction. for (auto Reg : CLI.OutRegs) Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); // Push live variables for the stack map. if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) return false; // Push the register mask info. Ops.push_back(MachineOperand::CreateRegMask( TRI.getCallPreservedMask(*FuncInfo.MF, CC))); // Add scratch registers as implicit def and early clobber. const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); for (unsigned i = 0; ScratchRegs[i]; ++i) Ops.push_back(MachineOperand::CreateReg( ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); // Add implicit defs (return values). for (auto Reg : CLI.InRegs) Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, /*isImp=*/true)); // Insert the patchpoint instruction before the call generated by the target. MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, TII.get(TargetOpcode::PATCHPOINT)); for (auto &MO : Ops) MIB.add(MO); MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); // Delete the original call instruction. CLI.Call->eraseFromParent(); // Inform the Frame Information that we have a patchpoint in this function. FuncInfo.MF->getFrameInfo().setHasPatchPoint(); if (CLI.NumResultRegs) updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); return true; } bool FastISel::selectXRayCustomEvent(const CallInst *I) { const auto &Triple = TM.getTargetTriple(); if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) return true; // don't do anything to this instruction. SmallVector Ops; Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), /*isDef=*/false)); Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), /*isDef=*/false)); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); for (auto &MO : Ops) MIB.add(MO); // Insert the Patchable Event Call instruction, that gets lowered properly. return true; } bool FastISel::selectXRayTypedEvent(const CallInst *I) { const auto &Triple = TM.getTargetTriple(); if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) return true; // don't do anything to this instruction. SmallVector Ops; Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), /*isDef=*/false)); Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), /*isDef=*/false)); Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), /*isDef=*/false)); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); for (auto &MO : Ops) MIB.add(MO); // Insert the Patchable Typed Event Call instruction, that gets lowered properly. return true; } /// Returns an AttributeList representing the attributes applied to the return /// value of the given call. static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { SmallVector Attrs; if (CLI.RetSExt) Attrs.push_back(Attribute::SExt); if (CLI.RetZExt) Attrs.push_back(Attribute::ZExt); if (CLI.IsInReg) Attrs.push_back(Attribute::InReg); return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, Attrs); } bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, unsigned NumArgs) { MCContext &Ctx = MF->getContext(); SmallString<32> MangledName; Mangler::getNameWithPrefix(MangledName, SymName, DL); MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); return lowerCallTo(CI, Sym, NumArgs); } bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs) { FunctionType *FTy = CI->getFunctionType(); Type *RetTy = CI->getType(); ArgListTy Args; Args.reserve(NumArgs); // Populate the argument list. // Attributes for args start at offset 1, after the return attribute. for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { Value *V = CI->getOperand(ArgI); assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); ArgListEntry Entry; Entry.Val = V; Entry.Ty = V->getType(); Entry.setAttributes(CI, ArgI); Args.push_back(Entry); } TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); CallLoweringInfo CLI; CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); return lowerCallTo(CLI); } bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { // Handle the incoming return values from the call. CLI.clearIns(); SmallVector RetTys; ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); SmallVector Outs; GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); bool CanLowerReturn = TLI.CanLowerReturn( CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); // FIXME: sret demotion isn't supported yet - bail out. if (!CanLowerReturn) return false; for (EVT VT : RetTys) { MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); for (unsigned i = 0; i != NumRegs; ++i) { ISD::InputArg MyFlags; MyFlags.VT = RegisterVT; MyFlags.ArgVT = VT; MyFlags.Used = CLI.IsReturnValueUsed; if (CLI.RetSExt) MyFlags.Flags.setSExt(); if (CLI.RetZExt) MyFlags.Flags.setZExt(); if (CLI.IsInReg) MyFlags.Flags.setInReg(); CLI.Ins.push_back(MyFlags); } } // Handle all of the outgoing arguments. CLI.clearOuts(); for (auto &Arg : CLI.getArgs()) { Type *FinalType = Arg.Ty; if (Arg.IsByVal) FinalType = Arg.IndirectType; bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( FinalType, CLI.CallConv, CLI.IsVarArg, DL); ISD::ArgFlagsTy Flags; if (Arg.IsZExt) Flags.setZExt(); if (Arg.IsSExt) Flags.setSExt(); if (Arg.IsInReg) Flags.setInReg(); if (Arg.IsSRet) Flags.setSRet(); if (Arg.IsSwiftSelf) Flags.setSwiftSelf(); if (Arg.IsSwiftAsync) Flags.setSwiftAsync(); if (Arg.IsSwiftError) Flags.setSwiftError(); if (Arg.IsCFGuardTarget) Flags.setCFGuardTarget(); if (Arg.IsByVal) Flags.setByVal(); if (Arg.IsInAlloca) { Flags.setInAlloca(); // Set the byval flag for CCAssignFn callbacks that don't know about // inalloca. This way we can know how many bytes we should've allocated // and how many bytes a callee cleanup function will pop. If we port // inalloca to more targets, we'll have to add custom inalloca handling in // the various CC lowering callbacks. Flags.setByVal(); } if (Arg.IsPreallocated) { Flags.setPreallocated(); // Set the byval flag for CCAssignFn callbacks that don't know about // preallocated. This way we can know how many bytes we should've // allocated and how many bytes a callee cleanup function will pop. If we // port preallocated to more targets, we'll have to add custom // preallocated handling in the various CC lowering callbacks. Flags.setByVal(); } MaybeAlign MemAlign = Arg.Alignment; if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); // For ByVal, alignment should come from FE. BE will guess if this info // is not there, but there are cases it cannot get right. if (!MemAlign) MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL)); Flags.setByValSize(FrameSize); } else if (!MemAlign) { MemAlign = DL.getABITypeAlign(Arg.Ty); } Flags.setMemAlign(*MemAlign); if (Arg.IsNest) Flags.setNest(); if (NeedsRegBlock) Flags.setInConsecutiveRegs(); Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); CLI.OutVals.push_back(Arg.Val); CLI.OutFlags.push_back(Flags); } if (!fastLowerCall(CLI)) return false; // Set all unused physreg defs as dead. assert(CLI.Call && "No call instruction specified."); CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); if (CLI.NumResultRegs && CLI.CB) updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); // Set labels for heapallocsite call. if (CLI.CB) if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) CLI.Call->setHeapAllocMarker(*MF, MD); return true; } bool FastISel::lowerCall(const CallInst *CI) { FunctionType *FuncTy = CI->getFunctionType(); Type *RetTy = CI->getType(); ArgListTy Args; ArgListEntry Entry; Args.reserve(CI->arg_size()); for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { Value *V = *i; // Skip empty types if (V->getType()->isEmptyTy()) continue; Entry.Val = V; Entry.Ty = V->getType(); // Skip the first return-type Attribute to get to params. Entry.setAttributes(CI, i - CI->arg_begin()); Args.push_back(Entry); } // Check if target-independent constraints permit a tail call here. // Target-dependent constraints are checked within fastLowerCall. bool IsTailCall = CI->isTailCall(); if (IsTailCall && !isInTailCallPosition(*CI, TM)) IsTailCall = false; if (IsTailCall && !CI->isMustTailCall() && MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) IsTailCall = false; CallLoweringInfo CLI; CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) .setTailCall(IsTailCall); diagnoseDontCall(*CI); return lowerCallTo(CLI); } bool FastISel::selectCall(const User *I) { const CallInst *Call = cast(I); // Handle simple inline asms. if (const InlineAsm *IA = dyn_cast(Call->getCalledOperand())) { // Don't attempt to handle constraints. if (!IA->getConstraintString().empty()) return false; unsigned ExtraInfo = 0; if (IA->hasSideEffects()) ExtraInfo |= InlineAsm::Extra_HasSideEffects; if (IA->isAlignStack()) ExtraInfo |= InlineAsm::Extra_IsAlignStack; if (Call->isConvergent()) ExtraInfo |= InlineAsm::Extra_IsConvergent; ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::INLINEASM)); MIB.addExternalSymbol(IA->getAsmString().c_str()); MIB.addImm(ExtraInfo); const MDNode *SrcLoc = Call->getMetadata("srcloc"); if (SrcLoc) MIB.addMetadata(SrcLoc); return true; } // Handle intrinsic function calls. if (const auto *II = dyn_cast(Call)) return selectIntrinsicCall(II); return lowerCall(Call); } void FastISel::handleDbgInfo(const Instruction *II) { if (!II->hasDbgRecords()) return; // Clear any metadata. MIMD = MIMetadata(); // Reverse order of debug records, because fast-isel walks through backwards. for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) { flushLocalValueMap(); recomputeInsertPt(); if (DbgLabelRecord *DLR = dyn_cast(&DR)) { assert(DLR->getLabel() && "Missing label"); if (!FuncInfo.MF->getMMI().hasDebugInfo()) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DLR << "\n"); continue; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) .addMetadata(DLR->getLabel()); continue; } DbgVariableRecord &DVR = cast(DR); Value *V = nullptr; if (!DVR.hasArgList()) V = DVR.getVariableLocationOp(0); bool Res = false; if (DVR.getType() == DbgVariableRecord::LocationType::Value || DVR.getType() == DbgVariableRecord::LocationType::Assign) { Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(), DVR.getDebugLoc()); } else { assert(DVR.getType() == DbgVariableRecord::LocationType::Declare); if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) continue; Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(), DVR.getDebugLoc()); } if (!Res) LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n";); } } bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, DILocalVariable *Var, const DebugLoc &DL) { // This form of DBG_VALUE is target-independent. const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); if (!V || isa(V)) { // DI is either undef or cannot produce a valid DBG_VALUE, so produce an // undef DBG_VALUE to terminate any prior location. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr); return true; } if (const auto *CI = dyn_cast(V)) { // See if there's an expression to constant-fold. if (Expr) std::tie(Expr, CI) = Expr->constantFold(CI); if (CI->getBitWidth() > 64) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addCImm(CI) .addImm(0U) .addMetadata(Var) .addMetadata(Expr); else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addImm(CI->getZExtValue()) .addImm(0U) .addMetadata(Var) .addMetadata(Expr); return true; } if (const auto *CF = dyn_cast(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addFPImm(CF) .addImm(0U) .addMetadata(Var) .addMetadata(Expr); return true; } if (const auto *Arg = dyn_cast(V); Arg && Expr && Expr->isEntryValue()) { // As per the Verifier, this case is only valid for swift async Args. assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); Register Reg = getRegForValue(Arg); for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) if (Reg == VirtReg || Reg == PhysReg) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/, PhysReg, Var, Expr); return true; } LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " "couldn't find a physical register\n"); return false; } if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast(V)); SI != FuncInfo.StaticAllocaMap.end()) { MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second); bool IsIndirect = false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp, Var, Expr); return true; } if (Register Reg = lookUpRegForValue(V)) { // FIXME: This does not handle register-indirect values at offset 0. if (!FuncInfo.MF->useDebugInstrRef()) { bool IsIndirect = false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var, Expr); return true; } // If using instruction referencing, produce this as a DBG_INSTR_REF, // to be later patched up by finalizeDebugInstrRefs. SmallVector MOs({MachineOperand::CreateReg( /* Reg */ Reg, /* isDef */ false, /* isImp */ false, /* isKill */ false, /* isDead */ false, /* isUndef */ false, /* isEarlyClobber */ false, /* SubReg */ 0, /* isDebug */ true)}); SmallVector Ops({dwarf::DW_OP_LLVM_arg, 0}); auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, Var, NewExpr); return true; } return false; } bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, DILocalVariable *Var, const DebugLoc &DL) { if (!Address || isa(Address)) { LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n"); return false; } std::optional Op; if (Register Reg = lookUpRegForValue(Address)) Op = MachineOperand::CreateReg(Reg, false); // If we have a VLA that has a "use" in a metadata node that's then used // here but it has no other uses, then we have a problem. E.g., // // int foo (const int *x) { // char a[*x]; // return 0; // } // // If we assign 'a' a vreg and fast isel later on has to use the selection // DAG isel, it will want to copy the value to the vreg. However, there are // no uses, which goes counter to what selection DAG isel expects. if (!Op && !Address->use_empty() && isa(Address) && (!isa(Address) || !FuncInfo.StaticAllocaMap.count(cast(Address)))) Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), false); if (Op) { assert(Var->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { // If using instruction referencing, produce this as a DBG_INSTR_REF, // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. SmallVector Ops( {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, Var, NewExpr); return true; } // A dbg.declare describes the address of a source variable, so lower it // into an indirect DBG_VALUE. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var, Expr); return true; } // We can't yet handle anything else here because it would require // generating code, thus altering codegen because of debug info. LLVM_DEBUG( dbgs() << "Dropping debug info (no materialized reg for address)\n"); return false; } bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { switch (II->getIntrinsicID()) { default: break; // At -O0 we don't care about the lifetime intrinsics. case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // The donothing intrinsic does, well, nothing. case Intrinsic::donothing: // Neither does the sideeffect intrinsic. case Intrinsic::sideeffect: // Neither does the assume intrinsic; it's also OK not to codegen its operand. case Intrinsic::assume: // Neither does the llvm.experimental.noalias.scope.decl intrinsic case Intrinsic::experimental_noalias_scope_decl: return true; case Intrinsic::dbg_declare: { const DbgDeclareInst *DI = cast(II); assert(DI->getVariable() && "Missing variable"); if (!FuncInfo.MF->getMMI().hasDebugInfo()) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << " (!hasDebugInfo)\n"); return true; } if (FuncInfo.PreprocessedDbgDeclares.contains(DI)) return true; const Value *Address = DI->getAddress(); if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(), MIMD.getDL())) LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI); return true; } case Intrinsic::dbg_assign: // A dbg.assign is a dbg.value with more information, typically produced // during optimisation. If one reaches fastisel then something odd has // happened (such as an optimised function being always-inlined into an // optnone function). We will not be using the extra information in the // dbg.assign in that case, just use its dbg.value fields. [[fallthrough]]; case Intrinsic::dbg_value: { // This form of DBG_VALUE is target-independent. const DbgValueInst *DI = cast(II); const Value *V = DI->getValue(); DIExpression *Expr = DI->getExpression(); DILocalVariable *Var = DI->getVariable(); if (DI->hasArgList()) // Signal that we don't have a location for this. V = nullptr; assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) && "Expected inlined-at fields to agree"); if (!lowerDbgValue(V, Expr, Var, MIMD.getDL())) LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); return true; } case Intrinsic::dbg_label: { const DbgLabelInst *DI = cast(II); assert(DI->getLabel() && "Missing label"); if (!FuncInfo.MF->getMMI().hasDebugInfo()) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); return true; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); return true; } case Intrinsic::objectsize: llvm_unreachable("llvm.objectsize.* should have been lowered already"); case Intrinsic::is_constant: llvm_unreachable("llvm.is.constant.* should have been lowered already"); case Intrinsic::allow_runtime_check: case Intrinsic::allow_ubsan_check: { Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType())); if (!ResultReg) return false; updateValueMap(II, ResultReg); return true; } case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::expect: { Register ResultReg = getRegForValue(II->getArgOperand(0)); if (!ResultReg) return false; updateValueMap(II, ResultReg); return true; } case Intrinsic::experimental_stackmap: return selectStackmap(II); case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint: return selectPatchpoint(II); case Intrinsic::xray_customevent: return selectXRayCustomEvent(II); case Intrinsic::xray_typedevent: return selectXRayTypedEvent(II); } return fastLowerIntrinsicCall(II); } bool FastISel::selectCast(const User *I, unsigned Opcode) { EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(DL, I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the destination type is legal. if (!TLI.isTypeLegal(DstVT)) return false; // Check if the source operand is legal. if (!TLI.isTypeLegal(SrcVT)) return false; Register InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opcode, InputReg); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool FastISel::selectBitCast(const User *I) { EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); EVT DstEVT = TLI.getValueType(DL, I->getType()); if (SrcEVT == MVT::Other || DstEVT == MVT::Other || !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) // Unhandled type. Halt "fast" selection and bail. return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DstVT = DstEVT.getSimpleVT(); Register Op0 = getRegForValue(I->getOperand(0)); if (!Op0) // Unhandled operand. Halt "fast" selection and bail. return false; // If the bitcast doesn't change the type, just use the operand value. if (SrcVT == DstVT) { updateValueMap(I, Op0); return true; } // Otherwise, select a BITCAST opcode. Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool FastISel::selectFreeze(const User *I) { Register Reg = getRegForValue(I->getOperand(0)); if (!Reg) // Unhandled operand. return false; EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) // Unhandled type, bail out. return false; MVT Ty = ETy.getSimpleVT(); const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); Register ResultReg = createResultReg(TyRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); updateValueMap(I, ResultReg); return true; } // Remove local value instructions starting from the instruction after // SavedLastLocalValue to the current function insert point. void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) { MachineInstr *CurLastLocalValue = getLastLocalValue(); if (CurLastLocalValue != SavedLastLocalValue) { // Find the first local value instruction to be deleted. // This is the instruction after SavedLastLocalValue if it is non-NULL. // Otherwise it's the first instruction in the block. MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); if (SavedLastLocalValue) ++FirstDeadInst; else FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); setLastLocalValue(SavedLastLocalValue); removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); } } bool FastISel::selectInstruction(const Instruction *I) { // Flush the local value map before starting each instruction. // This improves locality and debugging, and can reduce spills. // Reuse of values across IR instructions is relatively uncommon. flushLocalValueMap(); MachineInstr *SavedLastLocalValue = getLastLocalValue(); // Just before the terminator instruction, insert instructions to // feed PHI nodes in successor blocks. if (I->isTerminator()) { if (!handlePHINodesInSuccessorBlocks(I->getParent())) { // PHI node handling may have generated local value instructions, // even though it failed to handle all PHI nodes. // We remove these instructions because SelectionDAGISel will generate // them again. removeDeadLocalValueCode(SavedLastLocalValue); return false; } } // FastISel does not handle any operand bundles except OB_funclet. if (auto *Call = dyn_cast(I)) for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) return false; MIMD = MIMetadata(*I); SavedInsertPt = FuncInfo.InsertPt; if (const auto *Call = dyn_cast(I)) { const Function *F = Call->getCalledFunction(); LibFunc Func; // As a special case, don't handle calls to builtin library functions that // may be translated directly to target instructions. if (F && !F->hasLocalLinkage() && F->hasName() && LibInfo->getLibFunc(F->getName(), Func) && LibInfo->hasOptimizedCodeGen(Func)) return false; // Don't handle Intrinsic::trap if a trap function is specified. if (F && F->getIntrinsicID() == Intrinsic::trap && Call->hasFnAttr("trap-func-name")) return false; } // First, try doing target-independent selection. if (!SkipTargetIndependentISel) { if (selectOperator(I, I->getOpcode())) { ++NumFastIselSuccessIndependent; MIMD = {}; return true; } // Remove dead code. recomputeInsertPt(); if (SavedInsertPt != FuncInfo.InsertPt) removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); SavedInsertPt = FuncInfo.InsertPt; } // Next, try calling the target to attempt to handle the instruction. if (fastSelectInstruction(I)) { ++NumFastIselSuccessTarget; MIMD = {}; return true; } // Remove dead code. recomputeInsertPt(); if (SavedInsertPt != FuncInfo.InsertPt) removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); MIMD = {}; // Undo phi node updates, because they will be added again by SelectionDAG. if (I->isTerminator()) { // PHI node handling may have generated local value instructions. // We remove them because SelectionDAGISel will generate them again. removeDeadLocalValueCode(SavedLastLocalValue); FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); } return false; } /// Emit an unconditional branch to the given block, unless it is the immediate /// (fall-through) successor, and update the CFG. void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc) { if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { // For more accurate line information if this is the only non-debug // instruction in the block then emit it, otherwise we have the // unconditional fall-through case, which needs no instructions. } else { // The unconditional branch case. TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, SmallVector(), DbgLoc); } if (FuncInfo.BPI) { auto BranchProbability = FuncInfo.BPI->getEdgeProbability( FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); } else FuncInfo.MBB->addSuccessorWithoutProb(MSucc); } void FastISel::finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB) { // Add TrueMBB as successor unless it is equal to the FalseMBB: This can // happen in degenerate IR and MachineIR forbids to have a block twice in the // successor/predecessor lists. if (TrueMBB != FalseMBB) { if (FuncInfo.BPI) { auto BranchProbability = FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); } else FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); } fastEmitBranch(FalseMBB, MIMD.getDL()); } /// Emit an FNeg operation. bool FastISel::selectFNeg(const User *I, const Value *In) { Register OpReg = getRegForValue(In); if (!OpReg) return false; // If the target has ISD::FNEG, use it. EVT VT = TLI.getValueType(DL, I->getType()); Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, OpReg); if (ResultReg) { updateValueMap(I, ResultReg); return true; } // Bitcast the value to integer, twiddle the sign bit with xor, // and then bitcast it back to floating-point. if (VT.getSizeInBits() > 64) return false; EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); if (!TLI.isTypeLegal(IntVT)) return false; Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), ISD::BITCAST, OpReg); if (!IntReg) return false; Register IntResultReg = fastEmit_ri_( IntVT.getSimpleVT(), ISD::XOR, IntReg, UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); if (!IntResultReg) return false; ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, IntResultReg); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool FastISel::selectExtractValue(const User *U) { const ExtractValueInst *EVI = dyn_cast(U); if (!EVI) return false; // Make sure we only try to handle extracts with a legal result. But also // allow i1 because it's easy. EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); if (!RealVT.isSimple()) return false; MVT VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT) && VT != MVT::i1) return false; const Value *Op0 = EVI->getOperand(0); Type *AggTy = Op0->getType(); // Get the base result register. unsigned ResultReg; DenseMap::iterator I = FuncInfo.ValueMap.find(Op0); if (I != FuncInfo.ValueMap.end()) ResultReg = I->second; else if (isa(Op0)) ResultReg = FuncInfo.InitializeRegForValue(Op0); else return false; // fast-isel can't handle aggregate constants at the moment // Get the actual result register, which is an offset from the base register. unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); SmallVector AggValueVTs; ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); for (unsigned i = 0; i < VTIndex; i++) ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); updateValueMap(EVI, ResultReg); return true; } bool FastISel::selectOperator(const User *I, unsigned Opcode) { switch (Opcode) { case Instruction::Add: return selectBinaryOp(I, ISD::ADD); case Instruction::FAdd: return selectBinaryOp(I, ISD::FADD); case Instruction::Sub: return selectBinaryOp(I, ISD::SUB); case Instruction::FSub: return selectBinaryOp(I, ISD::FSUB); case Instruction::Mul: return selectBinaryOp(I, ISD::MUL); case Instruction::FMul: return selectBinaryOp(I, ISD::FMUL); case Instruction::SDiv: return selectBinaryOp(I, ISD::SDIV); case Instruction::UDiv: return selectBinaryOp(I, ISD::UDIV); case Instruction::FDiv: return selectBinaryOp(I, ISD::FDIV); case Instruction::SRem: return selectBinaryOp(I, ISD::SREM); case Instruction::URem: return selectBinaryOp(I, ISD::UREM); case Instruction::FRem: return selectBinaryOp(I, ISD::FREM); case Instruction::Shl: return selectBinaryOp(I, ISD::SHL); case Instruction::LShr: return selectBinaryOp(I, ISD::SRL); case Instruction::AShr: return selectBinaryOp(I, ISD::SRA); case Instruction::And: return selectBinaryOp(I, ISD::AND); case Instruction::Or: return selectBinaryOp(I, ISD::OR); case Instruction::Xor: return selectBinaryOp(I, ISD::XOR); case Instruction::FNeg: return selectFNeg(I, I->getOperand(0)); case Instruction::GetElementPtr: return selectGetElementPtr(I); case Instruction::Br: { const BranchInst *BI = cast(I); if (BI->isUnconditional()) { const BasicBlock *LLVMSucc = BI->getSuccessor(0); MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; fastEmitBranch(MSucc, BI->getDebugLoc()); return true; } // Conditional branches are not handed yet. // Halt "fast" selection and bail. return false; } case Instruction::Unreachable: if (TM.Options.TrapUnreachable) return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; else return true; case Instruction::Alloca: // FunctionLowering has the static-sized case covered. if (FuncInfo.StaticAllocaMap.count(cast(I))) return true; // Dynamic-sized alloca is not handled yet. return false; case Instruction::Call: // On AIX, normal call lowering uses the DAG-ISEL path currently so that the // callee of the direct function call instruction will be mapped to the // symbol for the function's entry point, which is distinct from the // function descriptor symbol. The latter is the symbol whose XCOFF symbol // name is the C-linkage name of the source level function. // But fast isel still has the ability to do selection for intrinsics. if (TM.getTargetTriple().isOSAIX() && !isa(I)) return false; return selectCall(I); case Instruction::BitCast: return selectBitCast(I); case Instruction::FPToSI: return selectCast(I, ISD::FP_TO_SINT); case Instruction::ZExt: return selectCast(I, ISD::ZERO_EXTEND); case Instruction::SExt: return selectCast(I, ISD::SIGN_EXTEND); case Instruction::Trunc: return selectCast(I, ISD::TRUNCATE); case Instruction::SIToFP: return selectCast(I, ISD::SINT_TO_FP); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(DL, I->getType()); if (DstVT.bitsGT(SrcVT)) return selectCast(I, ISD::ZERO_EXTEND); if (DstVT.bitsLT(SrcVT)) return selectCast(I, ISD::TRUNCATE); Register Reg = getRegForValue(I->getOperand(0)); if (!Reg) return false; updateValueMap(I, Reg); return true; } case Instruction::ExtractValue: return selectExtractValue(I); case Instruction::Freeze: return selectFreeze(I); case Instruction::PHI: llvm_unreachable("FastISel shouldn't visit PHI nodes!"); default: // Unhandled instruction. Halt "fast" selection and bail. return false; } } FastISel::FastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo, bool SkipTargetIndependentISel) : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), TII(*MF->getSubtarget().getInstrInfo()), TLI(*MF->getSubtarget().getTargetLowering()), TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), SkipTargetIndependentISel(SkipTargetIndependentISel) {} FastISel::~FastISel() = default; bool FastISel::fastLowerArguments() { return false; } bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { return false; } unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { return 0; } unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, unsigned /*Op1*/) { return 0; } unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { return 0; } unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, const ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, uint64_t /*Imm*/) { return 0; } /// This method is a wrapper of fastEmit_ri. It first tries to emit an /// instruction with an immediate operand using fastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// fastEmit_rr instead. Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, uint64_t Imm, MVT ImmType) { // If this is a multiply by a power of two, emit this as a shift left. if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { Opcode = ISD::SHL; Imm = Log2_64(Imm); } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { // div x, 8 -> srl x, 3 Opcode = ISD::SRL; Imm = Log2_64(Imm); } // Horrible hack (to be removed), check to make sure shift amounts are // in-range. if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && Imm >= VT.getSizeInBits()) return 0; // First check if immediate type is legal. If not, we can't use the ri form. Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); if (ResultReg) return ResultReg; Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); if (!MaterialReg) { // This is a bit ugly/slow, but failing here means falling out of // fast-isel, which would be very slow. IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); if (!MaterialReg) return 0; } return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); } Register FastISel::createResultReg(const TargetRegisterClass *RC) { return MRI.createVirtualRegister(RC); } Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, unsigned OpNum) { if (Op.isVirtual()) { const TargetRegisterClass *RegClass = TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); if (!MRI.constrainRegClass(Op, RegClass)) { // If it's not legal to COPY between the register classes, something // has gone very wrong before we got here. Register NewOp = createResultReg(RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), NewOp).addReg(Op); return NewOp; } } return Op; } Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC) { Register ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); return ResultReg; } Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addReg(Op1); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addReg(Op1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, unsigned Op2) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addReg(Op1) .addReg(Op2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addReg(Op1) .addReg(Op2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm1, uint64_t Imm2) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addImm(Imm1) .addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addImm(Imm1) .addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, const TargetRegisterClass *RC, const ConstantFP *FPImm) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addFPImm(FPImm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addFPImm(FPImm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, uint64_t Imm) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addReg(Op1) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addReg(Op1) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { Register ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, uint32_t Idx) { Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); assert(Register::isVirtualRegister(Op0) && "Cannot yet extract from physregs"); const TargetRegisterClass *RC = MRI.getRegClass(Op0); MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0, 0, Idx); return ResultReg; } /// Emit MachineInstrs to compute the value of Op with all but the least /// significant bit set to zero. Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); } /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. /// Emit code to ensure constants are copied into registers when needed. /// Remember the virtual registers that need to be added to the Machine PHI /// nodes as input. We cannot just directly add them, because expansion /// might result in multiple MBB's for one BB. As such, the start of the /// BB might correspond to a different MBB than the end. bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { SmallPtrSet SuccsHandled; FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); // Check successor nodes' PHI nodes that expect a constant to be available // from this block. for (const BasicBlock *SuccBB : successors(LLVMBB)) { if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. if (!SuccsHandled.insert(SuccMBB).second) continue; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (const PHINode &PN : SuccBB->phis()) { // Ignore dead phi's. if (PN.use_empty()) continue; // Only handle legal types. Two interesting things to note here. First, // by bailing out early, we may leave behind some dead instructions, // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its // own moves. Second, this check is necessary because FastISel doesn't // use CreateRegs to create registers, so it always creates // exactly one register for each non-void instruction. EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { // Handle integer promotions, though, because they're common and easy. if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); return false; } } const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); // Set the DebugLoc for the copy. Use the location of the operand if // there is one; otherwise no location, flushLocalValueMap will fix it. MIMD = {}; if (const auto *Inst = dyn_cast(PHIOp)) MIMD = MIMetadata(*Inst); Register Reg = getRegForValue(PHIOp); if (!Reg) { FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); return false; } FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); MIMD = {}; } } return true; } bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { assert(LI->hasOneUse() && "tryToFoldLoad expected a LoadInst with a single use"); // We know that the load has a single use, but don't know what it is. If it // isn't one of the folded instructions, then we can't succeed here. Handle // this by scanning the single-use users of the load until we get to FoldInst. unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. const Instruction *TheUser = LI->user_back(); while (TheUser != FoldInst && // Scan up until we find FoldInst. // Stay in the right block. TheUser->getParent() == FoldInst->getParent() && --MaxUsers) { // Don't scan too far. // If there are multiple or no uses of this instruction, then bail out. if (!TheUser->hasOneUse()) return false; TheUser = TheUser->user_back(); } // If we didn't find the fold instruction, then we failed to collapse the // sequence. if (TheUser != FoldInst) return false; // Don't try to fold volatile loads. Target has to deal with alignment // constraints. if (LI->isVolatile()) return false; // Figure out which vreg this is going into. If there is no assigned vreg yet // then there actually was no reference to it. Perhaps the load is referenced // by a dead instruction. Register LoadReg = getRegForValue(LI); if (!LoadReg) return false; // We can't fold if this vreg has no uses or more than one use. Multiple uses // may mean that the instruction got lowered to multiple MIs, or the use of // the loaded value ended up being multiple operands of the result. if (!MRI.hasOneUse(LoadReg)) return false; // If the register has fixups, there may be additional uses through a // different alias of the register. if (FuncInfo.RegsWithFixups.contains(LoadReg)) return false; MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); MachineInstr *User = RI->getParent(); // Set the insertion point properly. Folding the load can cause generation of // other random instructions (like sign extends) for addressing modes; make // sure they get inserted in a logical place before the new instruction. FuncInfo.InsertPt = User; FuncInfo.MBB = User->getParent(); // Ask the target to try folding the load. return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); } bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { // Must be an add. if (!isa(Add)) return false; // Type size needs to match. if (DL.getTypeSizeInBits(GEP->getType()) != DL.getTypeSizeInBits(Add->getType())) return false; // Must be in the same basic block. if (isa(Add) && FuncInfo.MBBMap[cast(Add)->getParent()] != FuncInfo.MBB) return false; // Must have a constant operand. return isa(cast(Add)->getOperand(1)); } MachineMemOperand * FastISel::createMachineMemOperandFor(const Instruction *I) const { const Value *Ptr; Type *ValTy; MaybeAlign Alignment; MachineMemOperand::Flags Flags; bool IsVolatile; if (const auto *LI = dyn_cast(I)) { Alignment = LI->getAlign(); IsVolatile = LI->isVolatile(); Flags = MachineMemOperand::MOLoad; Ptr = LI->getPointerOperand(); ValTy = LI->getType(); } else if (const auto *SI = dyn_cast(I)) { Alignment = SI->getAlign(); IsVolatile = SI->isVolatile(); Flags = MachineMemOperand::MOStore; Ptr = SI->getPointerOperand(); ValTy = SI->getValueOperand()->getType(); } else return nullptr; bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); AAMDNodes AAInfo = I->getAAMetadata(); if (!Alignment) // Ensure that codegen never sees alignment 0. Alignment = DL.getABITypeAlign(ValTy); unsigned Size = DL.getTypeStoreSize(ValTy); if (IsVolatile) Flags |= MachineMemOperand::MOVolatile; if (IsNonTemporal) Flags |= MachineMemOperand::MONonTemporal; if (IsDereferenceable) Flags |= MachineMemOperand::MODereferenceable; if (IsInvariant) Flags |= MachineMemOperand::MOInvariant; return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, *Alignment, AAInfo, Ranges); } CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { // If both operands are the same, then try to optimize or fold the cmp. CmpInst::Predicate Predicate = CI->getPredicate(); if (CI->getOperand(0) != CI->getOperand(1)) return Predicate; switch (Predicate) { default: llvm_unreachable("Invalid predicate!"); case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; } return Predicate; }