//===- MachineDominators.cpp - Machine Dominator Calculation --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators on machine functions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineDominators.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/CodeGen/Passes.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/GenericDomTreeConstruction.h" using namespace llvm; namespace llvm { // Always verify dominfo if expensive checking is enabled. #ifdef EXPENSIVE_CHECKS bool VerifyMachineDomInfo = true; #else bool VerifyMachineDomInfo = false; #endif } // namespace llvm static cl::opt VerifyMachineDomInfoX( "verify-machine-dom-info", cl::location(VerifyMachineDomInfo), cl::Hidden, cl::desc("Verify machine dominator info (time consuming)")); namespace llvm { template class DomTreeNodeBase; template class DominatorTreeBase; // DomTreeBase namespace DomTreeBuilder { template void Calculate(MBBDomTree &DT); template void CalculateWithUpdates(MBBDomTree &DT, MBBUpdates U); template void InsertEdge(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To); template void DeleteEdge(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To); template void ApplyUpdates(MBBDomTree &DT, MBBDomTreeGraphDiff &, MBBDomTreeGraphDiff *); template bool Verify(const MBBDomTree &DT, MBBDomTree::VerificationLevel VL); } // namespace DomTreeBuilder } bool MachineDominatorTree::invalidate( MachineFunction &, const PreservedAnalyses &PA, MachineFunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on machine functions, or the // machine function's CFG have been preserved. auto PAC = PA.getChecker(); return !PAC.preserved() && !PAC.preservedSet>() && !PAC.preservedSet(); } AnalysisKey MachineDominatorTreeAnalysis::Key; MachineDominatorTreeAnalysis::Result MachineDominatorTreeAnalysis::run(MachineFunction &MF, MachineFunctionAnalysisManager &) { return MachineDominatorTree(MF); } PreservedAnalyses MachineDominatorTreePrinterPass::run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { OS << "MachineDominatorTree for machine function: " << MF.getName() << '\n'; MFAM.getResult(MF).print(OS); return PreservedAnalyses::all(); } char MachineDominatorTreeWrapperPass::ID = 0; INITIALIZE_PASS(MachineDominatorTreeWrapperPass, "machinedomtree", "MachineDominator Tree Construction", true, true) MachineDominatorTreeWrapperPass::MachineDominatorTreeWrapperPass() : MachineFunctionPass(ID) { initializeMachineDominatorTreeWrapperPassPass( *PassRegistry::getPassRegistry()); } void MachineDominatorTree::calculate(MachineFunction &F) { CriticalEdgesToSplit.clear(); NewBBs.clear(); recalculate(F); } char &llvm::MachineDominatorsID = MachineDominatorTreeWrapperPass::ID; bool MachineDominatorTreeWrapperPass::runOnMachineFunction(MachineFunction &F) { DT = MachineDominatorTree(F); return false; } void MachineDominatorTreeWrapperPass::releaseMemory() { DT.reset(); } void MachineDominatorTreeWrapperPass::verifyAnalysis() const { if (VerifyMachineDomInfo && DT) if (!DT->verify(MachineDominatorTree::VerificationLevel::Basic)) report_fatal_error("MachineDominatorTree verification failed!"); } void MachineDominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { if (DT) DT->print(OS); } void MachineDominatorTree::applySplitCriticalEdges() const { // Bail out early if there is nothing to do. if (CriticalEdgesToSplit.empty()) return; // For each element in CriticalEdgesToSplit, remember whether or not element // is the new immediate domminator of its successor. The mapping is done by // index, i.e., the information for the ith element of CriticalEdgesToSplit is // the ith element of IsNewIDom. SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true); size_t Idx = 0; // Collect all the dominance properties info, before invalidating // the underlying DT. for (CriticalEdge &Edge : CriticalEdgesToSplit) { // Update dominator information. MachineBasicBlock *Succ = Edge.ToBB; MachineDomTreeNode *SuccDTNode = Base::getNode(Succ); for (MachineBasicBlock *PredBB : Succ->predecessors()) { if (PredBB == Edge.NewBB) continue; // If we are in this situation: // FromBB1 FromBB2 // + + // + + + + // + + + + // ... Split1 Split2 ... // + + // + + // + // Succ // Instead of checking the domiance property with Split2, we check it with // FromBB2 since Split2 is still unknown of the underlying DT structure. if (NewBBs.count(PredBB)) { assert(PredBB->pred_size() == 1 && "A basic block resulting from a " "critical edge split has more " "than one predecessor!"); PredBB = *PredBB->pred_begin(); } if (!Base::dominates(SuccDTNode, Base::getNode(PredBB))) { IsNewIDom[Idx] = false; break; } } ++Idx; } // Now, update DT with the collected dominance properties info. Idx = 0; for (CriticalEdge &Edge : CriticalEdgesToSplit) { // We know FromBB dominates NewBB. MachineDomTreeNode *NewDTNode = const_cast(this)->Base::addNewBlock( Edge.NewBB, Edge.FromBB); // If all the other predecessors of "Succ" are dominated by "Succ" itself // then the new block is the new immediate dominator of "Succ". Otherwise, // the new block doesn't dominate anything. if (IsNewIDom[Idx]) const_cast(this)->Base::changeImmediateDominator( Base::getNode(Edge.ToBB), NewDTNode); ++Idx; } NewBBs.clear(); CriticalEdgesToSplit.clear(); }